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Abstract
In this paper, we consider the maximizing of the probability P { ζ | ζ ∈ K(x) } over
a closed and convex setX , a special case of the chance-constrained optimization prob-
lem. Suppose K(x) � { ζ ∈ K | c(x, ζ ) ≥ 0}, and ζ is uniformly distributed on a
convex and compact setK and c(x, ζ ) is defined as either c(x, ζ ) � 1−∣∣ζ T x

∣
∣
m
where

m ≥ 0 (Setting A) or c(x, ζ ) � T x − ζ (Setting B). We show that in either setting,
by leveraging recent findings in the context of non-Gaussian integrals of positively
homogenous functions, P { ζ | ζ ∈ K(x) } can be expressed as the expectation of a
suitably defined continuous function F(•, ξ) with respect to an appropriately defined
Gaussian density (or its variant), i.e. E p̃ [ F(x, ξ) ]. Aided by a recent observation
in convex analysis, we then develop a convex representation of the original problem
requiring the minimization of g (E [ F(•, ξ) ]) over X , where g is an appropriately
defined smooth convex function. Traditional stochastic approximation schemes can-
not contend with the minimization of g (E [F(•, ξ)]) over X , since conditionally
unbiased sampled gradients are unavailable. We then develop a regularized variance-
reduced stochastic approximation (r-VRSA) scheme that obviates the need for such
unbiasedness by combining iterative regularization with variance-reduction. Notably,
(r-VRSA) is characterized by almost-sure convergence guarantees, a convergence rate
of O(1/k1/2−a) in expected sub-optimality where a > 0, and a sample complexity
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of O(1/ε6+δ) where δ > 0. To the best of our knowledge, this may be the first such
scheme for probability maximization problems with convergence and rate guarantees.
Preliminary numerics on a portfolio selection problem (Setting A) and a set-covering
problem (Setting B) suggest that the scheme competes well with naive mini-batch SA
schemes as well as integer programming approximation methods.

Keywords Chance constraints · Stochastic optimization

Mathematics Subject Classification 90C15 · 62L20

1 Introduction

This paper concerns the probability maximization problem (PM), defined as

max
x∈X

f (x) � P { ζ | ζ ∈ K(x) } , (PM)

where f is a probability distribution function parametrized by a decision vector x,X ⊆
R
n denotes a closed and convex feasibility set, K(x) � { ζ ∈ K | c(x, ζ ) ≥ 0}, K

is a compact and convex set in R
n , and c : Rn × R

d → R
m . Here, ζ : Ω → R

d is a
d−dimensional random vector with a prescribed distribution P. Problems of the form
(PM) fall within the umbrella of chance-constrained optimization problems.

1.1 Background on chance-constrained optimization

Chance-constrained optimization originates from the probabilistic scheduling of heat-
ing oil production by Charnes, Cooper, and Symonds [22]. A more formal description
of chance-constrained programming as an avenue for optimization under uncertainty
appeared in the eponymously titled paper by Charnes and Cooper [21]. Such avenues
have assumed relevance in hydro reservoir management [8, 65], portfoliomanagement
[55, 71], power systems operation [15, 26, 36, 37], routing [23], structural failure [67],
and inventory and supply-chain management [35, 77].
(a) Analysis. The analysis of optimization problems with probability functions has
focused on questions of continuity, differentiability, and convexity.Of these, continuity
and differentiability (and its generalized variants) are of particular relevance when
developing algorithmic techniques. Convexity guarantees are important in their own
right, allowing for certifying a stationary point as a global maximizer. Consider a
probability function ψ , defined as ψ(x) � P [ ζ | ζ ∈ A(x) ] where A : Rn → R

m

is a set-valued map. Under suitable convex-valuedness and continuity properties on
A and an appropriate measure zero requirement on ζ , ψ is continuous [38, Th. 2.1].
In fact, if A is defined as A(x) � { ζ | ci (x, ζ ) ≤ 0, i = 1, . . . ,m}, then continuity
of ψ is implied by continuity of ci in both its arguments for every i and a suitable
regularity assumption [40].

Differentiability of ψ is a more subtle question. As eloquently described by van
Ackooij [2], such results can be partitioned in two categories: (i) Under mild distri-
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Probability maximization via Minkowski functionals

butional requirements on ζ and differentiability of ci for every i , we may conclude
differentiability ofψ under a set of assumptions on∇ci , amongst others (cf. [72, 73]);
(ii) Alternately, by choosing the distribution, more refined statements are available.
For instance, when the distribution of ζ belongs to the family of elliptically symmet-
ric distributions, examples being multivariate Gaussian, Student, and logistic, under
suitable differentiability and convexity properties of ci (in the second argument) and
additional assumptions, ψ can be proven to be locally Lipschitz and a characteriza-
tion of its Clarke subdifferential may be provided [3, Th. 1]. In addition, if a suitable
constraint qualification holds,ψ can be shown to be differentiable and its gradient can
be analytically characterized [3, Cor. 1].

Finally, convexity of ψ can be claimed under various conditions [17, 61, 62]; for
instance, joint quasi-convexity of ci in both arguments and α-concavity of the distri-
bution P implies convexity of ψ on a suitably defined set. More generally, convexity
of joint chance constraints has also been studied [25, 50], while more recent forays
in this area have considered when the probability level is sufficiently high. Referred
to as “eventual convexity”, this avenue has been studied in the context of structured
chance constraints involving copulae [1].

(b)Computation.Wenowdiscuss themain algorithmic thrusts for resolutionof chance-
constrained optimization.

(i) Nonlinear programming and bundle-based approaches. Amongst the earliest
efforts for resolving chance-constrained optimization applied the penalization frame-
work captured by the “SUMT” framework, first presented by Fiacco and McCormick
[31, 32], to the probabilistically constrained setting [61]. Naturally, any such effort
requires having deriving gradients of probability functions, as seen in the context
of nonlinear probabilistic constraints with nonconvex quadratic forms [9] as well as
when contending with Gaussian distributions (and their variants) [6, 7] (also see [58,
72, 73]). One challenge that has been observed in early efforts is the scourge of ill-
conditioning in penalizaton efforts [63], leading to the development of bundle-based
approaches, which have proven quite powerful [4, 5, 10].

(ii) Convex characterizations and approximations. Prekopa [64] proved that when
the distribution function of ζ is logarithmically concave (or log-concave) and the
functions g1(x, ζ ), g2(x, ζ ), . . ., gr (x, ζ ) are quasi-concave, the function G is log-
concave where

G(x) � P { ζ | g1(x, ζ ) ≥ 0, g2(x, ζ ) ≥ 0, . . . , gr (x, ζ ) ≥ 0} .

This allows for developing convexity claims for suitably defined probabilistically-
constrained optimization problems. More recently, Lagoa et al. [43] showed that a set
given by P

{

(a, b) | aT x ≤ b
} ≥ (1 − ε) is convex if (a, b) has a symmetric log-

concave density and ε < 1/2. Unfortunately, the convexity of the feasibility set does
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not directly allow for efficient computation, motivating a scenario-based approach.
Consider (P) and its scenario-based approximation (PN ), defined next.

⎧

⎨

⎩

min
x∈X h(x)

s.t. P {ζ : c(x, ζ ) ≥ 0}
(P)

⎫

⎬

⎭
−−−−−−−−−→
Scen. approx.

⎧

⎨

⎩

min
x∈X h(x)

s.t. c(x, ζ j ) ≥ 0, j = 1, · · · , N
(PN )

⎫

⎬

⎭
.

In [53], the authors examined how large N should be so that with probability (1− δ),
the optimal solution of (PN ) is feasible with respect to (P) by developing conservative
convex approximations. A related approach was considered by [20].

(iii)Sample-average approximation and integer programming approaches.Under suit-
able concavity assumptions on c(•, ζ ) and convexity requirements on h, (PN ) can be
efficiently resolved. However, this is often quite conservative. Instead, the following
integer program (PintN ) can serve as an approximation [11, 48].

min
x∈X ,z∈{0,1}N

⎧

⎨

⎩
h(x) |

N
∑

j=1
z j ≤ γ N , −c(x, ζ j ) ≤ Mj z j , j = 1, · · · , N

⎫

⎬

⎭
, (PintN )

where Mj � maxx∈X
{−c(x, ζ j )

}

and γ ∈ (0, 1). We observe that the second
constraint ensures that only γ% of the N scenarios are satisfied. In fact, when γ = ε

where ε is the parameter in (P), v̂N and x̂N , the optimal value and solution of (PintN ),
converge almost surely to v∗(ε) and X ∗(ε) as N →∞ [56]. Naturally, if c(·, ζ ) is a
nonlinear function, (PintN ) is a mixed-binary nonlinear program, a challenging instance
of a discrete optimization problem.

(iv) Smoothing-enabled Monte-Carlo sampling techniques. Amongst the earliest
approaches proposed by Norkin [54] utilized the characteristic function χC of a set
C , defined as χC (ζ ) = 1 if ζ ∈ C and χC (ζ ) = 0 otherwise. This allowed for
expressing f as

f (x) =
∫

K(x)
dP(ζ ) =

∫

Rd
χK(x)(ζ )dP(ζ ).

Unfortunately, the function χC (•) is discontinuous at points on the boundary of C ,
motivating the “smoothing” of the characteristic function by using Steklov-Sobolev
smoothing [54] (also referred to as convolution-based smoothing). Specifically, χC (•)
is approximated by its smoothed counterpart χε

C (•), defined as

χε
C (ζ ) �

∫ ∞

−∞
χC (ζ + ετ)ps(τ )dτ,

where ps is a symmetric density. The resulting approximation f ε is defined as

f ε(x) �
∫

Rd

∫ ∞

−∞
χε
K(x)(ζ + τε)ps(τ )dτdP(ζ ).
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Under suitably log-concavity assumptions, Norkin [54] developed a stochastic approx-
imation framework for maximizing the approximation f ε ; However, there are no
bounds relating the approximation and its true counterpart. An alternate simulation-
based approach reliant on difference-of-convex programming [41] has been recently
proposed for chance-constrained optimization. An alternate framework [20] uses a
sampling and rejection framework in developing estimators convergent to feasible
solutions. More recent efforts have focused on obtaining stationary points of the
smoothed problem [29, 57]. More refined statements deriving convergence claims
to Clarke stationary points have been provided in [28] by conducting a variational
analysis of affine chance-constrained programs.

1.2 Applications

(1)Robust portfolio selection problem. Portfolio selection problems consider the spec-
ification of portfolio weights while maximizing a suitable risk/reward metric while
meeting risk/reward requirements. Much of the research in this area emerges from the
seminal work by Markowitz in the 50s [49]. Consider a portfolio with n risky assets,
whose random returns are denoted by a random variable ζ = [ζ1, ζ2, . . . , ζn]T with
mean returns μ = [μ1, μ2, . . . , μn]T and covariance matrix Σ . Let the proportion
of the portfolio to be invested in each asset be represented by x = [x1, x2, . . . , xn]T .
It is assumed that no assets will be shorted and, hence, without loss of generality, the
set of all possible portfolio allocations is given by

X �
{

x
∣
∣
∣ 1T x = 1 and x ≥ 0

}

.

We consider the robust portfolio selection problem (RPS) where the distribution of
asset returns is unknown but some of its properties are available. Given a threshold α

and an allocation x, the distributionally robust risk associated with portfolio weights
x is defined as

fα(x) � sup
υ∈H

Pυ

{

ζ

∣
∣
∣ ζ

T x ≤ −α
}

,

where Pυ denotes probability computed using the probability density function υ

belonging to admissible class of density functionsH. This class of distributions con-
tains all distributions with radially increasing densitues and level sets of the form
{

δ | δTΣ−1δ = r
}

for some r . Consider the following distributionally robust port-
folio selection problem with γ > 0.

min
x∈X

{

sup
υ∈H

Pυ

{

ζ

∣
∣
∣ ζ

T x ≤ −α
} ∣
∣
∣μ

T x = γ

}

. (RPS)

In prior work [13], it was shown via the following lemma that the supremum in (RPS)
is achieved when υ is a uniform density over an ellipsoid.
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Lemma 1 Let the random vector ζ be of the form ζ = µ +Δ where the distribution
of Δ is denoted by h. Suppose h belongs to the classH and µ ∈ { ζ

∣
∣ ζ T x ≥ −α

}

.

Then supυ∈H Pυ

{

ζ | ζ T x ≤ −α
}

is achieved when Δ has a uniform distribution
over the set R, defined as

R �
{

Δ ∈ R
n
∣
∣
∣Δ

TΣ−1Δ ≤ rmax

}

, (1)

where rmax represents the uniform bound on the support of the distribution of Δ.

Consequently, the robust portfolio selection problem (RPS) reduces to the probability
minimization problem.

min
x∈X

{

Pυ

{

ζ | ζ T x ≤ −α
}

| μT x = γ
}

,

where Pυ denotes the uniform distribution over an ellipsoid. This motivates the con-
sideration of such a portfolio selection problem in the numerics.
(2) Set covering problems. Consider a set covering problem [70] (closely related to a
vehicle routing problem)

max { f (x) | x ∈ X } , where f (x) � P { ζ ∈ K | T x ≥ ζ } , (2)

whereX �
{

x | cT x ≤ β, x ≥ 0
}

, and T ∈ R
d×n . The incidence matrix T repre-

sents a network with d arcs and n routes with the i j th component denoted by ti j where
ti j � 1 if route j contains arc i and is zero otherwise. Furthermore, ζi denotes the ran-
dom demand on arc i where ζ � (ζ1, · · · , ζd)

T ∈ K, c j represents the nonnegative
cost of operating route j , and β represents a given cost threshold.

1.3 Gaps, contributions, and outline

Gaps. The optimization of distribution functions remains a challenging problem. To
the best of our knowledge, there exist no efficient schemes equipped with asymptotic
convergence or rate guarantees for probability maximization problems or their gener-
alizations, i.e. chance-constrained problems. This is both a testament to the difficulty
of such a problem as well as amotivation for the present workwhich intends to provide
precisely such schemes with suitable convergence and rate guarantees for a subclass
of problems. The key contributions of this work are as follows.

(I) Representation of (PM) as a convex program with compositional expectation-
valued objectives. By leveraging recent findings on non-Gaussian integrals of
positively homogeneous functions (PHFs) [44, 51], in Sect. 2, we consider regimes
where c(x, ζ ) = 1 − |ζ T x|2 (Setting A, Sect. 2.1) or c(x, ζ ) = T x − ζ (Setting B,
Sect. 2.2) where K is a compact and convex set, symmetric about the origin. In both
settings, we show that P { ζ | ζ ∈ K(x) } can be expressed as the expectation of a
suitably defined Clarke-regular integrand, i.e. E p̃ [ F(x, ξ) ], where p̃ is either a suit-
ably defined Gaussian density or its variant. We then proceed to show that the original
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problem is equivalent to the minimization of a convex function g
(

E p̃ [F(•, ξ)]
)

over
a closed and convex set X where g is a suitably defined convex and smooth function.
We refine these relationships when K is either an �p ball or an ellipsoid centered at
the origin (Setting A) or loses symmetry (Setting B).

(II) Regularized variance-reduced stochastic approximation (r-VRSA) scheme. The
resulting convex program is an instance of a compositional stochastic optimization
problem where unbiased first-order oracles are unavailable. In Sect. 3, we present
a regularized variance-reduced SA scheme that combines variance-reduction (to
accommodate bias) with regularization. The resulting scheme is characterized by a
rate of convergence of O(1/k(1/2−a)) and O(1/K 1/2) for diminishing and constant
steplengths (the latter requiring the specification of a simulation length K ) while the
sample-complexity to achieve ε−optimality, i.e. E[h(x∗)− h(xK )] ≤ ε isO(1/ε6+δ)

andO(1/ε6), respectively. While the rate of convergence matches the optimal rate for
subgradient methods for convex programs, the sample-complexity is worse than the
canonicalO(1/ε2). The latter is unsurprising since we do not have access to unbiased
oracles. It is worth emphasizing that this appears to be one of the first schemes with
asymptotic convergence and rate guarantees for a class of non-trivial probability max-
imization problems. We provide some numerical experiments are discussed in Sect. 4
and conclude in Sect. 5.

Notation. We conclude this section with a review of notation. The sets of real
numbers, nonnegative real numbers, nonnegative integers, and positive integers are
denoted byR,R+, Z+, and Z++, respectively. The Euclidean norm of column vectors
x ∈ R

n is denoted by ‖ x ‖, while the spectral norm of A ∈ R
m×n is given by

‖A‖ � max {‖Ax‖ | ‖x‖ ≤ 1 }. The n-by-n identity matrix is written as In , and the
m-by-n zero matrix as 0m×n . The projection onto the set X is denoted by ΠX , that
is, ΠX (y) � argminx∈X‖x − y‖. Finally, unless mentioned otherwise, any missing
proofs are provided in the appendix.

2 An expectation-valued convex framework

Throughout this paper, we consider (PM) where

K(x) � { ζ ∈ K | c(x, ζ ) ≥ 0 } . (3)

We consider two sets of regimes based on the choice ofK and c(x, ζ ). In addition, we
impose an assumption on K and a distributional assumption on ζ .

Assumption 1 (Assumptions on K and X ) The random variable ζ is uniformly dis-
tributed on the set K where K is a compact and convex set in R

n and is symmetric
about the origin. The set X is closed, convex, and bounded.
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Setting: A

The constraint function c in (3) is defined as

c(x, ζ ) � 1− |ζ T x|m, (4)

where m ∈ R+ and ζ ∈ R
n is a random variable. ��

Setting: B

The constraint function c in (3) is defined as

c(x, ζ ) � T x − ζ, (5)

where T ∈ R
d×n and ζ ∈ R

d is a random variable. ��
We observe that Setting A can capture problems such as the portfolio optimization

problem described in Sect. 1.2. Without loss of generality, we fix m = 2 in the
remainder of this paper. Further, in such problems, f (0) = 1 and lim‖x‖→∞ f (x) = 0,
where f is defined as f (x) � P {ζ | ζ ∈ K(x) } . Setting B assumes relevance when
considering chance constraints defined using polyhedral constraints with uncertain
right-hand sides.An instance of such a problem is the set covering problemdescribed in
Sect. 2.1.We qualify problems in Settings A and B as (PMA) and (PMB), respectively.
Before proceeding, we recall two definitions of relevance.

Definition 1 (Log-concavity, positive homogeneity) A function f : Rd → [0,∞)

is log-concave if for any x, y ∈ R
n and λ ∈ [0, 1], f ((1− λ)x + λy) ≥

( f (x))1−λ( f (y))λ. A continuous function f : Rd → R is called a positively homo-
geneous function of degree p ∈ R if f (αx) = α p f (x) for all α > 0 and all x ∈ R

d .

Definition 2 (Minkowski Functional) Let the setK ⊂ R
n . Then, the Minkowski func-

tional associated with the set K is denoted by ‖ • ‖K and is defined as ‖ζ‖K �
inf {t > 0 | ζ/t ∈ K } for all ζ ∈ R

n .

Note that ‖ • ‖K defines a norm when K is compact, convex and symmetric. For
instance, if K is the unit ball in R

n , then the Minkowski functional reduces to ‖ • ‖2
in Rn i.e. ‖ζ‖K = ‖ζ‖2. In the remainder of this section, we proceed to show that the
function f , defined in (PM), is the expectation of a nonsmooth integrand. In fact, we
prove that this integrand is Clarke-regular and the reciprocal of f is a convex function
for settingA (Sect. 2.1) while the negative log-transformation of f is a convex function
in setting B (Sect. 2.2).

2.1 Expectation-valued convex representations for Setting A.

We begin by recalling that P{ζ | ζ ∈ K(x)} can be rewritten as

f (x) = P { ζ | ζ ∈ K(x) } = 1

Vol(K)

∫

K(x)
1 dζ, (6)
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where the last equality follows from Assumption 1 and Vol(K) denotes the volume of
the set K. We now show that (6) can be expressed as an expectation with respect to
prescribed probability measure. Recall that a function r is a PHF of degree m where
r(ζ ) = max {r1(ζ ), . . . , r�(ζ )} if r1, . . . , r� are PHFs of degreem. Lemma 2 provides
conditions under which the integral of a PHF over a suitable set is equal to another
integral which is an expectation over a suitably defined measure.

Lemma 2 [44, Cor. 2.3] Let h be a positively homogenous function of degree p
and let r1, . . . , r� be positively homogeneous functions (PHFs) of degree 0 �= t ∈
R. Let Λ be a bounded set defined as Λ � {ζ | rk(ζ ) ≤ 1, k = 1, . . . , � } . If
∫

Rn |h(ξ)| e−max{r1(ξ),...,r�(ξ)} dξ <∞, then the following holds.

∫

Λ

h(ζ ) dζ = 1

Γ (1+ (n + p)/t)

∫

Rn
h(ξ)e−max{r1(ξ),...,r�(ξ)} dξ.

We now show that f is given by the expectation with respect to p̃(ξ), the density
function of a suitably defined random variable dependent on the choice of K.

Theorem 1 (Representation of f as expectation for general K) Consider (PM). Sup-
pose Assumption 1 holds, where c is defined as (4) and K is defined as (3). Then the
following equality holds.

P {ζ | ζ ∈ K(x) } = E p̃(ξ) [ F(x, ξ) ] =
∫

Rn
F(x, ξ) p̃(ξ)dξ, where (7)

F(x, ξ) � CK(2π)n/2e−max
{|ξT x|2,‖ξ‖2K

}+‖ξ‖
2
K

2 , C � 1
Vol(K)

1
Γ (1+n/2) , (8)

p̃(ξ) � 1
(2π)n/2DK

e
−‖ξ‖2K

2 , CK � CDK, (9)

and DK is a positive scalar such that
∫

Rn
1

(2π)n/2DK
e
−‖ξ‖2K

2 = 1.

Proof We begin by noting that K(x) can be expressed as:

K(x) =
{

ζ

∣
∣
∣ ζ ∈ K

} ⋂ {

ζ

∣
∣
∣ |ζ T x| ≤ 1

}

.

Since the set K is convex, compact, and symmetric, the Minkowski functional of K
defines a norm, and hence, it is a PHF. Moreover, by the definition of the Minkowski
functional, we have ζ ∈ K ⇐⇒ ‖ζ‖K ≤ 1. By using this definition, we may rewrite
K(x) as follows.

K(x) =
{

ζ

∣
∣
∣ |ζ T x|2 ≤ 1

} ⋂ {

ζ
∣
∣ ‖ζ‖2K ≤ 1

} =
{

ζ

∣
∣
∣max

{

|ζ T x|2, ‖ζ‖2K
}

≤ 1
}

.

Since |ζ T x|2 and ‖ζ‖2K are both PHFs of degree 2, then g(x, •) is also a PHF of degree
2 where g(x, ζ ) is defined as g(x, ζ ) � max

{|ζ T x|2, ‖ζ‖2K
}

. By selecting h(ζ ) = 1
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for any ζ and Λ = K(x), we may invoke Lemma 2, leading to the following equality.

f (x) = 1

Vol(K)

∫

K(x)
1 dζ = 1

Vol(K)

1

Γ (1+ n/2)

∫

Rn
e−g(x,ξ) dξ, (10)

whenever
∫

Rn e−g(x,ξ) dξ is finite. In fact, the expression (10) can be written as

f (x) = C
∫

Rn

(

(2π)n/2e−max
{|ξT x|2,‖ξ‖2K

}+‖ξ‖
2
K

2

)(

1
(2π)n/2 e

−‖ξ‖2K
2

)

dξ

=
∫

Rn

(

CK(2π)n/2e−max{|ξT x|2,‖ξ‖2K}+
‖ξ‖2K

2

)

︸ ︷︷ ︸

�F(x,ξ)

(

1
DK(2π)n/2 e

−‖ξ‖2K
2

)

︸ ︷︷ ︸

� p̃(ξ)

dξ

=
∫

Rn
F(x, ξ) p̃(ξ) dξ = C E p̃ [ F(x, ξ) ] , where C � 1

Vol(K)
1

Γ (1+n/2) ,

p̃ denotes the density, DK is such that
∫

Rn p̃(ξ)dξ = 1, and CK � CDK. ��
Next, we examine the convexity properties of a related problem, given by (11).

min
x∈X

h(x) � 1

f (x)
. (11)

Crucial to this claim is the leveraging of a result provided in [16] which allows for
claiming that the reciprocal of P { ζ | ζ ∈ K(x) } is a convex function in x when ζ

satisfies a suitable requirement.

Theorem 2 (Transformation of (PMA) to convex program) Suppose the function f ,
K(x), and X are as defined in (PM). Suppose f (x) ∈ [ε, 1] for x ∈ X and ε > 0 and
h is defined such that h(x) = 1/ f (x). Then the following hold.

(a) h is convex in x over X , where h(x) � 1/ f (x).
(b) A global maximizer of (PM) is a global minimizer of (11).

Before proceeding, we provide a lemma for computing the maximal value of uce−u
where c is a positive integer.

Lemma 3 Consider the function uce−u defined on u ∈ R+ where c ≥ 1 and c ∈ Z+.
Then we have that max

u≥0 uce−u = cc
ec and argmax

u≥0 uce−u = c.

Note that since F(•, ξ) is not necessarily convex,we cannot employ subdifferentials
of F . Instead,we begin by recalling some key elements ofClarke’s nonsmooth calculus
and start by providing the definition of the Clarke generalized gradient of a function
h by leveraging its directional derivatives.

Definition 3 (Directional derivatives andClarke generalized gradient [27]) The direc-
tional derivative of h at x in a direction v is defined as

h◦(x, v) � lim sup
y→x,t↓0

(
h(y+ tv)− h(y)

t

)

. (12)
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The Clarke generalized gradient at x can then be defined as

∂h(x) �
{

ξ ∈ R
n
∣
∣
∣ h◦(x, v) ≥ ξ T v, ∀v ∈ R

n
}

. (13)

In other words, h◦(x, v) = sup
g∈∂h(x)

gT v.

If h is C1 at x, the Clarke generalized gradient reduces to the standard gradient, i.e.
∂h(x) is a singleton at∇xh(x).We now review some properties of ∂h(x). In particular,
if h is locally Lipschitz on an open set C containing X , then h is differentiable almost
everywhere on C by Rademacher’s theorem [27]. Suppose Ch denotes the set of points
whereh is not differentiable.Wenowprovide someproperties of theClarkegeneralized
gradient.

Proposition 1 (Properties of Clarke generalized gradients [27]) Suppose h is L0-
Lipschitz continuous on R

n. Then the following hold.

(i) ∂ h(x) is a nonempty, convex, and compact set and ‖u‖ ≤ L0 for any u ∈ ∂h(x).
(ii) h is differentiable almost everywhere.
(iii) ∂h is an upper semicontinuous map defined as

∂ h(x) � conv

{

u

∣
∣
∣
∣
u = lim

k→∞∇xh(xk), Ch �� xk → x
}

.

To employ the Clarke generalized gradient, we require that the function be at least
locally Lipschitz. We proceed to prove that F(•, ξ) satisfies this requirement. We
further show that this result paves the way for showing that we can interchange the
Clarke subdifferential and the expectation operator.

Lemma 4 Consider the function F(•, ξ) defined as

F(x, ξ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

CK(2π)n/2e−|ξT x|2+
‖ξ‖2K

2

)

, ξ ∈ Ξ1(x) �
{

ξ

∣
∣
∣

∣
∣ξ T x

∣
∣
2

> ‖ξ‖2K
}

(

CK(2π)n/2e−max{|ξT x|2,‖ξ‖2K}+
‖ξ‖2K

2

)

, ξ ∈ Ξ0(x) �
{

ξ

∣
∣
∣

∣
∣ξ T x

∣
∣
2 = ‖ξ‖2K

}

(

CK(2π)n/2e−
‖ξ‖2K

2

)

. ξ ∈ Ξ2(x) �
{

ξ

∣
∣
∣

∣
∣ξ T x

∣
∣
2

< ‖ξ‖2K
}

Then the following hold.

(a) F(•, ξ) is locally Lipschitz for every ξ .
(b) F(•, ξ) is a Clarke regular function for almost every ξ ∈ R

n.
(c) For any x ∈ R

n, ∂ E [ F(x, ξ) ] = E [ ∂F(x, ξ) ] .

Proof (a) This follows by observing that F(•, ξ) is C1 when ξ ∈ Ξ1(x) ∪ Ξ2(x)
and piecewise C1 if ξ ∈ Ξ0(x). Therefore F(•, ξ) is locally Lipschitz for every
ξ ∈ Ξ (cf. [68, Cor. 4.1.1.]).
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(b) SinceΞ0(x) is a lower-dimensional set inRn , we have thatΞ1(x) ∪Ξ2(x) = R
n .

Therefore for almost every ξ ∈ R
n , we have that F(•, ξ) is C1. Consequently,

F(•, ξ) is a Clarke-regular function for almost every ξ .
(c) Since F(•, ξ) is Clarke-regular for almost every ξ ∈ R

n , by [18, Theorem 3.4.],
we have that ∂ E [ F(x, ξ) ] = E [ ∂F(x, ξ) ] . ��

Computational schemes, particularly via stochastic approximation, rely on bound-
edness of F(•, ξ) and G(x, ξ) where we denote an element of ∂F(x, ξ) by G(x, ξ),
i.e. G(x, ξ) ∈ ∂F(x, ξ).

Proposition 2 (Properties of F(x, ξ) andG(x, ξ) under generalK)Consider the func-
tion f in (PM) and suppose Assumption 1 holds. Suppose c(x, ζ ), F(x, ξ), and p̃(ξ)

are defined as (4), (8), and (9), respectively and G(x, ξ) ∈ ∂F(x, ξ) for any x ∈ X .
Then the following hold.

(a) For any x ∈ X , |F(x, ξ)|2 ≤ C2K (2π)n for every ξ ∈ R
n.

(b) For any x ∈ X , E
[ ‖G(x, ξ)‖2 ] ≤ C2

K(2π)n

e E p̃
[ ‖ξ‖2 ] .

We may specialize this representation and the bounds to regimes where K is an
�p-ball in R

n via the following Lemma. In addition, we recall that the density of a
multivariate Gaussian with independent components, each with mean zero and vari-
ance σ 2, has a density given by p̃(ξ) defined as

p̃(ξ) � e
− ‖ξ‖

2
2

2σ2

(2πσ)n/2 , where
∫

Rn
p̃(ξ)dξ = 1.

Consequently, DK = 1 and CK = C . We rely on the following standard lemma.

Lemma 5 Let the �p-norm of a vector x ∈ R
n be defined as ‖x‖p �

(∑n
i=1 |xi |p

)1/p
.

For any 1 ≤ a < b, there exists a scalar β � n(1/a−1/b) such that for every x ∈ R
n,

‖x‖b ≤ ‖x‖a ≤ β‖x‖b.
Proposition 3 (Representation and boundedness of F(x, ξ) and G(x, ξ)whenK is an
�p ball) Consider the function f in (PM). Suppose Assumption 1 holds and c(x, ξ) is
defined as (4). Suppose K is an �p-ball in R

n where p ≥ 1. Then the following hold.

(a) f (x) = E p̃[F(x, ξ)], where

F(x, ξ) �
(

C(2πσ 2)n/2e−max{|ξT x|2,‖ξ‖2p}+
‖ξ‖22
2σ2

)

, C � 1
Vol(K)

1
Γ (1+n/2) , and,

p̃(ξ) � 1
(2πσ 2)n/2 e

−‖ξ‖
2
2

2σ2 , where σ 2 �
{

n1/2−1/p, p ≥ 2

1. 1 ≤ p < 2

(b) For any x ∈ X , |F(x, ξ)|2 ≤ C2(2πσ 2)n for every ξ ∈ R
n.

(c) For every x ∈ X , E
[ ‖G(x, ξ)‖2 ] ≤ e−1C2(2πσ 2)nE p̃

[ ‖ξ‖2 ] , where
G(x, ξ) ∈ ∂F(x, ξ) for any x ∈ X and ξ ∈ R

n.
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Next, we consider the regime where K � KE is an ellipsoid in Rn , defined as

KE �
{

ζ ∈ R
n
∣
∣
∣ζ

TUTΣ−1Uζ ≤ 1
}

, (14)

whereU ∈ R
n×n is an orthogonal matrix whose columns represent unit vectors along

the principal axes of the ellipsoid and Σ−1 is a positive diagonal matrix with the i th
diagonal element denoted by 1/σ 2

i i . By defining η = Σ−1/2Uζ orUTΣ1/2η = ζ , we
may observe that K2 =

{

η
∣
∣ ‖η‖22 ≤ 1

}

, i.e. KE can be transformed to K2. We now
prove that there is an equivalence between (PME

A) and its transformed counterpart
(PM2

A).

Lemma 6 (Equivalence between (PME
A) and (PM2

A)) Consider the function f in
(PM). Suppose Assumption 1 holds and c is defined as (4). SupposeKE is an ellipsoid
in Rn, defined in (14). Then x is a solution of (PME

A)

max
x∈X

f (x) � P

{

ζ

∣
∣
∣ ζ ∈ KE , |ζ T x| ≤ 1

}

(PME
A)

if and only if x is a solution of (PM2
A), defined as

max
x∈X

g(x) � P

{

η

∣
∣
∣ η ∈ K2, |ηTΣ1/2Ux| ≤ 1

}

. (PM2
A)

We may then solve (PM2
A) by adding a new variable y, defined using the linear con-

straint y = Σ1/2Ux, and restate (PM2
A) as follows.

max
x∈X ,y=Σ1/2Ux

P

{

η

∣
∣
∣ η ∈ K2, |ηT y| ≤ 1

}

. (15)

By our representation theorem (Theorem 1), we may then claim the following from
Lemma 6 (proof omitted).

Proposition 4 (Representation of (PME
A) via Gaussian transformation) Consider the

function f in (PM). Suppose Assumption 1 holds and c(x, ζ ) is defined as (4). Suppose
K is an ellipsoid in Rn, defined in (14). Suppose (x, y) is a solution of (15). Then x is
a solution to (PME

A).

2.2 Expectation-valued convex representations for Setting (B)

In this section, we consider the regime where c(x, ζ ) = T x − ζ , T ∈ R
d×n , and

ζ ∈ R
d . We denote the i th component of c by ci while the i th row of T is denoted by

Ti,•. The following proposition articulates a convex counterpart of (PM).

Theorem 3 (Transformation of (PMB) to convex program) Consider the problem
(PM). Suppose Assumptions 1 holds and c(x, ζ ) is defined as (5). Suppose h(x) �
− log ( f (x)) . Then the following hold.
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(a) h is convex on X .
(b) x∗ minimizes h over X if and only if x∗ is a maximizer of f over X .

Proof (a) We observe that f (x) = P {ζ | T x ≥ ζ } = Hζ (T x), where Hζ is the
probability distribution function of the random vector ζ . If T x ∈ R

d , Hζ is
a log-concave function [64, Theorem 4.2.4.], implying that log( f ) is a concave
function. Hence, it follows that h is a convex functionwhere h(x) = − log( f (x)).

(b) Suppose x∗ is a maximizer of f overX . Then f (x) ≤ f (x∗) for all x ∈ X . Since
h = − log( f ) is a monotonically decreasing function for f (x) > 0, we have
that f (x) ≤ f (x∗) if and only if − log( f (x)) ≥ − log( f (x∗)) for all x ∈ X .

Consequently, x∗ is a minimizer of h over X . ��
We now utilize the prior result in developing a representation of the probability

maximization problem as an optimization problem with convex expectation-valued
objectives.

Proposition 5 (Representation of f as expectation for symmetric K) Consider the
problem (PM). Suppose Assumptions 1 holds, c(x, ζ ) is defined as (5), and for all
x ∈ X , Ti,•x ≥ δ for every i and for some δ > 0. Then the following equality holds.

P { ζ | ζ ∈ K(x) } =
∫

Rd
F(x, ξ) p̃(ξ)dξ = E p̃(ξ) [ F(x, ξ) ] , where

F(x, ξ) � CK(2π)d/2e−g(x,ξ)+‖ξ‖
2K
2 , C � 1

Vol(K)
1

Γ (1+d/2) , p̃(ξ) � 1
(2π)d/2DK

e
−‖ξ‖2K

2 ,

where g(x, ξ) � max

{(
max(ξ1, 0)

T1,•x

)2

, . . . ,

(
max{ξd , 0}

Td,•x

)2

, ‖ξ‖2K
}

, and

DK is a positive scalar such that
∫

Rd
1

(2π)d/2DK
e
−‖ξ‖2K

2 = 1, and CK � CDK.

Proof In this instance, the set K(x) is defined as following:

K(x) � { ζ | ζ ∈ K } ∩ { ζ | ζ ≤ T x } .

Since the set K is convex, compact, and symmetric, the Minkowski functional of K
defines a norm, and hence, it is a PHF. Moreover, by the definition of the Minkowski
functional, we have ζ ∈ K ⇐⇒ ‖ζ‖K ≤ 1. By using this definition, we may rewrite
K(x) as follows, where by assumption Ti,•x ≥ δ > 0 for all x implying that Ti,•x > 0
for i = 1, · · · , d.

K(x) =
{

ζ

∣
∣
∣
∣
‖ζ‖K ≤ 1

}
⋂

{

ζ

∣
∣
∣
∣
∣

d
⋂

i=1

max {ζi , 0}
Ti,•x

≤ 1

}

=
{

ζ

∣
∣
∣
∣
‖ζ‖2K ≤ 1

}
⋂

{

ζ

∣
∣
∣
∣
∣

d
⋂

i=1

(
max {ζi , 0}

Ti,•x

)2

≤ 1

}
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=
{

ζ

∣
∣
∣
∣
∣
max

{

‖ζ‖2K,

(
max{ζ1, 0}

T1,•x

)2

, . . . ,

(
max{ζd , 0}

Td,•x

)2
}

≤ 1

}

,

where the squared expression is employed to obtain a PHF of degree 2. Since

gi (x, ζ ) �
(
max{ζi ,0}

Ti,•x

)2
for i = 1, . . . , d and gd+1(x, ζ ) � ‖ζ‖2K are PHFs of

degree 2, then g(x, ζ ) � max {g1(x, ζ ), . . . , gd+1(x, ζ )} is positively homogeneous
of degree 2. By selecting h(ζ ) = 1 for every ζ and Λ = K(x), we may invoke
Lemma 2, leading to the following equality.

f (x) = 1

Vol(K)

∫

K(x)
1 dξ = 1

Vol(K)

1

Γ (1+ d/2)

∫

Rd
e−g(x,ξ)dξ. (16)

In fact the expression (16) can be restated as

f (x) =
∫

Rd

(

CK(2π)d/2e−g(x,ξ)+‖ξ‖
2
K

2

)

︸ ︷︷ ︸

�F(x,ξ)

(

1
DK(2π)d/2 e

−‖ξ‖
2
K

2

)

︸ ︷︷ ︸

� p̃(ξ)

dξ

=
∫

Rd
F(x, ξ) p̃(ξ) dξ = C E p̃(ξ) [ F(x, ξ) ] , where C � 1

Vol(K)
1

Γ (1+d/2) ,

p̃ denotes the density, DK is such that
∫

Rd p̃(ξ)dξ = 1, and CK � CDK. ��
Next, we provide an analog of Lemma 4 for this variant of the integrand F but omit

the proof. Note that gi (•, ξ) is differentiable for every ξ and i = 1, · · · , d + 1.

Lemma 7 Consider the function F(•, ξ) defined as

F(x, ξ) =

⎧

⎪⎪⎨

⎪⎪⎩

(

CK(2π)d/2e−gi (x,ξ)+‖ξ‖
2
K

2

)

, ξ ∈ Ξi (x)
(

CK(2π)d/2e−g(x,ξ)+‖ξ‖
2
K

2

)

, ξ ∈ Ξ0(x), where

Ξi (x) �
{

ξ
∣
∣ gi (x, ξ) > g j (x, ξ) ∀ j �= i

}

, i = 1, · · · , d + 1

Ξ0(x) �
{

ξ | gi (x, ξ) = g j (x, ξ), ∀(i, j) ∈ I,

gi (x, ξ) > gl(x, ξ) ∀l /∈ I, I ⊆ {1, · · · , d + 1}} .

Then the following hold.

(a) F(•, ξ) is locally Lipschitz for every ξ .
(b) F(•, ξ) is a Clarke regular function for almost every ξ ∈ R

d .
(c) For any x ∈ R

n, ∂ E [ F(x, ξ) ] = E [ ∂F(x, ξ) ] .

We now analyze F(x, ξ) and G(x, ξ) where G(x, ξ) ∈ ∂F(x, ξ).

Lemma 8 (Properties of F(x, ξ) and G(x, ξ) under symmetricK) Consider the prob-
lem (PM). Suppose Assumption 1 holds, c(x, ζ ) is defined as (5), and for all x ∈ X ,
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Ti,•x ≥ δ for every i for some δ > 0. Suppose f is defined as in Prop. 5. Then the
following hold.

(a) For any x ∈ X , |F(x, ξ)|2 ≤ C2K(2π)d for every ξ ∈ R
d .

(b) Given an x ∈ X such that Ti,•x ≥ δ for every i and for some δ > 0, and

G(x, ξ) ∈ ∂F(x, ξ), then it holds that E
[ ‖G(x, ξ)‖2 ] ≤ 16C2K(2π)d

‖Ti,•‖2
δ2e2

.

Proof Recall the definition of F(x, ξ) from the statement of Lemma 7. Suppose
Ξi,0(x) �

{

ξ | gi (x, ξ) ≥ g j (x, ξ), j �= i,
}

for i = 1, . . . , d + 1. It can be seen
that ∪d+1i=1 Ξi,0(x) = R

d . We prove (a) by considering two cases.
Case (i): ξ ∈ Ξi,0(x) for i = 1, · · · , d. It follows that

| F(x, ξ) |2 = C2K
(

(2π)de−2g(x,ξ)+‖ξ‖2K
)

≤ C2K
(

(2π)de−2gi (x,ξ)+gi (x,ξ)
)

≤ C2K(2π)d .

Case (ii): ξ ∈ Ξd+1,0(x). Proceeding similarly, we obtain that

| F(x, ξ) |2 ≤ C2K
(

(2π)de−2g(x,ξ)+‖ξ‖2K
)

≤ C2K
(

(2π)de−2‖ξ‖2K+‖ξ‖2K
)

≤ C2K(2π)d .

Consequently, | F(x, ξ) |2 ≤ C2K(2π)d for ξ ∈ R
d .

(b). We observe that ∂F(x, ξ) is defined as follows.

∂F(x, ξ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎝CK(2π)d/2
2(max{ξi ,0})2T Ti,•

(Ti,•x)3
e−gi (x,ξ)+ ‖ξ‖

2
K

2

⎞

⎠ , ξ ∈ Ξi (x), i = 1, . . . , d

⎛

⎝−CK(2π)d/2e−g(x,ξ)+ ‖ξ‖
2
K

2

⎞

⎠ H(x, ξ), ξ ∈ Ξ0(x)

0. ξ ∈ Ξd+1(x),

where H(x, ξ) denotes the Clarke generalized gradient of g(x, ξ), defined as

H(x, ξ) =
{
∑

�∈I
α�β�

∣
∣
∣
∣
∣
α� ≥ 0,

∑

�∈I
α� = 1, β� = ∇xg�(x, ξ), � ∈ I

}

. (17)

Proceeding as in Prop 2, we have that E p̃
[ ‖G(x, ξ)‖2 ] can be expressed as follows.

E p̃

[

‖G(x, ξ)‖2
]

=
∫

Rn
‖G(x, ξ)‖2 p̃(ξ)dξ

=
d
∑

i=1

∫

Ξi (x)
‖G(x, ξ)‖2 p̃(ξ)dξ +

∫

Ξd+1(x)
‖G(x, ξ)
︸ ︷︷ ︸

= 0

‖2 p̃(ξ)dξ

+
∫

Ξ0(x)
‖G(x, ξ)‖2 p̃(ξ)dξ

=
d
∑

i=1

∫

Ξi (x)
‖G(x, ξ)‖2 p̃(ξ)dξ, (18)

123



Probability maximization via Minkowski functionals

where the last equality follows from observing that G(x, ξ) = 0 for ξ ∈ Ξd+1(x)
and the integral in (18) is zero because Ξ0(x) is a measure zero set. It follows that
E
[ ‖G(x, ξ)‖2 ] can be bounded as follows:

E
[ ‖G(x, ξ)‖2 ]

≤
d
∑

i=1

∫

Ξi (x)
4C2K(2π)d

(

ξ2i T
T
i,•

(Ti,•x)3

)T (
ξ2i T

T
i,•

(Ti•x)3

)

e
− 2(ξi )

2

(Ti,•x)2
+‖ξ‖2K

(

1
DK(2π)d/2 e

−‖ξ‖
2
K

2

)

dξ,

=
d
∑

i=1

∫

Ξi (x)
4C2K(2π)d

‖Ti,•‖2
(Ti,•x)2

(
ξi

Ti,•x

)4

e
− 2(ξi )

2

(Ti,•x)2
+‖ξ‖2K

(

1
DK(2π)d/2 e

−‖ξ‖
2
K

2

)

dξ,

≤
d
∑

i=1

∫

Ξi (x)
4C2K(2π)d

‖Ti,•‖2
δ2

(
ξi

Ti,•x

)4

e
− (ξi )

2

(Ti,•x)2
(

1
DK(2π)d/2 e

−‖ξ‖
2
K

2

)

dξ,

where the inequality follows from ξ ∈ Ξi (x) for i = 1, . . . , d and Ti,•x ≥ δ for all

i . Next, we consider the expression
(

ξi
Ti,•x

)4
e
−
(

ξi
Ti,•x

)2

or u2e−u . We note that by

Lemma 3, u∗ = 2 is a maximizer with value 4e−2. Hence, we have that

E

[

‖G(x, ξ)‖2
]

≤
d
∑

i=1

∫

Ξi (x)
4C2K(2π)d

‖Ti,•‖2
δ2

4

e2

(

1

DK(2π)d/2 e
−‖ξ‖

2
K

2

)

dξ

= 16C2K(2π)d
d
∑

i=1

‖Ti,•‖2
δ2e2

∫

Ξi (x)

1
DK(2π)d/2 e

−‖ξ‖
2
K

2 dξ

= 16C2K(2π)d
d
∑

i=1

‖Ti,•‖2
δ2e2

.

��
We now specialize these results to regimes where K is an �p-ball in R

n and not
necessarily symmetric about the origin via the following Proposition.

Assumption 2 The random variable ζ is uniformly distributed on the set K ⊂ R
d

where K �
{

ζ | ‖ζ − μ‖p ≤ α
}

. The set X is closed, convex, and bounded.

Proposition 6 (Representation and boundedness under asymmetric K) Consider the
problem (PM). Suppose Assumption 2 holds and there exists δ > 0 such that Ti,•x −
μi ≥ δ for i = 1, · · · , d. Then the following hold.
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(a) f (x) � E p̃(ξ)[F(x, ξ)], where σ 2 = α2, F(x, ξ) � C(2πσ 2)d/2e−g(x,ξ)+‖ξ‖
2
2

2σ2 ,

C � 1
Vol(K)

1
Γ (1+d/2) , p̃(ξ) � 1

(2πσ 2)d/2 e
−‖ξ‖22
2σ2 , and

g(x, ξ) � max
{

1
α2 ‖ξ‖2p,

(
max(ξ1,0)
T1,•x−μ1

)2
, . . . ,

(
max(ξd ,0)
Td,•x−μd

)2
}

.

(b) Given an x ∈ X and T x − μ ≥ δe, F(x, ξ) ≥ 0 and |F(x, ξ)|2 ≤ C2(2πσ 2)d

for every ξ ∈ R
d .

(c) Given an x ∈ X and T x − μ ≥ δe, and G(x, ξ) ∈ ∂F(x, ξ), then it holds that

E

[

‖G(x, ξ)‖2
]

≤ 16C2(2πσ 2)d
‖Ti,•‖2
δ2e2

. (19)

Before concluding, we comment on the assumptions employed in this section.
(a) Assumptions on ζ . We assume that ζ is uniformly distributed on the set K which
is a compact and convex set, symmetric about the origin (with corollaries provided
for specializing these results to an ellipsoid). This property allows us to claim that the
Minkowski function ofK is a norm, a key step in the analysis. In addition, we develop
an extension to non-symmetric regimes where

K �
{

ζ | ‖ζ − μ‖p ≤ α
}

.

The requirement that ζ is uniformly distributed may be weakened to log-concave
measures and this will be the focus of future work, as noted in the concluding section.
(b) Definition of c(x, ζ ) in Settings A and B.We have adopted two distinct choices for
c; i.e. c(x, ζ ) = 1−|ζ T x|m (Setting A) and T x− ζ (Setting B). Extensions to this are
also possible where ζ T Ax is employed in Setting A. This can be easily addressed by
adding variables. More general extensions will be considered as part of future work.

3 An efficient stochastic approximation framework

In the prior section, we observed that the function f could be recast as an expecta-
tion of F(x, ξ) with respect to a suitable density function. In Sect. 3.1, we cast the
stochastic optimization of problem as a convex compositional stochastic optimization
problem and comment on why available schemes do not suffice.We then provide some
background and define the algorithmic framework in Sect. 3.2. Finally, convergence
and rate analysis are provided in Sect. 3.3.

3.1 Convex compositional stochastic optimization problem

The optimization problem of interest, denoted by (PM), can be cast as the following
convex compositional optimization problem.

min
x∈X

h(x), where h(x) � ψ (E [F(x, ξ)]) and ψ(y) �
{

1
y (PMA)

− log (y). (PMB)
(20)
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Before proceeding, we provide a brief review of SA schemes and their variance-
reduced and compositional counterparts.

(a) Stochastic approximation (SA) schemes. SA schemes represent a class of tech-
niques rooted in the seminal work by Robbins and Monro [66]. In the last several
decades, there has been a tremendous amount of research in the stochastic approxima-
tion applied to minimizing a convex function h, defined as h(x) � E [H(x, ω)] over
a closed and convex set X . Noteworthy amongst these being the long-step averaging
framework by [59] and [60]. In fact, in [52] the authors developed a robust stochas-
tic approximation framework for convex stochastic optimization in which a constant
steplength of prescribed size was employed over a pre-selected number of SA steps.
Such a scheme admits the optimal rate of convergence ofE[h(x̄K )−h∗] ≤ O(1/

√
K )

where K represents the number of steps and x̄K denotes the iterate average over K
steps.

(b) Variance-reduced schemes. A key shortcoming of SA schemes is the gap in the
convergence rate between the deterministic schemes and their SA analogs. This gap is
particularly irksome in the presence of complicated constraints, since the projection
operation is computationally expensive and in such cases, deterministic rates of con-
vergence have profound benefits. For instance, to compute an ε-solution for a smooth
convex expectation-valued problem, traditional SA schemes require at most O(1/ε2)
while the variance-reduced counterparts require O(1/ε). For instance, if ε = 1e-
3, standard SA schemes require O(1e6) projection steps while variance-reduced
counterparts requireO(1e3) steps, a significant difference.When considering sample-
complexity, we note that in some instances such as [42], one may be able to (nearly)
match the sample complexity ofO(1/ε2). These improved rates are achieved by either
utilizing an increasing batch-size of gradients or by solving a sequence of stochastic
subproblems to increasing degrees of inexactness. Such avenues have derived deter-
ministic rates of convergence in smooth strongly convex [19, 69, 76], smooth convex
[33], nonsmooth convex [42], and nonconvex regimes [33, 45]. Notably, in many of
these settings, the schemes admit optimal or near-optimal sample complexities [42,
45, 69, 76].

(c) Compositional stochastic optimization. The earliest efforts on compositional opti-
mization appear to be the almost-sure convergence guarantees provided by Ermoliev
[30] for two-level problems. Rate statements [74, 75] and variance-reduction (in finite
sample-space regimes) [46] have been studied while multi-level settings were first
considered by [78]. Optimal sample-complexity in nonconvex regimes was shown for
two-level [34] and multi-level [12, 24] regimes. However, when the inner function is
nonsmooth (as in this setting), the best known rate has been provided in [74] where a
rate of O(k−1/4) has been derived. We note that in the present setting, sample com-
plexity is of less relevance since ξ is a Gausian random variable and sampling is cheap
with no explicit limitations on data (unlike in finite-sum machine learning problems).
Instead, in this setting, we argue that iteration complexity is of more relevance.

(d) Gaps and shortcomings in existing SA and compositional SA schemes. A proto-

typical SA scheme for minimizing a convex function h, defined as h(x) � E[H(x, ξ)]
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and given x0 ∈ X , generates a sequence {xk} as follows.

xk+1 := ΠX
[

xk − γkd(xk, ξk)
]

, k ≥ 0 (21)

where d(xk, ξk) is assumed to be a sampled subgradient, the interchange between
the expectation and subdifferential operator is assumed to hold for any x, i.e.
∂E [H(x, ξ)] = E [∂H(x, ξ)], and E [d(xk, ξ) | xk] ∈ ∂xE [H(xk, ξ)]. When con-
tending with ψ (E [F(x, ξ)]), by the chain rule [27], we have that

∂xψ (E [F(x, ξ)]) = ∂x [E [F(x, ξ)]]ψ ′ (E [F(x, ξ)])

= E [∂xF(x, ξ)]ψ ′ (E [F(x, ξ)]) , (22)

where the second equality is a consequence of invoking Lemma 4. Consequently,
an unbiased subgradient of ψ (E [F(x, ξ)]) is given by G(x, ξ)ψ ′ (E [F(x, ξ)]) and
requires access to ψ ′ (E [F(x, ξ)]); however, the latter cannot be accessed and there-
fore an unbiased subgradient cannot be tractably evaluated and standard SA schemes
cannot be adopted.

(e) Related numerical schemes.

(i) SA and Mini-batch SA schemes. In the context of stochastic optimization with
conditionally unbiased gradients being available, single-sample SA schemes are
characterized by an optimal rate of O(k−1/2) while mini-batch variants employ
a gradient estimator with reduced bias. However, in the current regime, such
estimators are complicated by bias. Note that these schemes are not equipped
by either asymptotic convergence or non-asymptotic rate guarantees. Yet, given
that such schemes enjoy an optimal rate in unbiased regimes, SA schemes and
mini-batch variants of SA provide a useful benchmark of comparison.

(ii) Compositional SA schemes. The presence of bias arising from the presence
of a compositional structure has been addressed by compositional stochastic
approximation schemes by adding a parallel updating scheme [74]. In nonsmooth
regimes, such an avenue is characterized by a convergence rate ofO(k−1/4)while
our proposed scheme achieves a rate of approximatelyO(k−1/2). Note that sam-
ple (or oracle) complexity is less relevant here since sampling is (relatively) cheap
and data is not limited by any means. Given the significant difference in rates,
we have not provided an additional comparison with compositional SA schemes
in the current manuscript.

(iii) Sample-average approximation via integer programming. Finally, the other
competing approach for computing global minimizers of chance-constrained
problems is via sample-average approximation (SAA) where the SAA prob-
lem is resolved via integer programming [56]. We introduce this comparison to
demonstrate the difference in scalability and from the standpoint that this avenue
also provides an additional certification that our proposed (r-VRSA) scheme is
indeed finding near-global minimizers.
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3.2 Background and algorithm definition

We observe that the problem of interest is minx∈X ψ (E [F(x, ξ)]). We first provide a
result that allows us to claim that ∂x [ψ (E [F(x, ξ)])] = ψ ′ (E [F(x, ξ)]) ∂x [F(x, ξ)]
indeed holds.

Lemma 9 Suppose F(•, ξ) is a Clarke-regular function for every ξ ∈ Ξ , ψ is a
continuously differentiable function, and X is a nonempty, compact, and convex set
in Rn. Then the following hold.

(a) F(•, ξ) is Lipschitz continuous on X with a Lipschitz constant L(ξ) where
E[L(ξ)] ≤ L̃.

(c) Suppose f (x) = E [F(x, ξ)] and f (x̄) is finite for some x̄ ∈ X . Then f is
Clarke-regular and for any x ∈ X , ∂x f (x) = E [∂xF(x, ξ)].

(d) Suppose ψ : R
+ → R is a continuously differentiable function. Then

for any x ∈ X such that f (x) = E [F(x, ξ)] > 0, ∂x [ψ( f (x)] =
ψ ′ (E [F(x, ξ)])E [∂x [F(x, ξ)]].

Proof (a) We present the proof for Setting A.We observe that F(•, ξ) is a piecewise-
smooth function for every ξ . Then for any x ∈ X , ‖∇xF(x, ξ)‖ is bounded as
follows at points where F(x, ξ) is smooth:

‖∇xF(x, ξ)‖ = ‖CK(2π)n/2(2ξ T x)e−max{ξT x,‖ξ‖2K}+‖ξ‖2K/2‖
≤ CK(2π)n/2(‖ξ‖2 + (ξ T x)2).

Consequently, F(•, ξ) is aLipschitz continuous functionwith L(ξ) = CK(2π)n/2

(‖ξ‖2 + (ξ T x)2). Furthermore, we have that E[L(ξ)] ≤ CK(2π)n/2(E[‖ξ‖2] +
(E[‖ξ‖2+‖x‖2)2

4 < L̃, a consequence of the boundedness of the second moment
and the compactness of X .

(b) By definition, f (x) = E [F(x, ξ)]. Therefore, f is Lipschitz continuous with
constant L̃ by utilizing convexity of the norm, Jensen’s inequality, and part (a).

(c) Since F(•, ξ) is Clarke-regular on X , f is Lipschitz continuous on X , f is
defined at some x̄ ∈ X , we have that f is Clarke regular onX and for any x ∈ X ,
∂x f (x) = E [∂xF(x, ξ)] [27, Th. 2.7.2].

(d) This follows from noting that by recalling that ψ : R+ → R is continuously dif-
ferentiable and f is Lipschitz continuous onX , and then invoking [27, Cor. 2.6.6],
we have that ∂x [ψ (E [F(x, ξ)])] = ψ ′ (E [F(x, ξ)]) ∂x [E [F(x, ξ)]]. ��

Consequently, an unbiased stochastic subgradient of h is given by a measurable
selection h′(E[F(x, ξ)]G(x, ξ) where G(x, ξ) ∈ ∂xF(x, ξ). However, such a selec-
tion cannot be efficiently evaluated since it requires E[F(x, ξ)] which is unavailable.
Instead, we employ a biased variance-reduced counterpart given by the following.

Dk = ψ ′ε
(∑Nk

j=1 F(xk ,ξk, j )
Nk

) ∑Nk
j=1 G(xk ,ξ j,k )

Nk
. (23)
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We observe that the bias in defining the estimator Dk arises from approximating

ψ ′ (E [F(xk, ξ)]) byψ ′ε
(∑Nk

j=1 F(xk ,ξk, j )
Nk

)

whereψ ′ε is suitably defined approximation

of ψ with parameter ε. Consequently, we propose the following regularized variance-
reduced stochastic subgradient scheme forminimizing h(x) in either (PMA) or (PMB).
We define the variance-reduced sampled gradient Dk as follows for each of these
settings.

Dk �

⎧

⎪⎨

⎪⎩

−(Gk+w̄G,k )

( f (xk)+w̄ f ,k )
2+εk

, (Setting A)

−(G j+w̄G,k )

( f (xk)+w̄ f ,k )+εk
, (Setting B)

(24)

where w̄k � dk − Dk , dk ∈ ∂xh(xk), w̄ f ,k and w̄G,k are defined as

w̄ f ,k �
∑Nk

j=1 F(xk ,ξ j )− f (xk)
Nk

and w̄G,k �
∑Nk

j=1 G(xk ,ξ j )−E[G(xk ,ξ)]
Nk

, (25)

respectively. We begin by assuming the existence of the following stochastic oracles,
crucial for the development of the proposed first-order schemes.

Assumption 3 (Stochastic zeroth and first-order oracles) There exist a stochastic
zeroth-order oracle and a stochastic first-order oracle that givenx, produce independent
samples F(x, ξ) and G(x, ξ) ∈ ∂F(x, ξ) in Settings A and B.

We now define the σ -algebra Fk+1 for Setting B (Setting A is defined analogously).

F f ,k+1 �
{

{F(x0, ξ j )}N0
j=1, {F(x1, ξ j )}N1

j=1, · · · , {F(xk, ξ j )}Nk
j=1
}

, (26)

FG,k+1 �
{

{G(x0, ξ j )}N0
j=1, {G(x1, ξ j )}N1

j=1, · · · , {G(xk, ξ j )}Nk
j=1
}

, and (27)

Fk+1 � F f ,k+1 ∪ FG,k+1 ∪ {x0}. (28)

Suppose {xk} is a sequence in X . Then the following result holds.

Lemma 10 For any xk ∈ X , suppose w̄ f ,k and w̄G,k are defined as in (25). Then for

all k ≥ 0, E
[‖w̄ f ,k‖2 | Fk

] ≤ ν2f
Nk

and E
[‖w̄G,k‖2 | Fk

] ≤ ν2G
Nk

hold almost surely,
where

ν2f � 2(C2K(2π)n + 1), ν2G �
C2K(2π)nE p̃[‖ξ‖2]

e
, (Setting A)

ν2f � C2(2πσ 2)d and ν2G � 16C2K(2π)d
d
∑

i=1

‖Ti,•‖2
δ2e2

. (Setting B)
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Algorithm 1 Regularized VR stochastic approximation (r-VRSA)
(0) Given x0 ∈ X and positive sequences {γk , εk , Nk }; set k := 1.
(1) xk+1 := ΠX

[

xk − γk Dk
]

, where Dk is defined in (24)
(2) If k > K, then stop; else k := k + 1; return to (1).

Assumption 4 There exists an ε f such that f (xk) ≥ ε f and for any xk ∈ X . For any
x, y ∈ X , ‖x − y‖2 ≤ B2.

Lemma 11 Suppose Assumptions 3 and 4 hold. Consider any xk ∈ X . Suppose Nk ∈
Z++ and εk � 1

N1/4
k

. Suppose w̄k � Dk − dk, where Dk is defined in (24) and

dk ∈ ∂h(xk). Suppose E[‖G(xk, ξ)‖2 | Fk] ≤ M2
G and |F(x, ξ)| ≤ MF for any x, ξ.

Then E[‖w̄k‖2] ≤ ν2√
Nk
, holds almost surely, where

ν2 �
3ν2G
ε2f

+ M2
G

24ν2f
ε4f

+ 6(MF
2 + 1)ν2f
ε4f

+ M2
G

ε8f
, (Setting A)

where

ν2 �
(

3
ν2G

ε2f
+ 3M2

G

ν2f

ε2f
+ 3

(

M2
G

ε4f

))

, (Setting B)

and the constants ν f and νG are as specified in Lemma 10.

3.3 Convergence analysis

Proposition 7 Suppose h, defined as in (20), is a convex function on an open set
containingX . Suppose Assumption 1 holds and either Assumption 1 or Assumption 2
holds under Setting B. In addition, suppose Assumptions 3 and 4 hold. Consider the

iterates generated by Algorithm 1. If x̄K̂ ,K �
∑K−1

k=K̂
γk xk

∑K−1
k=K̂

γk
, then for all K > 0 and K̂

satisfying 0 ≤ K̂ < K − 1,

E
[

h(x̄ K̂ ,K )− h(x∗)
] ≤

E[‖xK̂−x∗‖2]+
∑K−1

k=K̂
γ 2
k (M2

G+B2)+∑K−1
k=K̂

ν2√
Nk

∑K−1
k=K̂

2γk
. (30)

We now present a rate statement for diminishing and constant steplengths.

Theorem 4 (Rate statement for diminishing and constant steplengths) Suppose
h, defined as in (20), is a convex function on an open set containing X . Suppose
Assumption 1 holds and either Assumption 1 or Assumption 2 holds under Setting B.
In addition, suppose Assumptions 3 and 4 hold. Consider the iterates generated by
Algorithm 1.
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(a) Suppose γk = 1
k1/2+a and Nk � �1/γ 4

k � for all k where a < 1/2. If K̂ � �K/2�,
then the following holds for every integer K ≥ 2.

E
[

(h(x̄K̂ ,K )− h(x∗))
] ≤ (1/2− a)

B2+ 1
2a (M2

G+B2+ν2)

2(1−1/21/2−a)
1

K 1/2−a . (31)

(b) Given a positive integer K , suppose γk �
√

B2

(B2+M2
G+ν2)K

and Nk � �1/γ 4
k � for

all k. Then the following holds.

E
[

(h(x̄K )− h(x∗))
] ≤

√

(B2+M2
G+ν2)

B2K
. (32)

Proof (a) Suppose K̂ = �K/2� and γk = γ0
k1/2+a for any k ≥ 0. Then we have that

K−1
∑

k=K̂

γk ≥
∫ K

K̂−1
1

x1/2+a dx = K 1/2−a−(K̂−1)1/2−a
1/2−a ≥ K 1/2−a−(K/2)1/2−a

1/2−a

and
K−1
∑

k=K̂

γ 2
k ≤

∫ K

K̂−1
1

x1+2a dx = K−2a−(K̂−1)−2a
−2a ≤ (K̂−1)−2a

2a ≤ 1
2a .

It follows that

E
[

(h(x̄K̂ ,K )− h(x∗))
] ≤ B2

∑K−1
k=K̂

2γk
+
∑K−1

k=K̂
γ 2
k (M2

G + B2)
∑K−1

k=K̂
2γk

+
∑K−1

k=K̂
ν2√
Nk

∑K−1
k=K̂

2γk

≤ (1/2− a)
B2+ 1

2a (M2
G+B2+ν2)

2(1−(1/2)1/2−a)
1

K 1/2−a .

(b) Suppose K̂ = 0 and γk = γ for all k. Then we obtain the following bound.

E
[

(h(x̄K )− h(x∗))
] ≤ B2

2Kγ
+ (M2

G+B2+ν2)Kγ 2

2Kγ
= B2

2Kγ
+ (M2

G+B2+ν2)γ

2 .

By minimizing the right hand side, which is a convex function in γ , we obtain

− B2

2Kγ 2 + (M2
G+B2+ν2)

2 = 0 �⇒ γ ∗ =
√

B2

(B2+M2
G+ν2)K

.

The resulting bound on the expected sub-optimality is

E p̃
[

(h(x̄K )− h(x∗))
] ≤

√

(B2+M2
G+ν2)

B2K
.

��
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We now employ the aforementioned rate to compute the sample (or oracle) com-
plexity of computing a random xK such that E[h(xK )− h(x∗)] ≤ ε.

Proposition 8 (Oracle complexity for diminishing & constant steplengths) Sup-
pose h, defined as in (20), is a convex function on an open set containing X . Suppose
Assumption 1 holds and either Assumption 1 or Assumption 2 holds under Setting B.
In addition, suppose Assumptions 3 and 4 hold. Consider the iterates generated by
Algorithm 1.

(a) Suppose γk = 1
k1/2+a and Nk � �1/γ 4

k � for all k where a < 1/2. If K̂ � �K/2�,
then the following holds for every integer K ≥ 2. Let K (ε) be any positive
integer, K (ε) ≥ 2, such that E p̃[h(xK (ε)) − h(x∗)] ≤ ε. Then

∑K (ε)
k=0 Nk ≤

O(1/ε(6+8a)/(1−a)).

(b) Given a positive integer K , suppose γk �
√

B2

(B2+M2
G+ν2)K

and Nk � �1/γ 4
k � for

all k. Let Kε be any positive integer K (ε) ≥ 2 such thatE p̃[h(xK (ε))−h(x∗)] ≤ ε.

Then
∑K (ε)

k=0 Nk ≤ O(1/ε6).

Proof (a) By utilizing Theorem 4(a), we have that K (ε) = � D̂
ε2/(1−a) �, where D̂ > 0.

Consequently, we have that

K (ε)
∑

k=0
Nk ≤

K (ε)
∑

k=0
(k + 1)2+4a =

K (ε)+1
∑

t=1
t2+4a ≤

∫ K (ε)+2

1
x2+4adx

≤ (K (ε)+ 2)3+4a

3+ 4a
≤ 23+4a D̂3+4a

(3+ 4a)ε(6+8a)/(1−a)
.

(b) By utilizing Theorem 4(b), we have that K (ε) = � D̂
ε2
�, implying that γk = γ =

c̃√
K

where c̃ �
√

B2

(B2+M2
G+ν2)

. It follows that Nk = N = � K 2
ε

c̃4
�. The oracle

complexity may then be bounded as
∑K (ε)

k=0 Nk ≤ 8D̂3

(3c̃4)ε6
. ��

Next, we prove almost sure convergence of the sequence to a solution x∗.

Theorem 5 (Almost sure convergence) Suppose h, defined as in (20), is a convex func-
tion onanopen set containingX . SupposeAssumption 1holds and eitherAssumption1
or Assumption 2 holds under Setting B. In addition, suppose Assumptions 3 and 4 hold.
Consider the iterates generated byAlgorithm 1, where

∑∞
k=0 γk = ∞,

∑∞
k=0 γ 2

k <∞,

and
∑∞

k=0 1√
Nk

<∞. Then xk
k→∞−−−→
a.s.

X ∗.

Proof We resume our argument, by utilizing the following inequality.

1

2
‖xk+1 − x∗‖2 ≤ 1

2
‖xk − γk(dk + w̄k)− x∗‖2

= 1

2
‖xk − x∗‖2 + 1

2
γ 2
k ‖dk + w̄k‖2 − γk(xk − x∗)T (dk + w̄k)
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≤ 1

2
‖xk − x∗‖2 + 1

2
γ 2
k ‖dk + w̄k‖2 − γk(xk − x∗)T (dk)

+ γ 2
k ‖xk − x∗‖2 + ‖w̄k‖2.

This implies the following inequality holds.

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + γ 2
k ‖dk + w̄k‖2 − 2γk(h(xk)− h(x∗))

+ γ 2
k ‖xk − x∗‖2 + ‖w̄k‖2

= (1+ γ 2
k )‖xk − x∗‖2 + γ 2

k ‖dk + w̄k‖2
− 2γk(h(xk)− h(x∗))+ ‖w̄k‖2.

By taking expectations conditioned on Fk , we have the following inequality.

E[‖xk+1 − x∗‖2 | Fk] ≤ (1+ γ 2
k )‖xk − x∗‖2 + γ 2

k M
2
G − 2γk(h(xk)− h(x∗))+ ν2√

Nk
.

Since
∑∞

k=0 γ 2
k < ∞,

∑∞
k=0 1√

Nk
< ∞, it follows that {‖xk − x∗‖2} is a convergent

sequence in an a.s. sense and
∑∞

k=0 γk(h(xk)−h(x∗)) <∞ a.s. Consequently, {xk} is
bounded a.s. and has a convergent subsequence, indexed by I. Since∑∞

k=0 γk(h(xk)−
h(x∗)) <∞ a.s. and

∑∞
k=0 γk = ∞, it follows that lim infk→∞,k∈I h(xk) = h(x∗) a.s.

Consequently, by the continuity of h, there exists a subsequence of {xk} that converges
to the solution set X ∗ almost surely. But we have that {‖xk − x∗‖2} is convergent a.s.
and converges to zero along some subsequence. Consequently, the entire sequence
{‖xk − x∗‖2} converges to zero a.s. and the result holds. ��

4 Numerical results

In this section, we compare the performance of our scheme with standard stochastic
approximation and integer programming approaches on two sets of examples. In all
instances, the components of x0 ∈ R

n are chosen randomly from the standard uniform
distribution. In standard (SA) and (batch-SA) algorithms, the step length sequence is
{1/√k}, while in (batch-SA), we compute the approximate subgradients using batch
size of 100 samples. In (r-VRSA), the step length sequence is { γ0

k1/2+a }. The parameters
γ0 and a are chosen as γ0 = 20, a = 0 in Example 1 and γ0 = 1, a = 0 in Example 2.
In all instances, the components of x0 ∈ R

n are chosen randomly from the standard
uniform distribution.

Example 1 Set Covering. Demand is assumed to be uniformly distributed on K =
{ζ | ‖ζ −α‖ ≤ α}while the cost of operating a vehicle on route j is given by c j while
β is a cost threshold. By Prop 6, we may rewrite the problem (2) as

minx h(x) � − logE p̃(ξ)[F(x, ξ)], s. t. cT x ≤ β, x ≥ 0, where
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Table 1 Set covering problem. (SAA-IP algorithm is terminated after 10000s)

Problem r-VRSA SAA-IP

B=1e6 B=1e7 B=1e8 B=1e4

f(x) Time f(x) Time f(x) Time f(x) Gap

(1, 10, 9, 10, 5, 170) 0.9840 24s 0.9847 154s 0.9852 821s 0.9852 %0

(2, 14, 16, 8, 3, 46) 0.8341 26s 0.8356 158s 0.8357 1248s 0.8346 %0.4

(3, 18, 23, 16, 7, 250) 0.9325 32s 0.9327 172s 0.9328 1335s 0.9317 %0.2

(4, 23, 54, 40, 20, 530) 0.8255 33s 0.8767 177s 0.8768 1391s 0.8759 %0.8

F(x, ξ) � C(2πσ 2)d/2e−g(x,ξ)+‖ξ‖
2
2

2σ2 , C � 1
Vol(K)

1
Γ (1+d/2) , p̃(ξ) �, 1

(2πσ 2)d/2 e
−‖ξ‖22
2σ2 ,

and, g(x, ξ) � max

{

1
α2 ‖ξ‖2p,

(
max(ξ1,0)
T1,•x−μ1

)2
, · · · ,

(
max(ξd ,0)
Td,•x−μd

)2
}

.

Note ξ is normally distributed with zero mean and standard deviation σ where
σ 2 = α2. We compare the performance of these algorithms for different setups.
In these problems, the network is randomly generated and corresponding incidence
matrix T ∈ R

d×n is obtained. The elements of cost vector c ∈ R
n are randomly

chosen from the uniform distribution on [0, cmax]. We compare the performance and
quality of the solutionswith those obtained via an integer programming approximation
as proposed in [48]. This avenue employs a sample average approximation approach
facilitated by integer programming (denoted by (SAA-IP)), defined as follows:

max
x∈X ,z∈{0,1}N

1

N

N
∑

j=1
z j (SAA-IPN )

subject to Ti,•x ≥ vi , i = 1, . . . , d

vi ≥ ζ
j
i z j , i = 1, . . . , d, j = 1, . . . , N

vi ≥ 0. i = 1, . . . , d

In this formulation, auxiliary variables vi for i = 1, . . . , d represent Ti,•x and z j = 1

(or 0), then the constraints Ti,•x ≥ ζ
j
i for i = 1, . . . , d corresponding to the realization

j in the sample are enforced (or not enforced). We solve this problem using Gurobi
MIP solver [39]. The sample size for SAA-IP scheme is N = 1e4.

To compare across the solutions of various schemes including SA, batch-SA, r-
VRSA, and SAA-IP, we first generate samples of demand vector ζ from the set K =
{ζ | ‖ζ − α‖ ≤ α}. We then use Monte Carlo simulation to estimate f (x) � P{ζ ∈
K | T x ≥ ζ } for the solution x of each scheme. In Table 1, the first column prescribes
problem parameters as follows: (Problem #, d, n, α, cmax, γ ). In SAA-IP scheme, the
Gap refers to the reported gap between upper and lower bounds. Note that the table
shows the probability being maximized.

Example 2 Robust portfolio selection problem. We now consider the robust port-
folio selection problem described in Sect. 1.2. We compare the proposed approach
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Table 2 Portfolio selection

Problem Batch-SA r-VRSA QM

B=1e5 B=1e6 B=1e5 B=1e6 B=1e7 B=1e8 ( f ∗)

(1, 4, 0.25) 0.3730 0.3723 0.3715 0.3712 0.3712 0.3711 0.3710

(2, 16, 0.2) 0.3000 0.2993 0.2976 0.2964 0.2963 0.2961 0.2961

(3, 64, 0.05) 0.3818 0.3752 0.3894 0.3787 0.3751 0.3743 0.3743

(4, 128, 0.15) 0.0899 0.0872 0.0992 0.0886 0.0869 0.0868 0.0867

(5, 256, 0.1) 0.1321 0.0991 0.1340 0.1031 0.0975 0.0972 0.0966

Fig. 1 Comparison of algorithms

with the quadratic minimization (QM) framework [13] through which exact solu-
tions are available. The portfolio weights are restricted to lie in the set X where
X �

{

x | 1T x = 1 and x ≥ 0
}

. The parameter α is set as (α = 0). Given a threshold
α and an allocation x, we use the proposed framework to estimate the probability of

a loss being less or equal than α as fα(x) � P

{

ζ̃ | ζ̃ T x ≤ −α
}

where ζ̃ = ζ + µ.

In our simulations, given the number of assets n, mean μ (randomly generated), and
covariance of random returns Σ , ζ , the random returns, are assumed to be uniformly
distributed over the setKε =

{

ζ ∈ R
n | ζ TΣ−1ζ ≤ 1

}

. In Table 2, Problem column
corresponds to (Problem no., number of assets n, γ ).

In Fig. 1a, the budget is 1e7 and fbest (an approx. of f ∗) is obtained by running
the (r-VRSA) with a budget of 1e11. In Fig. 1b, the budget is 1e6. In both figures, the
standard (SA) algorithm is terminated after 1e5 iterations.
Comments. Several observations can be made. (i) In Example 1, (r-VRSA) obtains
near-optimal solutions within 1-2% of the time taken by (SAA-IP), an integer pro-
gramming approach. (ii) While (batch-SA) performs reasonably in Setting A, it tends
to degenerate in Setting B. Further, convergence theory is unavailable for this scheme.
Such schemes perform less favorably in comparison to (r-VRSA). (iii) (SAA-IP) pro-
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duces solutions of inferior gap as dimension grows and cannot accommodate growing
number of samples, impacting solution quality.

5 Concluding remarks and future work

Traditional approaches for contending with chance-constrained optimimzation prob-
lems have relied on resolving convex approximations or computing stationary points.
We concentrate our efforts on a subclass of such problems that require maximiza-
tion the probability of a suitably specified event. By leveraging a recent result on
non-Gaussian integrals of PHFs, we show that the probability of interest is an expec-
tation of a possibly nonsmooth integrand. It is then shown that the composition of
this expectation with a suitably specified smooth convex function leads to a convex
program. However, a direct application of SA schemes is impeded by the inability
to generate unbiased samples of the gradient. This motivated the development of a
regularized variance-reduced SA scheme (r-VRSA) that matches the optimal rate of
subgradient methods for nonsmooth convex optimization problems but has somewhat
poorer sample complexity, a consequence of the unavailability of conditionally unbi-
ased gradients. We believe that this set of contributions represents amongst the first
avenues (to the best of our knowedge) for tractably resolving probabilitymaximization
problems and is a crucial first step in examining more intricate problems in chance-
constrained optimization. This framework will provide the cornerstone for at least two
key generalizations in our future work.

(i) Extensions to log-concave measures. First, this avenue may be extended to sym-
metric log-concave measures, subsuming Guassian, Laplace, Subbotin, amongst
others. Pathways being exploited include alternative representations of proba-
bility density functions such as the so-called layer cake representation; e.g., see
[47].

(ii) Extensions to chance-constrained regimes. This framework also allows for con-
tending with constrained regimes. Consider the following chance-constrained
problem and its expectation-valued counterpart.

{
min
x∈X

f (x)

subject to P {ζ | ζ ∈ K(x)} ≥ p̄

}

≡
{

min
x∈X

f (x)

subject to ψ (E [F(x, ξ)]) ≤ c̄

}

where c̄ is related to p̄. Assuming that f is a convex function onX , we observe that
the techniques in this paper allow for recasting the chance constrained problem
can be recast as a convex optimization problem with nonsmooth compositional
expectation-valued constraints.

Extensions and generalizations captured in (i) and (ii), while challenging, remain the
focus of future work.

Acknowledgements The authors would like to acknowledge support from NSF CMMI-1538605, EPCN-
1808266, DOE ARPA-E award DE-AR0001076, NIH R01-HL142732, and the Gary and Sheila Bello chair
funds. Preliminary efforts at studying Setting A were carried out in [14]
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6 Appendix

Proof of Theorem 2: (a) When considering uniform distributions over a compact and
convex setK, the density is constant in this set and zero outside the set. It can then
be concluded that ζ has a log-concave density. Furthermore, ζ has a symmetric
density about the origin since K is a symmetric set about the origin. Hence by
Lemma 6.2 in [16], h is convex where h(x) � 1/ f (x). ��

(b) Since (11) is a convex program, any solution x∗ satisfies h(x∗) ≤ h(x), ∀x ∈ X .

From the positivity of f over X , 1
f (x∗) ≤ 1

f (x) for every x ∈ X implying that
f (x∗) ≥ f (x) for every x ∈ X . Consequently, x∗ is a global maximizer of (11).

��
Proof of Lemma 3: We prove this result by showing the unimodality of f onR+ where
f (u) = uce−u , implying that f ′(u) = cuc−1e−u −uce−u = 0 if u = c. Furthermore,
f ′(u) > 0 when u < c and f ′(u) < 0 when u > c. Finally, f (0) = 0. It follows that
u∗ = c is a maximizer of uce−u on [0,∞) where f (c) = cc

ec . ��
Proof of Proposition 2: Recall the definition of F(x, ξ) from the statement of Lemma4.
We prove (a) by considering two cases. Case (i): ξ ∈ Ξ1(x) ∪Ξ0(x). It follows that

|F(x, ξ)|2 = C2K
(

(2π)ne−2|ξT x|2+‖ξ‖2K
)

≤ C2K
(

(2π)ne−2|ξT x|2+|ξT x|2
)

≤ C2K(2π)n .

Case (ii): ξ ∈ Ξ2(x). Proceeding similarly, we obtain that

|F(x, ξ)|2 ≤ C2K
(

(2π)ne−‖ξ‖2K
)

≤ C2K(2π)n .

Consequently, |F(x, ξ)|2 ≤ C2K(2π)n for every ξ ∈ R
n .

(b) We observe that ∂F(x, ξ) is defined as follows.

∂F(x, ξ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎝CK(2π)n/2(−2ξξT x)e−|ξ
T x|2+ ‖ξ‖

2
K

2

⎞

⎠ , ξ ∈ Ξ1(x) �
{

ξ | |ξT x|2 > ‖ξ‖2K
}

⎛

⎝−CK(2π)n/2e
−max{|ξT x|2,‖ξ‖2K}+

‖ξ‖2K
2

⎞

⎠

[

0, 2ξ(ξT x)
]

, ξ ∈ Ξ0(x) �
{

ξ | |ξT x|2 = ‖ξ‖2K
}

0. ξ ∈ Ξ2(x) �
{

ξ | |ξT x|2 < ‖ξ‖2K
}

Consequently, it follows that E p̃
[ ‖G(x, ξ)‖2 ] is bounded as follows.

E

[

‖G(x, ξ)‖2
]

=
∫

Ξ

‖G(x, ξ)‖2 p̃(ξ)dξ

=
∫

Ξ1(x)
‖G(x, ξ)‖2 p̃(ξ)dξ +

∫

Ξ2(x)
‖G(x, ξ)
︸ ︷︷ ︸

= 0

‖2 p̃(ξ)dξ

+
∫

Ξ0(x)
‖G(x, ξ)‖2 p̃(ξ)dξ
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=
∫

Ξ1(x)
‖G(x, ξ)‖2 p̃(ξ)dξ, (33)

where the last equality follows from observing that G(x, ξ) = 0 for ξ ∈ Ξ2(x)
and the integral in (33) is zero because Ξ0(x) is a measure zero set. It follows that
E
[ ‖G(x, ξ)‖2 ] can be bounded as follows:

E

[

‖G(x, ξ)‖2
]

=
∫

Ξ1(x)

(

C2K(2π)n(4‖ξ‖22(ξ T x)2)e−2(ξ
T x)2+‖ξ‖2K

) 1

DK
(2π)−

n
2 e

‖ξ‖2K
2 dξ (34)

≤
∫

Ξ1(x)

(

C2K(2π)n(4‖ξ‖22(ξ T x)2)e−(ξT x)2
) 1

DK
(2π)−

n
2 e

‖ξ‖2K
2 dξ, (35)

where the inequality follows from ξ ∈ Ξ1(x, u). Next, we consider the expression
(ξ T x)2e−(ξT x)2 or ue−u . We note that by Lemma 3, ue−u is a unimodal function and
u∗ = 1 is a maximizer with value e−1. Consequently, we have that

max
{(ξT x)|ξ∈Ξ(x)}

(ξ T x)2e−(ξT x)2 ≤ max
u∈R+

ue−u
Lemma 3≤ 1

e ,

implying that

E[‖G(x, ξ)‖2] ≤
∫

Ξ1(x)

(

C2K(2π)n(‖ξ‖22(ξ T x)2)e−(ξT x)2
)

1
DK (2π)

− n
2 e−

‖ξ‖2K
2 dξ

≤ e−1C2K(2π)n
∫

Ξ1(x)
‖ξ‖22 1

DK (2π)
− n
2 e−

‖ξ‖2K
2 dξ

≤ e−1C2K(2π)n
∫

Rn
‖ξ‖22 1

DK (2π)
− n
2 e−

‖ξ‖2K
2 dξ = e−1C2K(2π)nE p̃

[

‖ξ‖22
]

.

��

Proof of Proposition 3: (a) Since ‖ξ‖2K = ‖ξ‖2p, it follows from Theorem 1 that

f (x) =
∫

Rn

(

C(2πσ 2)
n
2 e−max{|ξT x|2,‖ξ‖2p}

)

dξ

=
∫

Rn

(

C(2πσ 2)
n
2 e
−max{|ξT x|2,‖ξ‖2p}+

‖ξ‖22
2σ 2

)

︸ ︷︷ ︸

�F(x,ξ)

(2πσ 2)
− n
2 e
−‖ξ‖

2
2

2σ 2

︸ ︷︷ ︸

� p̃(ξ)

dξ.

(b) Omitted (similar to proof of Proposition 2(a).
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(c) Next, we derive a bound on the second moment of ‖G(x, ξ)‖ akin to Prop. 2(b).
We observe that ∂F(x, ξ) is defined as

∂F(x, ξ) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝C(2πσ2)n/2(−2ξξT x)e

−|ξT x|2+ ‖ξ‖
2
2

2σ2

⎞

⎟
⎠ , ξ ∈ Ξ1(x) �

{

ξ | |ξT x|2 > ‖ξ‖2p
}

⎛

⎜
⎝−C(2πσ2)n/2e

−max{|ξT x|2,‖ξ‖2p }+
‖ξ‖22
2σ2

⎞

⎟
⎠

[

0, 2ξ(ξT x)
]

, ξ ∈ Ξ0(x) �
{

ξ | |ξT x|2 = ‖ξ‖2p
}

0. ξ ∈ Ξ2(x) �
{

ξ | |ξT x|2 < ‖ξ‖2p
}

Consequently, E
[‖G(x, ξ)‖2] can be bounded as follows.

E

[

‖G(x, ξ)‖2
]

=
∫

Ξ

‖G(x, ξ)‖2 p̃(ξ)dξ

=
∫

Ξ1(x)
‖G(x, ξ)‖2 p̃(ξ)dξ +

∫

Ξ2(x)
‖G(x, ξ)
︸ ︷︷ ︸

= 0

‖2 p̃(ξ)dξ

+
∫

Ξ0(x)
‖G(x, ξ)‖2 p̃(ξ)dξ

=
∫

Ξ1(x)
‖G(x, ξ)‖2 p̃(ξ)dξ, (36)

where the last equality follows from observing that G(x, ξ) = 0 for ξ ∈ Ξ2(x) and
the integral in (36) is zero because Ξ0(x) is a measure zero set. It follows that

E[‖G(x, ξ)‖2] =
∫

Ξ1(x)

(

C2(2πσ 2)n(4‖ξ‖22(ξ T x)2)e−2(ξ
T x)2+‖ξ‖

2
2

σ 2

)

(2πσ 2)
− n
2 e
−‖ξ‖22
2σ 2 dξ

≤
∫

Ξ1(x)

(

C2(2πσ 2)n(4‖ξ‖22(ξ T x)2)e−2(ξ
T x)2+‖ξ‖2p

)

(2πσ 2)
− n
2 e
−‖ξ‖22
2σ 2 dξ (37)

≤
∫

Ξ1(x)

(

C2(2πσ 2)n(4‖ξ‖22(ξ T x)2)e−(ξT x)2
)

(2πσ 2)
− n
2 e
−‖ξ‖22
2σ 2 dξ, (38)

where (38) follows from ξ ∈ Ξ1(x) and (37) follows from

‖ξ‖22
σ 2 ≤ ‖ξ‖2p, where σ 2 =

{

n1/2−1/p, p ≥ 2

1. 1 ≤ p < 2

We may then conclude that

E[‖G(x, ξ)‖2] ≤
∫

Ξ1(x)

(

C2(2πσ 2)n(‖ξ‖22(ξ T x)2)e−(ξT x)2
)

(2πσ 2)
− n
2 e−

‖ξ‖22
2σ2 dξ

≤ e−1C2(2πσ 2)n
∫

Ξ1(x)

(

‖ξ‖2
)

(2πσ 2)−
n
2 e
−‖ξ‖

2
2

2σ 2 dξ
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≤ e−1C2(2πσ 2)n
∫

Rn

(

‖ξ‖22
)

(2πσ 2)−
n
2 e
−‖ξ‖

2
2

2σ 2 dξ = e−1C2(2πσ 2)nE
[

‖ξ‖2
]

.

(39)

where (39) follows from Lemma 3. ��
Proof of Lemma 6: Suppose (x, y) is feasible with respect to (PM2

A,ext). Then x ∈ X
and is therefore feasible with (PME

A). In addition,

f (x) � P

{

ζ ∈ R
n
∣
∣
∣ ζ ∈ KE ,

∣
∣
∣ζ

T x
∣
∣
∣ ≤ 1

}

= P

{

ζ

∣
∣
∣ ζ

TUTΣ−1Uζ ≤ 1,
∣
∣
∣ζ

T x
∣
∣
∣ ≤ 1

}

= P

{

ζ ∈ R
n
∣
∣
∣ ‖Σ−1/2Uζ‖22 ≤ 1,

∣
∣
∣ζ

T x
∣
∣
∣ ≤ 1

}

= P

{

UTΣ1/2η ∈ R
n
∣
∣
∣ ‖η‖22 ≤ 1,

∣
∣
∣(UTΣ1/2η)T x

∣
∣
∣ ≤ 1

}

= P

{

UTΣ1/2η ∈ R
n
∣
∣
∣ ‖η‖22 ≤ 1,

∣
∣
∣η

TΣ1/2Ux
∣
∣
∣ ≤ 1

}

= P

{

η ∈ R
n
∣
∣
∣ η ∈ K2

∣
∣
∣ η

TΣ1/2Ux
∣
∣
∣ ≤ 1

}

� g(x).

��
Proof of Proposition 6: (a) The result follows by a transformation argument. We define
a new variable ζ̃ ∈ K̃ such that ζ̃ � ζ − μ where K̃ � {ζ̃ : ‖ζ̃‖p ≤ α}. The set K̃(x)
can be defined as the following

K̃(x) =
{

ζ̃

∣
∣
∣ ζ̃ ∈ K̃

} ⋂ {

ζ̃

∣
∣
∣ ζ̃ ≤ T x − μ

}

.

We first show that ζ ∈ K(x) if and only if ζ̃ ∈ K̃(x). Suppose ζ ∈ K(x). Then
ζ ∈ K and c(x, ζ ) = T x − ζ ≥ 0. If ζ ∈ K, then ‖ζ − μ‖p ≤ α or ‖ζ̃‖p ≤ α where
ζ̃ = ζ −μ. Furthermore, T x ≥ ζ can be rewritten as T x−μ ≥ ζ −μ or T x−μ ≥ ζ̃ .
It follows that

ζ̃ ∈ K̃(x) =
{

ζ̃

∣
∣
∣ ζ̃ ∈ K̃

} ⋂ {

ζ̃

∣
∣
∣ T x − μ ≥ ζ̃

}

.

The reverse direction follows similarly. Consequently, P {ζ | ζ ∈ K(x) } = P
{

ζ̃

∣
∣
∣ ζ̃ ∈ K̃(x)

}

. We now analyze the latter probability. It may be observed that

the Minkowski functional associated with K̃ is given by ‖ζ̃‖K̃ = 1
α
‖ζ̃‖p. Since

Ti,•x − μi ≥ δ > 0 for i = 1, . . . , d, it follows that

K̃(x) =
{

ζ̃

∣
∣
∣
1
α
‖ζ̃‖p ≤ 1

}
⋂

{

ζ̃

∣
∣
∣
∣
∣

d
⋂

i=1
max{ζ̃i ,0}
Ti,•x−μi

≤ 1

}

=
{

ζ̃

∣
∣
∣

1
α2 ‖ζ̃‖2p ≤ 1

}
⋂

{

ζ̃

∣
∣
∣
∣
∣

d
⋂

i=1

(
max{ζ̃i ,0}
Ti,•x−μi

)2 ≤ 1

}
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=
{

ζ̃

∣
∣
∣
∣
max

{

1
α2 ‖ζ̃‖2p,

(
max{ζ̃1,0}
T1,•x−μ1

)2
, · · · ,

(
max{ζ̃d ,0}
Td,•x−μd

)2
}

≤ 1

}

.

Since gi (x, ζ̃ ) �
(
max{ζ̃i ,0}
Ti,•x−μi

)2
for i = 1, . . . , d and gd+1(x, ζ̃ ) � 1

α2 ‖ζ̃‖2p are PHFs
with degree 2, then g(x, ζ̃ ) � max{g1(x, ζ̃ ), . . . , gd+1(x, ζ̃ )} is positively homoge-
neous with degree 2. By selecting h(ζ ) = 1 andΛ = K̃(x), we may invoke Lemma 2,
leading to the following equality.

f (x) =
∫

K̃(x)
1 d ζ̃ = 1

Vol(K)

1

Γ (1+ d/2)

∫

Rd
e−g(x,ξ) dξ. (40)

The Eq. (40) can be rewritten as

f (x) =
∫

Rd

(

C(2πσ 2)d/2e−g(x,ξ)+‖ξ‖
2
2

2σ2

)

︸ ︷︷ ︸

�F(x,ξ)

(

1
(2πσ 2)d/2 e

−‖ξ‖
2
2

2σ 2

)

︸ ︷︷ ︸

�p(ξ)

dξ

=
∫

Rd
F(x, ξ) p̃(ξ) dξ = C E p̃(ξ)[F(x, ξ)], where C � 1

Vol(K)
1

Γ (1+d/2) ,

(b) Omitted (similar to proof of Lemma 8 (a)).
(c) When K satisfies Assumption 2, the proof of Lemma 8(b) requires slight modifi-
cation. Suppose F(x, ξ) and p(ξ) are defined as in (a). Then we may define ∂F(x, ξ)

as

∂F(x, ξ) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

C(2πσ 2)d/2 2(max{ξi ,0})2T T
i,•

(Ti,•x−μi )
3 e−gi (x,ξ)+‖ξ‖

2
2

2σ2

)

, ξ ∈ Ξi (x), i = 1, · · · , d
(

−C(2πσ 2)d/2e−g(x,ξ)+‖ξ‖
2
2

2σ2

)

H(x, ξ), ξ ∈ Ξ0(x)

0. ξ ∈ Ξd+1(x),

where H(x, ξ) denotes the Clarke generalized gradient of g(x, ξ), defined as in (17).
Consequently, it follows that E

[‖G(x, ξ)‖2] is bounded as follows.

E

[

‖G(x, ξ)‖2
]

=
∫

Rd
‖G(x, ξ)‖2 p̃(ξ)dξ

=
d
∑

i=1

∫

Ξi (x)
‖G(x, ξ)‖2 p̃(ξ)dξ +

∫

Ξd+1(x)
‖G(x, ξ)
︸ ︷︷ ︸

= 0

‖2 p̃(ξ)dξ

+
∫

Ξ0(x)
‖G(x, ξ)‖2 p̃(ξ)dξ

=
d
∑

i=1

∫

Ξi (x)
‖G(x, ξ)‖2 p̃(ξ)dξ, (41)
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where the last equality follows from observing that G(x, ξ) = 0 for ξ ∈ Ξd+1(x) and
the integral in (41) is zero because Ξ0(x) is a measure zero set. It follows that

E
[‖G(x, ξ)‖2]

=
d
∑

i=1

∫

Ξi (x)
4C2(2πσ 2)d

‖Ti,•‖2
(Ti,•x − μi )2

(
ξk

Ti,•x − μi

)4

e
− 2(ξi )

2

(Ti,•x−μi )
2 +

‖ξ‖22
σ2

(

1
(2πσ 2)d/2 e

−‖ξ‖
2
2

2σ 2

)

dξ,

≤
d
∑

i=1

∫

Ξi (x)
4C2(2πσ 2)d

‖Ti,•‖2
δ2

(
ξk

Ti,•x − μi

)4

e
− 2(ξi )

2

(Ti,•x−μi )
2 +

‖ξ‖22
σ2

(

1
(2πσ 2)d/2 e

−‖ξ‖
2
2

2σ 2

)

dξ

≤
d
∑

i=1

∫

Ξi (x)
4C2(2πσ 2)d

‖Ti,•‖2
δ2

(
ξi

Ti,•x − μi

)4

e
−
(

2− α2

σ 2

)

(ξi )
2

(Ti,•x−μi )
2

(

1
(2πσ 2)d/2

−‖ξ‖
2
2

2σ 2

)

dξ

where the first inequality follows from Ti,•x − μi ≥ δ > 0 for all i , and the second
inequality follows from ξ ∈ Ξi (x). It follows from Lemma 3 that given any α, by
choosing the variance σ 2 of the random variable ξ such that σ 2 = α2 leads to the

bound E
[‖G(x, ξ)‖2] ≤ 16C2(2πσ 2)d

∑d
i=1

‖Ti,•‖2
δ2e2

. ��

Proof of Lemma 10: If G̃(xk, ξ) � G(xk, ξ) − E[G(xk, ξ)], by the conditional inde-
pendence of G̃(xk, ξ j ) and G̃(xk, ξ�) for j �= �, we have

E

[

‖w̄G,k‖2 | Fk

]

= 1

N 2
k

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥

Nk∑

j=1
G̃(xk, ξ j )

∥
∥
∥
∥
∥
∥

2 ∣
∣
∣
∣
Fk

⎤

⎥
⎦

= 1

N 2
k

E

⎡

⎣

⎡

⎣

Nk∑

j=1
‖G̃(xk, ξ j )‖2 +

∑

� �= j

2G̃(xk, ξ�)
T G̃(xk, ξ j )

⎤

⎦

∣
∣
∣
∣
Fk

⎤

⎦

= 1

Nk

(

E

[

‖G(xk, ξ)‖2 |Fk

]

+‖E [G(xk, ξ) |Fk ] ‖2 − 2E [G(xk, ξ) |Fk ]
T
E [G(xk, ξ) |Fk ]

)

= 1

Nk

(

E

[

‖G(xk, ξ)‖2 |Fk

]

− ‖E [G(xk, ξ) |Fk ] ‖2
)

≤ 1

Nk
E

[

‖G(xk, ξ)‖2 | Fk

]

. (42)

123



I. E. Bardakci et al.

By (42) and Prop. 2,E
[‖w̄G,k‖2 |Fk

] ≤ C2
K(2π)n

eNk
E p̃
[‖ξ‖2] for Setting A. Similarly,

for Setting B, by Lemma. 8,

E[‖w̄G,k‖2 | Fk] ≤ 16C2(2πσ 2)d
d
∑

i=1

‖Ti,•‖2
δ2e2Nk

.

In addition, for Setting A, E
[‖w̄ f ,k‖2 |Fk

] ≤ 2(C2
K(2π)n+1)

Nk
while for Setting B, we

obtain that E
[ ‖w̄ f ,k‖2 |Fk

] ≤ C2(2πσ 2)d

Nk
. ��

Proof of Lemma 11: (Setting A) Consider w̄k , where w̄k is defined as w̄k �
−(Gk+w̄G,k )

( f (xk )+w̄ f ,k )
2+εk

− −Gk
( f (xk ))2

. We have that

‖w̄k‖2 =
∥
∥
∥
∥

−(Gk + w̄G,k)

( f (xk)+ w̄ f ,k)2 + εk
− −Gk

( f (xk))2

∥
∥
∥
∥

2

=
∥
∥
∥
∥

−(Gk + w̄G,k)

( f (xk)+ w̄ f ,k)2 + εk
− −(Gk + w̄G,k)

( f (xk))2 + εk
+ −(Gk + w̄G,k)

( f (xk))2 + εk

− −Gk

( f (xk))2 + εk
+ −Gk

( f (xk))2 + εk
− −Gk

( f (xk))2

∥
∥
∥
∥

2

≤ 3
∥
∥Gk − Gk + w̄G,k

∥
∥2

1

(( f (xk))2 + εk)2

+ 3
∥
∥Gk + w̄G,k

∥
∥2
∥
∥
∥
∥

1

( f (xk))2 + εk
− 1

( f (xk)+ w̄ f ,k)2 + εk

∥
∥
∥
∥

2

+ 3 ‖Gk‖2
∥
∥
∥
∥

1

( f (xk))2
− 1

( f (xk))2 + εk

∥
∥
∥
∥

2

≤ 3
∥
∥w̄G,k

∥
∥2

1

(( f (xk))2 + εk)2

+ 3
∥
∥Gk + w̄G,k

∥
∥2
∥
∥
∥
∥

(2 f (xk)+ w̄ f ,k)w̄ f ,k

(( f (xk))2 + εk)(( f (xk)+ w̄ f ,k)2 + εk)

∥
∥
∥
∥

2

+ 3 ‖Gk‖2
∥
∥
∥
∥

εk

( f (xk))2(( f (xk))2 + εk)

∥
∥
∥
∥

2

≤ 3
∥
∥w̄G,k

∥
∥2

1

ε4f
+ 3

∥
∥Gk + w̄G,k

∥
∥2

∥
∥
∥
∥
∥

(2 f (xk)+ w̄ f ,k)

ε2f εk

∥
∥
∥
∥
∥

2

‖w̄ f ,k‖2 + 3 ‖Gk‖2
(

ε2k

ε8f

)

≤ 3
∥
∥w̄G,k

∥
∥2

1

ε4f
+ 3

∥
∥Gk + w̄G,k

∥
∥2

(8 f 2(xk)‖w̄ f ,k‖2 + 2‖w̄ f ,k‖4)
ε4f ε

2
k

+ ‖Gk‖2
(

ε2k

ε8f

)

,

where f (xk) ≥ ε f for every xk ∈ X . Taking conditional expectations and recalling
the independence of w̄ f ,k and w̄G,k conditional on Fk , the following bound emerges.

E

[

‖w̄k‖2
∣
∣
∣
∣
Fk

]

≤ 3E

[
∥
∥w̄G,k

∥
∥2
∣
∣
∣
∣
Fk

]
1

ε2f
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+ 3E

[

∥
∥Gk + w̄G,k

∥
∥2

(8 f 2(xk)‖w̄ f ,k‖2 + 2‖w̄ f ,k‖4)
ε4f ε

2
k

∣
∣
∣
∣
Fk

]

+ 3E

[

‖Gk‖2
(

ε2k

ε8f

) ∣
∣
∣
∣
Fk

]

≤ 3
ν2G

ε2f Nk
+ 3E

[
∥
∥Gk + w̄G,k

∥
∥2
∣
∣
∣
∣
Fk

]

E

[

(8 f 2(xk)‖w̄ f ,k‖2 + 2‖w̄ f ,k‖4)
ε4f ε

2
k

∣
∣
∣
∣
Fk

]

+
(

3ε2k M
2
G

ε8f

)

≤ 3
ν2G

ε2f Nk
+ 3M2

G

8 f 2(xk)ν2f
ε4f ε

2
k Nk

+ 3M2
GE

[

‖w̄ f ,k‖4
ε4f ε

2
k

∣
∣
∣
∣
Fk

]

+ 3

(

ε2k M
2
G

ε8f

)

,

where ‖Gk‖2 = ‖E [G(xk, ξ) |Fk ] ‖2 ≤ E
[‖G(xk, ξ)‖2 | Fk

] ≤ M2
G by Jensen’s

inequality. From Prop. 2(b,c), |F(x, ξ)| ≤ MF for any x, ξ , implying that

‖w̄ f ,k‖2 =
∥
∥
∥
∥
∥

∑Nk
j=1 F(xk, ξ j )

Nk
− f (xk)

∥
∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥
∥

∑Nk
j=1 F(xk, ξ j )

Nk

∥
∥
∥
∥
∥

2

+ 2 f 2(xk)

≤ 2(MF
2 + 1).

Consequently, by recalling that εk = 1/N 1/4
k , the following holds a.s.

E

[

‖w̄k‖2
∣
∣
∣
∣
Fk

]

≤ 3ν2G
ε2f Nk

+ 24M2
G

f 2(xk)ν2f
ε4f ε

2
k Nk

+ 3E

[

‖w̄ f ,k‖4
ε4f ε

2
k

∣
∣
∣
∣
xk

]

+
(

ε2k M
2
G

ε8f

)

≤ ν2G

ε2f Nk
+ 24M2

G

f 2(xk)ν2f
ε4f ε

2
k Nk

+ 6(MF
2 + 1)M2

Gν2f

ε4f ε
2
k Nk

≤ 3ν2G
ε2f
√
Nk
+ M2

G

24 f 2(xk)ν2f
ε4f
√
Nk

+ 6(M2
F + 1)ν2f

ε4f
√
Nk

+
(

3M2
G

ε8f
√
Nk

)

� ν2√
Nk

, where ν2 �
3ν2G
ε2f

+ M2
G

24ν2f
ε4f

+ 6(MF
2 + 1)ν2f
ε4f

+
(

3M2
G

ε8f

)

.

(Setting B) Since w̄k � −(Gk+w̄G,k )

( f (xk)+w̄ f ,k )+εk
+ Gk

f (xk )
and

‖w̄k‖2 =
∥
∥
∥
∥

−(Gk + w̄G,k)

( f (xk)+ w̄ f ,k)+ εk
− −Gk

( f (xk))

∥
∥
∥
∥

2

=
∥
∥
∥
∥

−(Gk + w̄G,k)

( f (xk)+ w̄ f ,k)+ εk
− −(Gk + w̄G,k)

f (xk)+ εk
+ −(Gk + w̄G,k)

f (xk)+ εk

− −Gk

f (xk)+ εk
+ −Gk

f (xk)+ εk
− −Gk

f (xk)

∥
∥
∥
∥

2

≤ 3
∥
∥Gk − Gk + w̄G,k

∥
∥2

1

( f (xk)+ εk)2
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+ 3
∥
∥Gk + w̄G,k

∥
∥
2
∥
∥
∥
∥

1

f (xk)+ εk
− 1

( f (xk)+ w̄ f ,k)+ εk

∥
∥
∥
∥

2

+ 3 ‖Gk‖2
∥
∥
∥
∥

1

f (xk)
− 1

f (xk)+ εk

∥
∥
∥
∥

2

≤ 3
∥
∥w̄G,k

∥
∥
2 1

( f (xk)+ εk)2
+ 3

∥
∥Gk + w̄ f ,k

∥
∥
2

∥
∥
∥
∥
∥
∥
∥
∥
∥

w̄ f ,k

( f (xk)+ εk)(( f (xk)+ w̄ f ,k)
︸ ︷︷ ︸

≥0,F(xk ,ξ)≥0
+εk)

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+ 3 ‖Gk‖2
∥
∥
∥
∥

εk

f (xk)( f (xk)+ εk)

∥
∥
∥
∥

2

≤ 3
∥
∥w̄G,k

∥
∥2

1

ε2f
+ 3

∥
∥Gk + w̄G,k

∥
∥2
∥
∥
∥
∥

1

ε f εk

∥
∥
∥
∥

2

‖w̄ f ,k‖2 + 3 ‖Gk‖2
(

ε2k

ε4f

)

≤ 3
∥
∥w̄G,k

∥
∥2

1

ε2f
+ 3

∥
∥Gk + w̄G,k

∥
∥2
‖w̄ f ,k‖2

ε2f ε
2
k

+ ‖Gk‖2
(

ε2k

ε4f

)

,

where f (xk) ≥ ε f and for every xk ∈ X . Taking expectations conditioned on Fk and
recalling the independence of w̄ f ,k and w̄G,k conditional onFk , we have the following
bound.

E

[

‖w̄k‖2
∣
∣
∣
∣
Fk

]

≤
(

3E

[
∥
∥w̄G,k

∥
∥
2
∣
∣
∣
∣
Fk

]
1

ε2f

+3E
[

∥
∥Gk + w̄G,k

∥
∥2
‖w̄ f ,k‖2

ε2f ε
2
k

∣
∣
∣
∣
Fk

]

+ 3E

[

‖Gk‖2
(

ε2k

ε4f

) ∣
∣
∣
∣
Fk

])

≤
(

3
ν2G

ε2f Nk
+ 3E

[
∥
∥Gk + w̄G,k

∥
∥2
∣
∣
∣
∣
Fk

]

E

[

‖w̄ f ,k‖2
ε2f ε

2
k

∣
∣
∣
∣
Fk

]

+ 3

(

ε2k M
2
G

ε4f

))

≤
(

3
ν2G

ε2f Nk
+ 3M2

G

ν2f

ε2f ε
2
k Nk

+ 3

(

ε2k M
2
G

ε4f

))

.

By selecting εk = 1/N 1/4
k , we have that

E

[

‖w̄k‖2
∣
∣
∣
∣
Fk

]

≤ ν2√
Nk

, where ν2 �
(

3
ν2G

ε2f
+ 3M2

G

ν2f

ε2f
+ 3

(

M2
G

ε4f

))

.

��
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Proof of Proposition 7: (i) Using the update rule of xk+1 and the fact that x∗ = ΠX [x∗],
for any dk + w̄k where dk ∈ ∂h(xk) and k ≥ 1,

1

2
‖xk+1 − x∗‖2=1

2
‖ΠX (xk − γk(dk + w̄k))−ΠX (x∗))‖2

≤ 1

2
‖xk − γk(dk + w̄k)− x∗‖2

= 1

2
‖xk − x∗‖2 + 1

2
γ 2
k ‖dk + w̄k‖2 − γk(xk − x∗)T (dk + w̄k),

where in the second inequality, we employ the non-expansivity of projection operator.
Now by using the convexity of h, we obtain:

2γk(h(xk)− h(x∗)) ≤
(

‖xk − x∗‖2 − ‖xk+1 − x∗‖2
)

+ ‖dk + w̄k‖2γ 2
k

− 2γkw̄
T
k (xk − x∗)

≤
(

‖xk − x∗‖2 − ‖xk+1 − x∗‖2
)

+ ‖dk + w̄k‖2γ 2
k

+ γ 2
k ‖xk − x∗‖2 + ‖w̄k‖2,

where we use aT b ≤ 1
2‖a‖2+ 1

2‖b‖2. Now by summing from k = K̂ to K −1, where
K̂ is an integer satisfying 0 ≤ K̂ < K − 1, we obtain the next inequality.

K−1
∑

k=K̂

2γk(h(xk)− h(x∗)) ≤ ‖xK̂ − x∗‖2 +
K−1
∑

k=K̂

γ 2
k (‖dk + w̄k‖2 + ‖xk − x∗‖2)+ ‖w̄k‖2.

Dividing both sides by 2
∑K−1

k=K̂
γk , taking expectations on both sides, and invoking

Lemma 11 which leads to E[‖w̄k | Fk‖]2 ≤ ν2√
Nk

and the bound of the subgradient,

i.e., E[‖dk + w̄k‖2] ≤ M2
G , we obtain the following bound.

E

[∑K−1
k=K̂

2γk(h(xk)− h(x∗))
∑K−1

k=K̂
2γk

]

≤ E

[‖xK̂ − x∗‖2 +∑K−1
k=K̂

γ 2
k ‖dk + w̄k‖2 +∑K−1

k=K̂
γ 2
k ‖xk − x∗‖2 +∑K−1

k=K̂
‖w̄k‖2

∑K−1
k=K̂

2γk

]

(43)

≤ E[‖xK̂ − x∗‖2]
∑K−1

k=K̂
2γk

+
∑K−1

k=K̂
γ 2
k (M2

G + B2)
∑K−1

k=K̂
2γk

+
∑K−1

k=K̂
ν2√
Nk

∑K−1
k=K̂

2γk
. (44)

By utilizing Jensen’s inequality, we obtain that

E
[

(h(x̄ K̂ ,K − h(x∗))
] ≤ E

[∑K−1
k=K̂

2γk(h(xk)− h(x∗))
∑K−1

k=K̂
2γk

]

,
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where x̄ K̂ ,K �
∑K−1

k=K̂
γk xk

∑K−1
k=K̂

γk
, which when combined with (44) leads to (30). ��
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