RESEARCH Open Access

Rough I_2 -lacunary statistical convergence of double sequences

Ömer Kişi^{1*} and Erdinç Dündar²

*Correspondence: okisi@bartin.edu.tr

Department of Mathematics, Faculty of Science, Bartin University, Bartin, Turkey Full list of author information is available at the end of the article

Abstract

In this paper, we introduce and study the notion of rough \mathcal{I}_2 -lacunary statistical convergence of double sequences in normed linear spaces. We also introduce the notion of rough \mathcal{I}_2 -lacunary statistical limit set of a double sequence and discuss some properties of this set.

Keywords: Statistical convergence; \mathcal{I} -convergence; Rough convergence; Lacunary sequences; Double sequences

1 Introduction

Throughout the paper, \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and Schoenberg [2]. This concept was extended to the double sequences by Mursaleen and Edely [3]. Lacunary statistical convergence was defined by Fridy and Orhan [4]. Çakan and Altay [5] presented multidimensional analogues of the results presented by Fridy and Orhan [4].

The idea of \mathcal{I} -convergence was introduced by Kostyrko et al. [6] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers. Kostyrko et al. [7] studied the idea of \mathcal{I} -convergence and extremal \mathcal{I} -limit points. Das et al. [8, 9] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence. A lot of development have been made in area about statistical convergence, \mathcal{I} -convergence and double sequences after the work of [1, 2, 10–28].

The notion of lacunary ideal convergence of real sequences was introduced in [29]. Das et al. [30, 31] introduced new notions, namely \mathcal{I} -statistical convergence and \mathcal{I} -lacunary statistical convergence by using ideal. Belen et al. [32] introduced the notion of ideal statistical convergence of double sequences, which is a new generalization of the notions of statistical convergence and usual convergence. Kumar et al. [33] introduced \mathcal{I} -lacunary statistical convergence of double sequences. Further investigation and applications on this notion can be found in [34].

The idea of rough convergence was first introduced by Phu [35] in finite-dimensional normed spaces. In another paper [36] related to this subject, Phu defined the rough continuity of linear operators and showed that every linear operator $f: X \to Y$ is r-continuous at every point $x \in X$ under the assumption dim $Y < \infty$ and r > 0, where X and Y are normed

