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1. Introduction
Acrylonitrile-butadiene-styrene (ABS) is one of the most widely used thermoplastic terpolymers in industrial-based 
applications. Especially its low cost, good toughness, easy processability, and chemical resistance make it attractive for 
electrical and automotive industries [1–3]. 

On the other hand, the easy flammability feature of ABS emerges as one of the main handicaps, besides all these promising 
properties [1, 2]. Various halogen-containing and halogen-free flame retardants are applied to the ABS to overcome this 
problem. Although the most effective flame retardants (FR) are halogen-containing compounds used in the ABS, their 
environmentally hazardous effects highlight the use priority of halogen-free FR compounds, such as phosphorus-, silicon-, 
nitrogen-, and other elements-based [2]. In the literature, phosphorus-based compounds are the most commonly used, 
halogen-free FR chemicals in the ABS, including aluminum hypophosphite (AHP) [2, 4–9], aluminum diethyl phosphinate 

[9, 29], ammonium polyphosphate (APP) [1, 4, 10–19], red phosphorus (RP) [14], diphenyl phosphate [20, 21], DOPO 
derivatives [21–24], aryl-phosphates compounds [25, 26], phosphorus-nitrogen containing phenol formaldehyde [27], 
nitrogen-containing alkylphosphinate [28], piperazine pyrophosphate [29], and melamine phosphate [30]. 

The noncombustible inorganic fibers, such as basalt (BF) and glass fibers, show a “wick effect” that increases 
the flammability of the polymer matrix. However, the wick effect for the chopped or milled fiber remains low due to 
discontinuing fiber paths, compared to their continued form [31]. Only a few studies on the FR properties of different 
polymer composites containing the BF are found in the literature [32–37]. In these studies, the BF is used with a 
biodegradable starch resin [32], HDPE [33], PLA [34], PA6 [35], cyanate ester/epoxy blended polymers [36], EVA [37, 38], 
PP [39], epoxy [40]. The RP powder and Mg(OH) [32], AHP [34] and nickel alginate-brucite-based FR [37] halogen-free 
compounds are used to improve the FR properties of the composites.

In our previous study, (3-Aminopropyl) triethoxysilane (AP) modified BF (AP-BF) is compounded with ABS matrix, 
and the mechanical performance of composites is analyzed [41]. In the current study, aluminum diethyl phosphinate 
(AlPi) compound at different concentrations is used to improve the FR properties of AP modified chopped BF reinforced 
ABS composites. The novelty of this study is that, to the best of our knowledge, it is the first study to investigate the FR 
properties of BF reinforced ABS composites containing AlPi. The FR properties of the composites are analyzed through 
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the limiting oxygen index (LOI), UL-94 standard, and mass loss calorimeter tests. The decomposition behavior of the 
composites is investigated via thermogravimetric analysis (TGA). The SEM analysis is performed to inspect the char 
surfaces of the composites.

 
2. Materials and methods
2.1. Materials
ABS natural terpolymer, which has a grade of HI121H and a density of 1.04 g/cm3, was purchased from LG Chem. BF, 
having a density of 2.8 g/cm3, was supplied from Tila Kompozit with a chopped length of 6 mm and a diameter of 13–20 
μm. (3-Aminopropyl) triethoxysilane (AP) modified BF was used in the study. The AP, having a density of 0.946 g/cm3 

and 221.37 g/mol molecular weight, was supplied from Sigma Aldrich. The aluminum diethyl phosphinate (AlPi) has a 
phosphorus content of 19.5–20.5 wt%, a density of 1.3 g/cm3, and a decomposition temperature of >350 °C with a trading 
name of Exolit® OP 950, which is an organic phosphinate-based FR. It was purchased from Clariant.
2.2. Methods
The mixtures containing various composition ratios were prepared via a laboratory-type corotating twin-screw extruder 
(Gülnar Makina, İstanbul, Turkey) (L/D: 40; Φ: 16 mm) with a temperature profile of 50-190-200-210-210-210 °C at 100 
rpm. The specimens for the flammability tests were molded in a laboratory-scale injection-molding machine DSM Xplore 
12 mL Micro-injection Molder, Netherlands) at a barrel temperature of 235 °C and a mold temperature of 32 °C. The 
specimens for the mass loss calorimeter test were produced on a laboratory scale hot press (Gülnar Plastics Machines, 
İstanbul, Turkey) at 185 °C for 210 s. 

The following procedure was applied for the production of composites: the BF amount in the composites is kept 
constant (20 wt%). Three different amounts of AlPi (5, 10, and 15 wt%) containing BF reinforced ABS composites were 
prepared. The sample codes and compositions are given in Table 1. The loading level of 20% for BF was preferred since the 
optimum performances were achieved for that filling ratio in our previous study [41].

The TGA tests were performed using a Perkin Elmer Diamond instrument on the specimens under a nitrogen 
atmosphere (50 mL/min) from room temperature to 800 °C with a 10 °C/min heating rate. The LOI measurements 
were conducted on Fire Testing Technology Limiting Oxygen Index Analyzer instrument using the specimens having 
the nominal dimensions of 3.2 × 6.5 × 130 mm3, according to ASTM D2863. UL-94V vertical burning tests were also 
implemented to examine the flammability properties of the composites using the specimens with the dimensions of 13 × 
130 × 3.2 mm3, according to the ASTM D3801. Mass loss calorimeter tests were performed using Mass Loss Cone with 
thermopile attachment (Fire testing Technology, UK), and the procedures in the ISO 13927 standard were followed. The 
square-shaped specimens with the dimensions of 100 × 100 × 3 mm3 were used. Corresponding to a mild fire scenario, 
they were irradiated at a heat flux of 35 kWm–2. The char surfaces of the composites after the mass loss calorimeter test 
were inspected via SEM, ZEISS EVO LS10 computer controlled digital instrument and accelerating voltage of 20 kV. The 
specimens were sputter-coated with Au/Pd alloy before the analysis.

3. Results and discussion
3.1. Thermal decomposition
TGA tests are performed to analyze the thermal stability of pristine ABS and the relevant composites. The TGA and 
DTG curves are shown in Figure 1 and the relevant data are listed in Table 2. As seen from the Figure 1 and Table 2, the 
thermal decomposition of ABS occurs in two steps with the onset (T1%), and two maximum (Tmax1 and Tmax2) decomposition 
temperatures of 321, 451, and 653 °C, respectively. The ABS leaves a char residue yield of 1.3% at the end of the test. In the 
first decomposition step, the ABS terpolymer undergoes structural decomposition [42–44]. Along with, it is thought that 
the second decomposition step may stem from the decomposition of residual char [45]. The addition of BF into the ABS 
enhances the initial thermal stability (T1%), whereas it causes a drastic fall in Tmax2 of the ABS while the Tmax1 remains almost the 
same. The undecomposed nature of BF is directly effective on an extreme increase in the char yield. 

A remarkable decrease is seen in the thermal stability of the ABS matrix with the incorporation of AlPi regardless of 
its amount. Thermal decomposition of the composites containing AlPi happens in two steps for the composite with 5 wt% 
AlPi and a single step for the further concentration. 

In the literature, it is stated that the AlPi undergoes thermal degradation in two steps. The first step occurs at 340–550 
°C, and the AlPi loses a large part of its mass in this temperature range. The second step occurs at 850–1000 °C with a 
very small mass loss [9, 46–48]. However, it is seen that the second step decomposition temperature for AlPi exceeds 
the range of test temperature. Therefore, no Tmax2 data can be obtained for the composites having AlPi, except for 5 wt% 
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concentration. For the composites having the AlPi, the first step maximum decomposition occurs at around 420 °C, which 
stems from partial vaporizing of AlPi and partial decomposition of AlPi to diethyl phosphinic acid (C4H11O2P) and CH3

 

[9, 46–48]. The addition of 15 wt% AlPi significantly increases the char yield of the composite to 28.0%, indicating that 
the higher concentration of AlPi over the 10 wt% has a promotion effect on the char formation of ABS. From the TGA test 
results, the incorporation of AlPi compound has a positive effect on the char formation, whereas it reduces the thermal 
stability of ABS matrix.
3.2. Flammability properties
The flammability characteristics of the composites are determined by LOI value and UL-94 ratings. The relevant test data 
are given in Table 2. ABS resin has an LOI value of 18.5% and burns to clamp during the UL-94 test. The LOI value of the 
ABS reduces with the addition of inorganic BF as the UL-94 rating does not change. The BF has the “candlewick effect,” 
which causes the increase in flammability of polymeric matrix in the combustion process [31]. In the literature, similar 
behavior is observed with BF and glass fiber in different matrix systems [31, 34, 49].

The LOI value of the composite increases with the incorporation of AlPi compound. As the added amount of AlPi 
into the composite increases, the LOI value of the composite increases. Increasing char yields and LOI values leads to 
improvement of the FR properties of the polymers [50, 51]. A meaningful improvement on the flammability properties of 
BF reinforced ABS composite is obtained with the use of AlPi at 15 wt % concentration. On the other hand, the composite 

Table 1. The sample codes and compositions. 

Sample Code ABS 
(wt. %)

BF
(wt. %)

AlPi
(wt. %)

ABS 100 0 0
ABS/BF 80 20 0
ABS/BF/5AlPi 75 20 5
ABS/BF/10AlPi 70 20 10
ABS/BF/15AlPi 65 20 15

Figure 1. TGA and DTG curves of the composites.
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containing a 5wt% amount of AlPi also fails in the UL-94 test. When the added amount of AlPi reaches 10 wt%, the LOI 
value of the composite remarkably increases, and the UL-94 rating shifts to V2. The best UL-94 rating (V1) and LOI value 
(31.4%) is achieved with the addition of 15 wt% AlPi.
3.3. Fire performance of the composites
Fire performance of pristine ABS and the related composites are investigated via mass loss calorimeter tests. The peak 
heat release rate (pHRR), average heat release rate (aHRR), peak mass loss rate (pMLR), and total heat evolved (THE) are 
considered evaluation parameters for the fire performances of the composites. The lower value in these data means that 
better fire performance is achieved. The HRR curves of the pristine ABS and the related composites are shown in Figure 2. 
The relevant mass loss calorimeter data are listed in Table 3. According to Figure 2 and the tabulated values, pristine ABS 
burns very fast and almost completely after ignition with a char formation of 2.3%. A sharp HRR peak is observed with 
the pHRR value of 626 kWm–2. The addition of BF leads to a remarkable declining in the pHRR, aHRR, and THE values 
and increase in the residue owing to noncombustible characteristics of the BF. The BF shows a barrier effect against the 
combustible gases and oxygen penetration into the burning polymer; thus, it enhances the fire performance of the ABS 
matrix. The presence of the FR compounds into the ABS matrix causes the shape of HRR curves of ABS and ABS/BF 
composite to shift to plateau-like and expands the burning time of the ABS. When a large part of BF retaining its weight 
during the test according to the ABS/BF with residue yield of 22.7 wt% is considered, no proportional results are obtained 
in the residue yields of the composites containing FR compounds.

Another notable point is that while less char yield in TGA and char residue in MLC test are obtained, higher LOI, 
pHRR, pMLR, and THE values are obtained with the use of 10 wt% AlPi comparing to the addition of 5 wt%, contrary to 
expectation. This can be attributed to the fact that phosphorus based FR compounds such as AlPi exhibit different behavior 
in air and inert atmospheres because TGA is a test method performed under a nitrogen atmosphere, and the LOI and Mass 
Loss Calorimetry tests are performed in air atmosphere.

Regardless of the amount, the AlPi compound reduces the pHRR, aHRR, and pMLR values of the ABS/BF composite. 
In addition, more flat HRR curves and delayed burning times are observed using AlPi. The addition of 5 and 15 wt% AlPi 
reduces the pHRR value of composite by about 17%. The AlPi shows its FR effect in the gas phase as a flame inhibitor via 
Lewis acid-base interaction with the polymer [46, 47].

The pristine ABS has THE of 104 MJ/m2. This value decreases to 78 MJ/m2 with the addition of BF. The composites 
with the AlPi show lower THE values than the corresponding value of the ABS/BF composite. A significant reduction is 
achieved in THE value of ABS/BF composite using 5 and 10wt% AlPi. The lowest THE (64 MJ/m2) is obtained with the 
AlPi loading of 15wt%. The decrease in THE value is due to the increment in char residue and means that the composite 
presents better fire performance.

THE/TML value is an indicator of effective combustion heat. The reduction in this value indicates that FR compounds 
show action mode in the gas phase through the flame inhibition. The THE/TML value for pristine ABS is 3.22 MJ/g2, 
and this value remains almost the same with the introduction of BF into ABS. A remarkable decrease in THE/TML value 
is observed with the use of AlPi compared to pristine ABS and ABS/BF composite. This effect is observed in all AlPi 
concentrations. The lowest THE/TML (2.41 MJ/g2) is obtained with the AlPi loading of 5wt%. It indicates that the AlPi has 
a prominent mode of action on the gas phase.

Table 2. The TGA test data, LOI values, and UL-94 ratings of the composites. 

Sample

TGA

LOI (%) UL-94 V
T1% (°C) Tmax1 (°C) Tmax2 (°C) Char Yield at 

800 °C (%)

ABS 321 451 653 1.3 18.5 BC
ABS/BF 332 450 571 19.8 17.8 BC
ABS/BF/5AlPi 233 418 559 22.0 22.4 BC
ABS/BF/10AlPi 250 428 - 20.8 26.5 V2
ABS/BF/15AlPi 265 429 - 28.0 31.4 V1

*BC: burn to clamp
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The char residues that remained after the mass loss calorimeter test are inspected to understand the composites’ FR 
mechanism, structure, and morphology. The digital photographs and SEM micrographs of the char residues remained after 
the mass loss calorimeter test of ABS/BF and ABS/BF/AlPi composites are shown in Figure 3. From the digital photographs 
of char residues, the remained BF, having undecomposed characteristic, in ABS/BF composite can be easily seen in green 
color. According to the SEM images, very few solid chars are observed around the BFs. All the composites containing AlPi 
presents a porous and thinner crisp char layer. However, the number of the porous structure decreases as the added amount 
of AlPi increases. No remarkable difference is observed between the char residue of the composites at the loading ratio of 10 
and 15 wt% AlPi, while the composite containing 5 wt% AlPi presents more of and bigger porous structures.

Table 3. Mass loss calorimeter test data of the composites. 

Sample Test Duration
(s) pHRR aHRR pMLR THE THE/TML Residue (%) 

ABS 518 626 323 0.25 104 3.22 2.3
ABS/BF 481 335 229 0.31 78 3.21 22.7
ABS/BF/5AlPi 788 277 147 0.18 70 2.41 25.9
ABS/BF/10AlPi 645 294 176 0.25 79 2.52 18.8
ABS/BF/15AlPi 602 276 153 0.22 64 2.46 23.2

*pHRR: peak heat release rate (kW/m2), aHRR: average HRR (kW/m2), pMLR: peak mass loss rate (g/s), THE: total heat evolved (MJ/
m2), TML: total mass loss (g).

Figure 3. Digital photographs (left side) and SEM micrographs 
(right side) at magnifications of 200× of the char residues 
remaining after mass loss calorimeter test: a) ABS/BF, b) ABS/
BF/5AlPi, c) ABS/BF/10AlPi, and d) ABS/BF/15AlPi.

Figure 2. HRR curves of the pristine ABS and the relevant 
composites.
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4. Conclusions
In this study, the effect of the aluminum diethyl phosphinate (AlPi) compound and its concentration on the FR properties 
of silane-modified BF reinforced ABS composite is studied. The composites were characterized with thermogravimetric 
analysis, LOI, UL-94 V, and mass loss calorimeter tests. According to the TGA test results, the incorporation of the AlPi 
compound into the composite structure causes promotion in the char yield, whereas a remarkable decrease is observed 
in the thermal stability of the ABS matrix, regardless of its amount. When the mass loss calorimeter test results of the 
composites are evaluated, the addition of BF enhances the fire performance of the ABS matrix via the barrier effect against 
the combustible gases and oxygen penetration. The composites containing the AlPi have lower pHRR, aHRR, and pMLR 
values than the corresponding values of ABS/BF composite. The addition of 5 and 15 wt% AlPi reduces the pHRR value of 
composite by about 17%. According to the flammability test results, the addition of BF reduces the LOI value of ABS due 
to the “candlewick effect”. On the other hand, as the added amount of AlPi into the composite increases, the LOI value of 
the composite increases, while the highest LOI value is achieved with the use of 15 wt% AlPi. The best UL-94 rating (V1) 
and LOI value (31.4%) is achieved with the addition of 15 wt% AlPi.
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