On Wijsman asymptotically lacunary \mathcal{I} -statistical equivalence of weight g of sequence of sets

ÖMER KIŞI

ABSTRACT. This paper presents the following definition which is a natural combination of the definitions of asymptotically equivalence, \mathcal{I} -convergence, statistical limit, lacunary sequence, and Wijsman convergence of weight g; where $g:\mathbb{N}\to [0,\infty)$ is a function satisfying $\lim_{n\to\infty}g(n)=\infty$ and $\frac{n}{g(n)}\nrightarrow 0$ as $n\to\infty$ for sequence of sets. Let (X,ρ) be a metric space, $\theta=\{k_r\}$ be a lacunary sequence and $\mathcal{I}\subseteq 2^{\mathbb{N}}$ be an admissible ideal. For any non-empty closed subsets $A_k,B_k\subseteq X$ such that $d(x,A_k)>0$ and $d(x,B_k)>0$ for each $x\in X$, we say that the sequences $\{A_k\}$ and $\{B_k\}$ are Wijsman \mathcal{I} -asymptotically lacunary statistical equivalent of multiple L of weight g if for every $\varepsilon>0$, $\delta>0$ and for each $x\in X$,

$$\left\{r \in \mathbb{N}: \frac{1}{g\left(h_r\right)} \left| \left\{k \in I_r: \left| \frac{d(x, A_k)}{d(x, B_k)} - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I}$$

(denoted by $A_k \overset{S_{\theta}^L(\mathcal{I}_W)^g}{\sim} B_k$). We mainly investigate their relationship and also make some observations about these classes.

1. Introduction

Before continuing with this paper we present some definitions and preliminaries.

The concept of \mathcal{I} -convergence was introduced by Kostyrko et al. in a metric space [7]. Later it was further studied by ([2], [5], [6], [12], [13], [14], [15], [16], [17], [21]) and many others. \mathcal{I} -convergence is a generalization form of statistical convergence, which was introduced by Fast (see [3]) and that is based on the notion of an ideal of the subset of positive integers \mathbb{N} . The following definitions and notions will be needed.

Definition 1.1. ([7]) A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if $(i) \emptyset \in \mathcal{I}$, (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (iii) For each $A \in \mathcal{I}$, each $B \subseteq A$ we have $B \in \mathcal{I}$.

An ideal is called non-trivial if $\mathbb{N} \notin \mathcal{I}$ and non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$. Throughout the paper, \mathcal{I} will stand for a proper admissible ideal of \mathbb{N} .

Definition 1.2. ([7]) A family of sets $F \subseteq 2^{\mathbb{N}}$ is a filter in \mathbb{N} if and only if $(i) \emptyset \notin \mathcal{F}$, (ii) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$, (iii) For each $A \in \mathcal{F}$, each $B \supseteq A$ we have $B \in \mathcal{F}$.

Proposition 1.1. ([7]) If \mathcal{I} is a proper ideal of \mathbb{N} (i.e., $\mathbb{N} \notin \mathcal{I}$), then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A\}$ is a filter of \mathbb{N} it is called the filter associated with the ideal.

Definition 1.3. ([7]) Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a proper admissible ideal in \mathbb{N} . The sequence (x_n) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for each $\varepsilon > 0$

$$A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \varepsilon\} \in \mathcal{I}.$$

Received: 09.02.2018. In revised form: 08.06.2018. Accepted: 15.06.2018

²⁰¹⁰ Mathematics Subject Classification. 40A99, 40A05.

Key words and phrases. asymptotic equivalence, statistical convergence, lacunary sequences, sequences of sets, Wijsman convergence, and I-convergence.