Article ## **Family of Enneper Minimal Surfaces** ## Erhan Güler 🗓 Department of Mathematics, Faculty of Sciences, Bartin University, Bartin 74100, Turkey; eguler@bartin.edu.tr; Tel.: +90-378-501-1000-1521 Received: 18 October 2018; Accepted: 22 November 2018; Published: 26 November 2018 **Abstract:** We consider a family of higher degree Enneper minimal surface E_m for positive integers min the three-dimensional Euclidean space \mathbb{E}^3 . We compute algebraic equation, degree and integral free representation of Enneper minimal surface for m = 1, 2, 3. Finally, we give some results and relations for the family E_m . Keywords: Enneper minimal surface family; Weierstrass representation; algebraic surface; degree; integral free representation ## 1. Introduction Minimal surfaces have an important role in the mathematics, physics, biology, architecture, etc. These kinds of surfaces have been studied over the centuries by many mathematicians and also geometers. A *minimal surface* in \mathbb{E}^3 is a regular surface for which the mean curvature vanishes identically. There are many important classical works on minimal surfaces in the literature such as [1-10]. However, we only see a few notable works about algebraic minimal surfaces, including general results and the properties. They were given by Enneper [11,12], Henneberg [13,14] and Weierstrass [9,15]. One of them is the classical Enneper minimal surface that was given by Enneper. See [11,12] for details. About Enneper minimal surface, many nice papers were done such as [16–24] in the last few decades. In this paper, we introduce a family of higher degree Enneper minimal surface E_m for positive integers m in the three-dimensional Euclidean space \mathbb{E}^3 . In Section 2, we give the family of Enneper minimal surfaces E_m . We obtain the algebraic equation and degree of surface E_1 (resp., E_2 , E_3). Using the integral free form of Weierstrass, we find some algebraic functions for E_m ($m \ge 1$, $m \in \mathbb{Z}$) in Section 3. Finally, we give some general findings for a family of higher degree Enneper minimal surface E_m with a table in the last section. ## **2.** The Family of Enneper Minimal Surfaces E_m We will often identify \overrightarrow{x} and $\overrightarrow{x^t}$ without further comment. Let \mathbb{E}^3 be a three-dimensional Euclidean space with natural metric $\langle ., . \rangle = dx^2 + dy^2 + dz^2$. Let \mathcal{U} be an open subset of \mathbb{C} . A *minimal* (or *isotropic*) *curve* is an analytic function $\Psi: \mathcal{U} \to \mathbb{C}^n$ such that $\Psi'(\zeta) \cdot \bar{\Psi'}(\zeta) = 0$, where $\zeta \in \mathcal{U}$, and $\Psi' := \frac{\partial \Psi}{\partial \zeta}$. In addition, if $\Psi' \cdot \dot{\overline{\Psi'}} = |\Psi'|^2 \neq 0$, then Ψ is a regular minimal curve. Thus, let see the following lemma for complex minimal curves. **Lemma 1.** Let $\Psi: \mathcal{U} \to \mathbb{C}^3$ be a minimal curve and write $\Psi' = (\varphi_1, \varphi_2, \varphi_3)$. Then, $$\mathcal{F}= rac{arphi_1-iarphi_2}{2}$$ and $\mathcal{G}= rac{arphi_3}{arphi_1-iarphi_2}$