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Abstract: In this paper, the generalized helical hypersurfaces x = x(u, v, w) with a time-like axis
in Minkowski spacetime E4

1 are considered. The first and the second fundamental form matrices,
the Gauss map, and the shape operator matrix of x are calculated. Moreover, the curvatures of
the generalized helical hypersurface x are obtained by using the Cayley–Hamilton theorem. The
umbilical conditions for the curvatures of x are given. Finally, the Laplace–Beltrami operator of the
generalized helical hypersurface with a time-like axis is presented in E4

1.
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1. Introduction

Differential geometry has a very important place in mathematics, engineering, physics,
and astrophysics. In differential geometry, the theory of hyper-surfaces has been worked
on by many mathematicians (especially geometers), engineers, physicists, astrophysicists,
etc., for hundreds of years.

For instance, Obata [1] revealed certain conditions for a Riemannian manifold to be
isometric with a sphere; Takahashi [2] proved that a connected Euclidean submanifold is of
the one-type, iff it is either minimal in Em or minimal in some hypersphere of Em; Chern,
do Carmo, and Kobayashi [3] gave the minimal submanifolds of a sphere with a second
fundamental form of constant length; Cheng and Yau [4] considered the hypersurfaces
with constant scalar curvature; Lawson [5] gave the minimal submanifolds and indicated
the general definition of the Laplace–Beltrami operator.

Chen [6–9] studied the submanifolds of the finite-type whose immersion is into Em

(or Em
ν ) by using a finite number of eigenfunctions of their Laplacian. Some results of the

two-type spherical closed submanifolds were given by [7,10,11]; Garay [12] researched the
extension of Takahashi’s theorem in Em. Chen and Piccinni [13] focused on the submani-
folds with the finite-type Gauss map in Em.

In Euclidean three-space E3, when looking at ruled (helicoidal or helical) and rotational
characters, it is seen that those are related by Bour’s theorem [14]. Regarding helical
surfaces in Euclidean three-space, do Carmo and Dajczer [15] proved that, by using a result
of Bour [14], there exists a two-parameter family of helical surfaces isometric to a given
helical surface. Takahashi [2] proved the minimal surfaces and spheres are the only surfaces
satisfying the condition ∆r = λr, λ ∈ R; Ferrandez, Garay, and Lucas [16] gave that the
surfaces satisfying ∆H = AH, A ∈ Mat(3, 3) are either minimal or an open piece of a
sphere or of a right circular cylinder; Choi and Kim [17] studied the minimal helicoid in
terms of the pointwise one-type Gauss map of the first kind; Garay [18] classified a certain
class of finite-type surfaces of revolution; Dillen, Pas, and Verstraelen [19] focused on the
only surfaces satisfying ∆r = Ar + B, A ∈ Mat(3, 3), and B ∈ Mat(3, 1) being the minimal
surfaces, the spheres, and the circular cylinders; Stamatakis and Zoubi [20] obtained the
surfaces of revolution satisfying ∆I I I x = Ax; Senoussi and Bekkar [21] introduced helical
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surfaces M2, which are of the finite-type with respect to the fundamental forms I, I I, and
I I I, i.e., their position vector field r(u, v) satisfies the condition ∆Jr = Ar, J = I, I I, I I I,
where A ∈ Mat(3, 3); Kim, Kim, and Kim [22] gave the Cheng–Yau operator and the Gauss
map of the surfaces of revolution.

In Minkowski three-space E3
1, Beneki, Kaimakamis, and Papantoniou [23] studied heli-

cal surfaces with a space-like, time-like, and light-like axis in three-dimensional Minkowski
space. Güler and Turgut Vanlı [24] worked the Bour’s theorem; Güler [25] studied helical
surfaces with a light-like profile curve using Bour’s theorem in Minkowski geometry. Mira
and Pastor [26] investigated helical maximal surfaces in Lorentz–Minkowski three-space.
Kim and Yoon [27–29] worked with ruled and rotation surfaces in pseudo-Euclidean space.
See also [2,24,30,31].

In Euclidean four-space E4, Moore [32,33] worked on general rotational surfaces; Hasa-
nis and Vlachos [34] considered hypersurfaces with a harmonic mean curvature vector field;
Cheng and Wan [35] gave the complete hypersurfaces with CMC; Arslan et al. [36] worked
with the Vranceanu surface with the pointwise one-type Gauss map; Arslan et al. [37]
studied generalized rotational surfaces; Magid, Scharlach, and Vrancken [38] introduced
the affine umbilical surfaces in four-space. Scharlach [39] studied the affine geometry of
surfaces and hypersurfaces in four-space. Arslan, Deszcz, and Yaprak [40] considered the
Weyl pseudosymmetric hypersurfaces. Arslan, Bulca, and Milousheva [41] worked on
meridian surfaces in four-space with the pointwise one-type Gauss map. Yoon [42] studied
rotation surfaces with the finite-type Gauss map in four-space. Güler, Magid, and Yaylı [43]
introduced helical hypersurfaces; Güler, Hacısalihoğlu, and Kim [44] studied the Gauss
map and the third Laplace–Beltrami operator of rotational hypersurface; Güler [45] found
the rotational hypersurfaces satisfying ∆I R = AR, where A ∈ Mat(4, 4). He [46] also
introduced the fundamental form IV and the curvature formulas of the hypersphere.

In Minkowski four-space E4
1, Ganchev and Milousheva [47] indicated the analogue of

the surfaces of [32,33]; Arvanitoyeorgos, Kaimakamais, and Magid [48] studied when the
mean curvature vector field of M3

1 satisfies the equation ∆H = αH (α being a constant); then,
M3

1 has CMC; Arslan and Milousheva [49] considered meridian surfaces of the elliptic- or
hyperbolic-type with the pointwise one-type Gauss map; Güler [50] gave helical hypersur-
faces; recently, Iliadis [51] considered the fuzzy algebraic modelling of spatiotemporal time
series paradoxes in cosmic-scale kinematics; Leuenberger [52] introduced the emergence of
Minkowski spacetime by simple deterministic graph rewriting.

In this paper, the generalized helical hypersurfaces with a time-like axis in Minkowski
four-space E4

1 are introduced. Some basic concepts of four-dimensional Minkowski ge-
ometry are given in Section 2. The i-th curvature formulas depend on the coefficients of
the fundamental forms

(
gij
)

and
(
hij
)

in Minkowski four-space, which are obtained in
Section 3. In Section 4, the definition of the generalized helical hypersurface having a
time-like axis in E4

1 is indicated. The umbilic points of these kinds of hypersurfaces are
described in Section 5. The generalized helical hypersurfaces with a time-like axis satisfying
∆x = Ax in E4

1 are given in Section 6. Finally, a summary of the paper is presented in the
last section.

2. Preliminaries

In this section, some of the basic facts and definitions are given, then the notations
used in this paper are described.

LetEm
1 denote the semi-Euclidean m-space with the semi-Euclidean metric tensor given

by g̃ = 〈 , 〉 =
m−1
∑

i=1
dx2

i − dx2
m, where (x1, x2, . . . , xm) is an element of constantlength (or

Lorentz metric) and xi are the pseudo-Euclidean coordinates of type (m− 1, 1). Consider
an m-dimensional semi-Riemannian submanifold M of the space Em

1 . The Levi-Civita
connections [53] of the manifold M̃ and its submanifold M of Em

1 are denoted by ∇̃, ∇,
respectively. Denoting the vector field tangent (respectively, normal) to M, the letters
X, Y, Z, W (respectively, ξ, η) are used.
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The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X, Y), (1)

∇̃Xξ = −Aξ(X) + DXξ, (2)

where h, D, and A are the second fundamental form, the normal connection, and the shape
operator of M, respectively.

For each ξ ∈ T⊥p M, the shape operator Aξ is a symmetric endomorphism of the
tangent space Tp M at p ∈ M. The shape operator and the second fundamental form are
related by

〈h(X, Y), ξ〉 =
〈

Aξ X, Y
〉
.

The Gauss and Codazzi equations are given, respectively, by

〈R(X, Y, )Z, W〉 = 〈h(Y, Z), h(X, W)〉 − 〈h(X, Z), h(Y, W)〉, (3)

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z), (4)

where R, RD are the curvature tensors associated with connections ∇ and D, respectively,
and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

2.1. Hypersurfaces of Minkowski Space

Now, let M be an oriented hypersurface in Minkowski space En+1
1 , S its shape operator

(i.e., the Weingarten map), and x its position vector. Consider a local orthonormal frame
field {e1, e2, . . . , en} consisting of the principal directions of M corresponding to the princi-
pal curvature ki for i = 1, 2, . . . n. Let the dual basis of this frame field be {θ1, θ2, . . . , θn}.
Then, the first Cartan structural equation is

dθi =
n

∑
i=1

θj ∧ωij, i, j = 1, 2, . . . , n, (5)

where ωij denotes the connection forms corresponding to the chosen frame field. Denote
the Levi-Civita connection of M of En+1

1 by ∇. Then, from the Codazzi equation, the
following holds:

ei(k j) = ωij(ej)(ki − k j),

ωij(el)(ki − k j) = ωil(ej)(ki − kl)

for distinct i, j, l = 1, 2, . . . , n.
Put sj = σj(k1, k2, . . . , kn), where σj is the j-th elementary symmetric function given by

σj(a1, a2, . . . , an) = ∑
1≤i1<i2<...<ij≤n

ai1 ai2 . . . aij .

The following notation is used

rj
i = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By the definition, r0
i = 1 and sn+1 = sn+2 = · · · = 0. The function sk is called the

k-th mean curvature of M. Note that functions H = 1
n s1 and K = sn are called the mean

curvature and Gauss–Kronecker curvature of M, respectively. In particular, M is said to be
j-minimal if sj ≡ 0 on M. See also [54,55].

In En+1
1 , finding the i-th curvature formulas Ci, where i = 0, . . . , n, the following

characteristic polynomial eq. of S is used:
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PS(λ) = 0 = det(S− λIn) =
n

∑
k=0

(−1)kskλn−k, (6)

where i = 0, . . . , n, In denotes the identity matrix of order n. Then, the curvature formulas
are given by (n

i )Ci = si. That is, (n
0)C0 = s0 = 1 (by definition), (n

1)C1 = s1, . . . , (n
n)Cn = sn.

The k-th fundamental form of M is defined by I
(

Sk−1(X), Y
)

=
〈

Sk−1(X), Y
〉

.
Therefore,

n

∑
i=0

(−1)i
(

n
i

)
Ci I
(

Sn−i(X), Y
)
= 0. (7)

In particular, one can obtain the classical result C0 I I I − 2C1 I I + C2 I = 0 of surface
theory for n = 2. See [55] for the details.

For a Minkowskian submanifold x: M −→ Em
1 , the immersion (M, x) is said to be the

finite-type, if x can be expressed as a finite sum of the eigenfunctions of the Laplacian ∆
of (M, x), i.e., x = x0 + ∑k

i=1 xi, where x0 is a constant map, x1, . . . , xk non-constant maps,
and ∆xi = λixi, λi ∈ R, i = 1, . . . , k. If λi are different, M is called k-type. See [7] for the
Euclidean details.

2.2. Rotational Hypersurfaces

The definition of the rotational hypersurfaces in Riemannian space forms can be found
in [56].

A rotational hypersurface M ⊂ En+1
1 generated by a curve C around an axis r that does

not meet C is obtained by taking the orbit of C under those semi-orthogonal transformations
of En+1

1 that leaves r pointwise fixed.
Throughout the paper, a vector and its transpose will be considered identical. Consider

the case n = 3, and let C be the curve parametrized by γ(u) = ( f (u), 0, 0, g(u)), where f , g
are the differentiable functions. If r is the x4-axis, then a semi-orthogonal transformation of
En+1

1 that leaves r pointwise fixed has the form

R(v, w) =


C1C2 −S1 −C1S2 0
S1C2 C1 −S1S2 0
S2 0 C2 0
0 0 0 1

,

where C1 = cos v, C2 = cos w, S1 = sin v, S2 = sin w, and v, w ∈ [0, 2π). Therefore,
the parametrization of the rotational hypersurface generated by a curve C around an axis r
is given by x(u, v, w) = R(v, w)γ(u).

Definition 1. Let x = x(u, v, w) be an immersion from M3 ⊂ E3 to E4
1 = (R4, 〈., .〉), where the

Lorentzian inner product is given by〈−→x ,−→y
〉
= x1y1 + x2y2 + x3y3 − x4y4,

and the triple Lorentzian vector product is defined by

−→x ×−→y ×−→z = det


e1 e2 e3 −e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4


with the vectors −→x = (x1, x2, x3, x4),

−→y = (y1, y2, y3, y4),
−→z = (z1, z2, z3, z4).

Definition 2. Hypersurfacex depends on three parameters in Minkowski four-space:(
gij
)

3×3,
(
hij
)

3×3, (8)
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the first and the second fundamental form being symmetric matrices, respectively (i.e., I and
II, respectively): where g11 = 〈xu, xu〉, g12 = 〈xu, xv〉, g13 = 〈xu, xw〉, g22 = 〈xv, xv〉, g23 =
〈xv, xw〉, g33 = 〈xw, xw〉, h11 = 〈xuu,G〉, h12 = 〈xuv,G〉, h13 = 〈xuw,G〉, h22 = 〈xvv,G〉,
h23 = 〈xvw,G〉, h33 = 〈xww,G〉. Here,

G =
xu × xv × xw

‖xu × xv × xw‖
(9)

is the unit normal (i.e., the Gauss map) of x.

3. i-th Curvatures

Product matrices
(
gij
)−1·

(
hij
)

give the matrix of the shape operator S of hypersurface
x in Minkowski four-space. See [43,44] for the details.

Therefore, the shape operator matrix of the hypersurface x is given by

S =
1
g

 s11 s12 s13
s21 s22 s23
s31 s32 s33

, (10)

where

s11 =
(
g22g33−g2

23

)
h11 + (g13g23−g12g33)h12 + (g12g23−g13g22)h13,

s12 =
(
g22g33−g2

23

)
h12 + (g13g23−g12g33)h22 + (g12g23−g13g22)h23,

s13 =
(
g22g33−g2

23

)
h13 + (g13g23−g12g33)h23 + (g12g23−g13g22)h33,

s21 = (g13g23−g12g33)h11 +
(
g11g33−g2

13

)
h12 + (g12g13−g11g23)h13,

s22 = (g13g23−g12g33)h12 +
(
g11g33−g2

13

)
h22 + (g12g13−g11g23)h23,

s23 = (g13g23−g12g33)h13 +
(
g11g33−g2

13

)
h23 + (g12g13−g11g23)h33,

s31 = (g12g23−g13g22)h11 + (g12g13−g11g23)h12 +
(
g11g22−g2

12

)
h13,

s32 = (g12g23−g13g22)h12 + (g12g13−g11g23)h22 +
(
g11g22−g2

12

)
h23,

s33 = (g12g23−g13g22)h13 + (g12g13−g11g23)h23 +
(
g11g22−g2

12

)
h33,

and
g = det

(
gij
)
= −g33g

2
12 + 2g12g13g23 − g22g

2
13 − g11g

2
23 + g11g22g33.

For computing the i-th curvature formulas Ci, where i = 0, 1, 2, 3, the characteristic
polynomial eq. PS(λ) = aλ3 + bλ2 + cλ + d = 0, i.e., PS(λ) = det(S− λI3) = 0, is used.
Then, C0 = 1 (by definition), (3

1)C1 = − b
a , (3

2)C2 = c
a , (3

3)C3 = − d
a . See [46] for the details.

Therefore, the following i-th curvature formulas depend on the coefficients of the
fundamental forms

(
gij
)

and
(
hij
)

in Minkowski four-space.
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Theorem 1. Any hypersurface x in E4
1 has the following curvature formulas, C0 = 1 (by definition),

C1 =


(g11h22 + g22h11 − 2g12h12)g33 + (g11g22 − g2

12)h33
−2(g13h13g22 − g23h13g12 − g13h23g12

+g11g23h23 − g13g23h12)− g2
23h11 − g2

13h22


3
[
(g11g22 − g2

12)g33 − g11g
2
23 + 2g12g13g23 − g22g

2
13
] , (11)

C2 =


(g11h22 + g22h11 − 2g12h12)h33 +

(
h11h22 − g2

12
)
g33

−2(g13h13h22 − g23h13h12 − g13h23h12
+g23h23h11 − h13h23g12)− g11h

2
23 − g22h

2
13


3
[
(g11g22 − g2

12)g33 − g11g
2
23 + 2g12g13g23 − g22g

2
13
] , (12)

C3 =

(
h11h22 − h2

12
)
h33 − h11h

2
23 + 2h12h13h23 − h22h

2
13

(g11g22 − g2
12)g33 − g11g

2
23 + 2g12g13g23 − g22g

2
13

. (13)

Proof. The proof is the same as the Euclidean case.

See [46] for the details of the Euclidean four-space. A hypersurface x in E4
1 is i-minimal,

when Ci = 0, i = 1, 2, 3, identically on x.

4. Generalized Helical Hypersurfaces Having Time-like Axis

In this section, the definition of the generalized helical hypersurface with a time-like
axis in E4

1 is given. Let γ : I ⊂ R −→ Π be a curve in a plane Π and ` be a straight line in
Π in E4

1.
A rotational hypersurface in E4

1 is defined as a hypersurface rotating a curve γ around
a line ` (called the profile curve and the axis, respectively). Suppose that when a profile
curve γ rotates around the axis `, it simultaneously displaces parallel lines orthogonal to
the axis `, so that the speed of displacement is proportional to the speed of rotation. Then,
the resulting hypersurface is called the generalized helical hypersurface having axis ` and
pitches a, b ∈ R\{0}.

Supposing that ` is the line spanned by the time-like vector (0, 0, 0, 1)t, the semi-
orthogonal matrix fixing the above vector is defined by R(v, w), where v, w ∈ R. The
matrix R can be found by solving the following equations, simultaneously, detR = 1,
R` = `, RtεR = ε, where ε =diag(1, 1, 1,−1). When the axis of rotation is `, there is a
Minkowskian transformation by which the axis ` is transformed to the x4-axis of E4

1. The
parametrization of the profile curve is given by γ(u) = ( f (u), 0, 0, g(u)), where g(u) is
a differentiable function for all u ∈ I. Therefore, the generalized helical hypersurface
spanned by the time-like vector ` = (0, 0, 0, 1) with pitches a, b ∈ R\{0} is as follows
x(u, v, w) = R(v, w)γ(u)t + (av + bw)`t in E4

1, where u ∈ I, v, w ∈ [0, 2π). If w = 0, the
generalized helical surface with a time-like axis as in three-dimensional Minkowski space
E3

1 is obtained. When a = b = 0, the surface is just a generalized rotational hypersurface
with a time-like axis.

Hence, the generalized helical hypersurface with a time-like axis is given by

x(u, v, w) = ( f (u) cos v cos w, f (u) sin v cos w, f (u) sin w, g(u) + av + bw ), (14)

where u, a, b ∈ R \ {0} and 0 ≤ v, w < 2π.
See Figure 1 for the projection of the hypersurface x into the three-space.
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Figure 1. Helical surface having a time-like axis.

Using the first derivatives of (14) with respect to u, v, w, the first fundamental form
matrix is presented as

(
gij
)
=

 f ′2 − g′2 −ag′ −bg′

−ag′ f 2(C2)
2 − a2 −ab

−bg′ −ab f 2 − b2

. (15)

Here, f = f (u), f ′ = d f
du , g = g(u), g′ = dg

du . Then,

g = det
(
gij
)
= f 2W,

where W =
((

f 2 − b2)(C2)
2 − a2

)
f ′2 − f 2g′2(C2)

2.

Definition 3. For any curve γ(u) or hypersurface x = x(u, v, w) in Minkowski four-space,
the following holds:

i. When 〈γ′, γ′〉 > 0 (respectively, g > 0), the curve γ (respectively, the hypersurface x) is
called space-like;

ii. When 〈γ′, γ′〉 < 0 (respectively, g < 0), the curve γ (respectively, the hypersurface x) is
called time-like;

iii. When 〈γ′, γ′〉 = 0 (respectively, g = 0), the curve γ (respectively, the hypersurface x) is
called light-like (or null).

Here, γ′ = dγ
du .

Corollary 1. When the profile curve γ(u) = ( f (u), 0, 0, g(u)) of the generalized helical hypersur-
face having time-like axis (14) is the unit speed curve, then 〈γ′, γ′〉 = f ′2 − g′2 = 1 > 0, i.e., it is
a space-like curve. Hence, the following holds:

g = − f 2
[((

b2 − f 2
)
(C2)

2 + a2
)
+
(

b2(C2)
2 + a2

)
g′2
]
.

Corollary 2. While
(

b2(C2)
2 + a2

)
g′2 <

(
f 2 − b2)(C2)

2 − a2, then g > 0, and then, the hyper-
surface is space-like.

Corollary 3. When b2 − f 2 > 0, then g < 0, and then, the hypersurface is time-like.
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Corollary 4. When the hypersurface having time-like axis (14) is the light-like hypersurface
(i.e., g = 0), then it has the following:

g(u) = ±
∫ √√√√ ( f 2 − b2)(C2)

2 − a2

b2(C2)
2 + a2

du.

The Gauss map of the hypersurface (14) is described by

G =
1

W1/2


( f g′C2 − b f ′S2)C1C2 − a f ′S1
( f g′C2 − b f ′S2)S1C2 + a f ′C1

( f g′S2 + b f ′C2)C2
f f ′C2

. (16)

Using the second derivatives of (14) with respect to u, v, w, the second fundamental
form matrix is derived as

(
hij
)
=

1
W1/2

 f ( f ′′g′ − f ′g′′)C2 a f ′2C2 b f ′2C2

a f ′2C2 f (b f ′S2 − f g′C2)(C2)
2 −a f f ′S2

b f ′2C2 −a f f ′S2 − f 2g′C2

,

where f ′′ = d2 f
du2 and g′′ = d2g

du2 . Then,

h = det
(
hij
)
=

fC2

W3/2



f 2
(
− f 2 f ′g′2(C2)

4 + b f f ′2g′(C2)
3S2 + a2 f ′3(S2)

2
)

g′′

+
(

f 4 f ′′(C2)
4
)

g′3 −
(

b f 3 f ′ f ′′(C2)
3S2

)
g′2

+ f
(

f ′4
(

a2 + b2(C2)
2
)
(C2)

2 − a2 f f ′2 f ′′(S2)
2
)

g′

−b f ′5
(

2a2 + b2(C2)
2
)
C2S2


.

Hence, by using (10), the shape operator matrix S of (14) has the following components:

s11 = −

{
f f ′
[(

b2 − f 2)(C2)
2 + a2

]
g′′ +

[
− f f ′′

((
b2 − f 2)(C2)

2 + a2
)
+ f ′2

(
b2(C2)

2 + a2
)]

g′
}
C2

W3/2 ,

s12 =
aC2

W1/2 ,

s13 =
b
[
b2 f ′2 − f 2( f ′2 − g′2

)]
(C2)

3 + a2 f ′(b f ′C2 + f g′S2)

W3/2 ,

s21 =
a
[

f g′( f ′g′′ − f ′′g′)− f 2′( f ′2 − g′2
)]
C2

W3/2 ,

s22 =
b f ′S2 − f g′C2

f W1/2 ,

s23 =
a f ′
[
−b2 f ′2 + f 2( f ′2 − g′2

)]
S2

f W3/2 ,

s31 =
b
[

f g′( f ′g′′ − f ′′g′)− f ′2
(

f ′2 − g′2
)]
(C2)

3

W3/2 ,

s32 = − a f ′S2

f W1/2 ,

s33 =
f
[
−b2 f ′2 + f 2( f ′2 − g′2

)]
g′(C2)

3 + a2 f ′2(b f ′S2 − f g′C2)

f W3/2 .

Finally, the curvatures of the generalized helical hypersurface with time-like axis x are
given by the following.
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Theorem 2. In E4
1, the generalized helical hypersurface having time-like axis (14) has the following

curvatures, respectively, C0 = 1 by definition,

3C1 =
p1g′′ + p2g′3 + p3g′2 + p4g′ + p5

f W3/2 ,

3C2 =

(
q1g′3 + q2g′2 + q3g′ + q4

)
g′′ +

(
q5g′3 + q6g′2 + q7g′ + q8

)
g′3 + q9g′2 + q10g′ + q11

f W3 ,

C3 =

(
r1g′2 + r2g′ + r3

)
g′′ +

(
r4g′2 + r5g′ + r6

)
g′ + r7

f W5/2 ,

where

p1 = − f 2 f ′
[(

b2 − f 2
)
(C2)

2 + a2
]
C2,

p2 = −2 f 3(C2)
3,

p3 = b f 2 f ′(C2)
2S2,

p4 = f
[(

a2 + b2(C2)
2
)(

f f ′′ − 3 f ′2
)
− f 3 f ′(C2)

2
]
C2,

p5 = b f ′3
[
2a2 +

(
b2 − f 2

)
(C2)

2
]
S2,

q1 = f 4 f ′
((

b2 − 2 f 2
)
(C2)

2 + a2
)
(C2)

4,

q2 = −b f 3 f ′2
((

b2 − f 2
)
(C2)

2 + 2a2
)
(C2)

3S2,

q3 = f 3′ f 2
((

b2 − f 2
)
(C2)

2 + a2
)((

b2 − 2 f 2
)
(C2)

2 + a2
)
(C2)

2,

q4 = −b f f ′4
((

b2 − f 2
)
(C2)

2 + 2a2
)((

b2 − f 2
)
(C2)

2 + a2
)
C2S2,

q5 = f 5(C2)
6,

q6 = −b f 4 f ′(C2)
5S2,

q7 = − f 3

 f f ′′
((

b2 − 2 f 2)(C2)
2 + a2

)
(C2)

2

− f ′2
(

a2
(

4(C2)
2 − 1

)
+
(
3b2 − 2 f 2)(C2)

4
) (C2)

2,

q8 = −b f 2

 f ′3
((

3b2 − 2 f 2)(C2)
2 + 5a2

)
− f f ′ f ′′

((
b2 − f 2)(C2)

2 + 2a2
) (C2)

3S2,

q9 = − f f ′2


f f ′′
((

b2 − 2 f 2)(C2)
2 + a2

)((
b2 − f 2)(C2)

2 + a2
)
(C2)

2

+a2

 2
((

2b2 − f 2)(C2)
2 + a2

)
(C2)

2

−
((

b2 − 2 f 2)(C2)
2 + a2

)
(S2)

2


,

q10 = −b f ′3
{

− f f ′′
(
b2 − f 2)2

(C2)
4

+ f ′2
((

2b2 − f 2)(C2)
2 + 4a2

)((
b2 − f 2)(C2)

2 + a2
) }

+a2b f f ′3 f ′′
(

3
(

b2 − f 2
)
(C2)

2 + 2a2
)
C2S2,

q11 = f f ′6
(

b2(C2)
4 + a2

)((
b2 − f 2

)
(C2)

2 + a2
)

,
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r1 = f 4 f ′(C2)
5,

r2 = −b f 3 f ′2(C2)
4S2,

r3 = −a2 f 2 f ′3C2(S2)
2,

r4 = − f 4 f ′′(C2)
5,

r5 = b f 3 f ′ f ′′(C2)
4S2,

r6 =
[

a2 f 2 f ′2 f ′′(S2)
2 − f f ′4

(
a2 + b2(C2)

2
)
(C2)

2
]
C2,

r7 = b f ′5
(

2a2 + b2(C2)
2
)
(C2)

2S2,

W = f ′2
[
( f 2 − b2)(C2)

2 − a2
]
− f 2g′2(C2)

2.

Proof. By using the Cayley–Hamilton theorem, the characteristic polynomial eq. PS(λ) = 0
of S for the generalized helical hypersurface with time-like axis x, the following coefficients
(in the theorem) of the eq. are obtained:

C0λ3 − 3C1λ2 + 3C2λ− C3 = 0.

Corollary 5. When g = c = const., the curvatures are given by

C1 =
b
[
2a2 +

(
b2 − f 2) cos2 w

]
sin w

3 f [(a2 + (b2 − f 2) cos2 w)]
3/2 ,

C2 = −
(
a2 + b2 cos4 w

)
3[(a2 + (b2 − f 2) cos2 w)]

2 ,

C3 =
b
(
2a2 + b2 cos2 w

)
cos2 w sin w

f [(a2 + (b2 − f 2) cos2 w)]
5/2 .

Corollary 6. If g = c = const., w = kπ, k = 0, 1, . . . , the curvatures are described by

C1 = 0, C2 = − a2 + b2

3(a2 + b2 − f 2)
2 , C3 = 0.

Corollary 7. While g = c = const., w = π/2 + kπ, k = 0, 1, . . . , the curvatures are found by

C1 =
2b

3a f
, C2 = − 1

3a2 , C3 = 0.

Corollary 8. When g = c = const, a = b = 0, then Ci = 0, i = 1, 2, 3, i.e., the generalized
helical hypersurface having time-like axis (14) is the i-minimal rotational hypersurface.

Finally, the following holds:

Theorem 3. Let γ(u) = ( f (u), 0, 0, g(u)), u ∈ I ⊂ R be a generating curve of the generalized
helical hypersurface having a time-like axis given by (14) immersed in E4

1. Then, the curvatures
at the point ( f (u), 0, 0, g(u)) are functions of the same variable u, i.e., Ci = Ci(u), i = 1, 2, 3.
Moreover, given constants a, b, c ∈ I ⊂ R and a function Ci, the family of curves γ(u) ≡
γ(Ci, w = c) is defined.

5. The Umbilical Hypersurfaces in Minkowski Four-Space

Before defining the umbilical hypersurface in Minkowski four-space, it can be seen
that the curvatures and the principal curvatures of any hypersurface are related as follows:
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C0 = 1,

3C1 = k1 + k2 + k3,

3C2 = k1k2 + k1k3 + k2k3,

C3 = k1k2k3.

Then, the following holds:

Corollary 9. The following are equivalent:

k1 = k2 = k3 ⇔ k1 − k2 = 0∧ k1 − k3 = 0∧ k2 − k3 = 0
⇔ (k1 − k2)

2 = 0∧ (k1 − k3)
2 = 0∧ (k2 − k3)

2 = 0

⇔


k2

1 − 2k1k2 + k2
2 = 0

k2
1 − 2k1k3 + k2

3 = 0
k2

2 − 2k2k3 + k2
3 = 0


⇔ k2

1 + k2
2 + k2

3 = k1k2 + k1k3 + k2k3 (adding above eqs.)
⇔ (C1)

2 = C2.

Corollary 10. The following are equivalent:

k1 = k2 = k3 ⇔ k1 − k2 = 0∧ k1 − k3 = 0∧ k2 − k3 = 0
⇔ (k1 − k2)

2 = 0∧ (k1 − k3)
2 = 0∧ (k2 − k3)

2 = 0

⇔


k2

1 + 2k1k2 + k2
2 = 4k1k2

k2
1 + 2k1k3 + k2

3 = 4k1k3
k2

2 + 2k2k3 + k2
3 = 4k2k3


⇔ (k1 + k2)

2 = 4k1k2 ∧ (k1 + k3)
2 = 4k1k3 ∧ (k2 + k3)

2 = 4k2k3
⇔ (k1 + k2)(k1 + k3)(k2 + k3) = 8k1k2k3
⇔ C1C2 = C3.

Corollary 11. Combining Corollary 9 with Corollary 10, the following holds:

k1 = k2 = k3 ⇔ (C1)
3 = C3.

Therefore, the following is given:

Definition 4. The hypersurface M3 immersed in a E4
1 is called the umbilical if all its points are

umbilical, i.e., k1 = k2 = k3 or, equivalently, (C1)
3 = C3 with C1C2 = C3, (C1)

2 = C2.

Remark 1. The only umbilical hypersurfaces are (open) hyperplanes and hyperspheres in E4
1.

An umbilical point is an important geometric attribute, closely related to the lines
of curvature. It is a singularity of a line of curvature: a line of curvature will end at such
points. This may partly be because there is an effective criterion for a smooth hypersurface
defined by a formula, for both parametric or implicit hypersurfaces:

Lemma 1. A point is an umbilical point on the hypersurface in Minkowski four-space if and only if
(C1)

3 = C3, C1C2 = C3, (C1)
2 = C2 at this point.

Hence, the following comes out:

Problem 1. Solve the following system of differential equations for the generalized helical hyper-
surface with time-like axis (14):
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p1g′′

+p2g′3

+p3g′2 + p4g′ + p5


3

= 27 f 2W2


(
r1g′2 + r2g′ + r3

)
g′′

+
(
r4g′2 + r5g′ + r6

)
g′

+r7

,


p1g′′

+p2g′3

+p3g′2 + p4g′ + p5




(
q1g′3 + q2g′2 + q3g′ + q4

)
g′′

+
(
q5g′3 + q6g′2 + q7g′ + q8

)
g′3

+q9g′2 + q10g′ + q11

 = 9 f W2


(
r1g′2 + r2g′ + r3

)
g′′

+
(
r4g′2 + r5g′ + r6

)
g′

+r7

,


p1g′′

+p2g′3

+p3g′2 + p4g′ + p5


2

= 3 f


(
q1g′3 + q2g′2 + q3g′ + q4

)
g′′

+
(
q5g′3 + q6g′2 + q7g′ + q8

)
g′3

+q9g′2 + q10g′ + q11

.

The g = g(u) solutions of the problem will give the umbilic points of the hypersurface x.

6. Generalized Helical Hypersurface Having Time-like Axis Satisfying ∆x = Ax in E4
1

In this section, the first Laplace–Beltrami operator (i.e., that depends on the first
fundamental form) of a smooth function in E4

1 is given. Then, the Laplace–Beltrami
operator is calculated by using the generalized helical hypersurface (14).

Definition 5. The Laplace–Beltrami operator of a smooth function φ = φ(x1, x2, x3, x4) |D
(D ⊂ R4) of class C4 depends on the first fundamental form is defined by

∆φ =
1

g1/2

4

∑
i,j=1

∂

∂xi

(
g1/2gij ∂φ

∂xj

)
, (17)

where
(
gij) = (gkl)

−1 and g = det
(
gij
)
.

Hence, the inverse matrix
(
gij) of the first fundamental form matrix

(
gij
)

of any
hypersurface having three parameters in Minkowski four-space is given by(

gij
)
=

1
g

 g22g33−g2
23 g13g23−g12g33 g12g23−g13g22

g13g23−g12g33 g11g33−g2
13 g12g13−g11g23

g12g23−g13g22 g12g13−g11g23 g11g22−g2
12

,

where g = −g33g
2
12 + 2g12g13g23 − g22g

2
13 − g11g

2
23 + g11g22g33.

With the help of the above matrix, the inverse matrix of (15) is obtained by

(
gij
)
=

1
W

 (
f 2 − b2)(C2)

2 − a2 ag′ bg′(C2)
2

ag′
[(

f 2 − b2) f ′2 − f 2g′2
]
/ f 2 ab f ′2/ f 2

bg′(C2)
2 ab f ′2/ f 2 [(

f 2(C2)
2 − a2) f ′2 − f 2g′2(C2)

2]/ f 2

,

where W =
((

f 2 − b2)(C2)
2 − a2

)
f ′2 − f 2g′2(C2)

2.

By using (17) with the above matrix (gij) of (14), the following holds.

Theorem 4. The first Laplace–Beltrami operator of the generalized helical hypersurface (14) is
given by

∆x = 4C1G,

where C1 is the mean curvature and G is the Gauss map of x.

Proof. By directly computing (17) on x, ∆x is found.

Theorem 5. Let x : M3 ⊂ E3 −→ E4
1 be an immersion given by (14). ∆x = Ax , where A is

the matrix of order four if and only if x has C1 = 0, i.e., it has zero mean curvature.
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Proof. Considering 4C1G = Ax, the following comes out:

fC1C2a11 + fS1C2a12 + fS2a13 + (g + av + bw)a14 = Ψ
(
( f g′C2 − b f ′S2)C1C2 − a f ′S1

)
,

fC1C2a21 + fS1C2a22 + fS2a23 + (g + av + bw)a24 = Ψ
(
( f g′C2 − b f ′S2)S1C2 + a f ′C1

)
,

fC1C2a31 + fS1C2a32 + fS2a33 + (g + av + bw)a34 = Ψ( f g′S2 + b f ′C2)C2,

fC1C2a41 + fS1C2a42 + fS2a43 + (g + av + bw)a44 = −Ψ f f ′C2,

where A is the 4× 4 matrix, Ψ(u, w) = 4C1/W1/2. Differentiating the above ODEs twice
with respect to v, the following holds:

a14 = a24 = a34 = a44 = 0, Ψ(u, w) = 0. (18)

Considering (18), the following appears:

− fC1C2a11 − fS1C2a12 = 0,
− fC1C2a21 − fS1C2a22 = 0,
− fC1C2a31 − fS1C2a32 = 0,
− fC1C2a41 − fS1C2a42 = 0.

Taking into account that the functions sin and cos are linear independent of v, all the
components of the matrix A are 0. Since Ψ = 4C1/W1/2, then C1 = 0. This means x is a
one-minimal generalized helical hypersurface having a time-like axis.

7. Summary

In this work, the definition of the generalized helical hypersurface having a time-like
axis in four-dimensional Minkowski spacetime is given. The related differential geometric
objects such as the fundamental form matrices, the Gauss map, the shape operator matrix,
the curvatures, etc., of these kinds of hypersurfaces were calculated. The curvature formulas
depend on the coefficients of the first and the second fundamental forms. The umbilical
conditions of that kind of hypersurface were also indicated. The Laplace–Beltrami operator
of the generalized helical hypersurfaces having a time-like axis was given. Thanks to
three-dimensional projections, visual graphics were added to this work.

Time-like worldlines in general relativity correspond to physical, causal trajectories of
mass particles. Therefore, we hope that this paper can be used for real-world applications
in the near future.
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