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Abstract: We consider a family of higher degree Enneper minimal surface E,, for positive integers m
in the three-dimensional Euclidean space E®. We compute algebraic equation, degree and integral
free representation of Enneper minimal surface for m = 1,2,3. Finally, we give some results and
relations for the family E,,.
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1. Introduction

Minimal surfaces have an important role in the mathematics, physics, biology, architecture,
etc. These kinds of surfaces have been studied over the centuries by many mathematicians and
also geometers. A minimal surface in E? is a regular surface for which the mean curvature vanishes
identically.

There are many important classical works on minimal surfaces in the literature such as [1-10].
However, we only see a few notable works about algebraic minimal surfaces, including general results
and the properties. They were given by Enneper [11,12], Henneberg [13,14] and Weierstrass [9,15].

One of them is the classical Enneper minimal surface that was given by Enneper. See [11,12]
for details. About Enneper minimal surface, many nice papers were done such as [16-24] in the last
few decades.

In this paper, we introduce a family of higher degree Enneper minimal surface E,; for positive
integers m in the three-dimensional Euclidean space E®. In Section 2, we give the family of Enneper
minimal surfaces E;;. We obtain the algebraic equation and degree of surface E; (resp., Ey, E3). Using the
integral free form of Weierstrass, we find some algebraic functions for E,;, (m > 1, m € Z) in Section 3.
Finally, we give some general findings for a family of higher degree Enneper minimal surface E;, with
a table in the last section.

2. The Family of Enneper Minimal Surfaces E,,

We will often identify ¥ and 37 without further comment. Let E® be a three-dimensional
Euclidean space with natural metric (., .) = dx? + dy? + dz°.

Let U be an open subset of C. A minimal (or isotropic) curve is an analytic function ¥ : ¢/ — C"
such that ¥/ (¢) - ¥’ ({) =0, where { € U, and ¥’ := %%. In addition, if ¥/ - ¥’ = |¥/|* # 0, then ¥ is a
regular minimal curove.

Thus, let see the following lemma for complex minimal curves.

Lemma 1. Let ¥ : U — C3 be a minimal curve and write ¥’ = (91, @2, ¢3) . Then,
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