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Based on the concept of lacunary statistical convergence of sequences of fuzzy numbers, the lacunary statistical convergence,
uniformly lacunary statistical convergence, and equi-lacunary statistical convergence of double sequences of fuzzy-valued functions
are defined and investigated in this paper. ,e relationship among lacunary statistical convergence, uniformly lacunary statistical
convergence, equi-lacunary statistical convergence of double sequences of fuzzy-valued functions, and their representations of
sequences of α-level cuts are discussed. In addition, we obtain the lacunary statistical form of Egorov’s theorem for double sequences
of fuzzy-valued measurable functions in a finite measurable space. Finally, the lacunary statistical convergence in measure for double
sequences of fuzzy-valued measurable functions is examined, and it is proved that the inner and outer lacunary statistical con-
vergence in measure are equivalent in a finite measure set for a double sequence of fuzzy-valued measurable functions.

1. Introduction

Fast [1] initiated statistical convergence for a real sequence.
After the work of Fridy [2] and Šalát [3], it became a
noteworthy topic in summability theory. Mursaleen and
Edely [4] examined the statistical convergence via double
sequences.

Various types of convergence for sequences of functions,
such as pointwise, equi-statistical (or ideal), and uniform
convergence, were originated by Balcerzak et al. [5].
Pointwise and uniform statistical convergence of double
sequences was studied by Gökhan et al. [6].

Additionally, Duman and Orhan [7] studied conver-
gence in μ-density and μ-statistical convergence of se-
quences of functions and presented the notions of
μ-statistical pointwise convergence and μ-statistical uniform
convergence.

Lacunary statistical convergence was firstly studied by
Fridy and Orhan [8]. In [9], lacunary statistical convergence
via double sequence was investigated.

Zadeh [10] initiated the notion of fuzzy sets. ,e pub-
lication of the paper affected deeply all the scientific fields.
,is notion is significant for real-life conditions, but has no

adequate solution to some problems. Such problems lead to
new quests. Matloka [11] identified ordinary convergence of
a sequence of fuzzy numbers. Nanda [12] examined the
seqeuences with fuzzy numbers. Negoita [13] gave the
Hausdorff distance between two fuzzy numbers. Statistical
convergence by utilizing fuzzy numbers was given by Nuray
and Savaş [14]. Savaş and Mursaleen [15] investigated sta-
tistical convergent double sequences via fuzzy numbers. By
using fuzzy numbers, Aytar and Pehlivan [16] defined the
statistical convergence of sequences. Pointwise statistical
convergence sequences of fuzzy mappings studied by Altin
et al. [17]. Some beneficial results on this topic can be found
in [18–32].

In recent times, Gong et al. studied statistical conver-
gence, equi-statistical convergence, and uniformly statistical
convergence for sequences of fuzzy-valued functions. ,ese
concepts were extended to the double sequences by Hazarika
et al. Kişi and Dündar examined lacunary statistical con-
vergence in measure for sequences of fuzzy-valued functions
and established noteworthy results.

According to Zadeh [10], a fuzzy subset of T is a
nonempty subset t, w(t): t ∈ T{ } of T × J(� [0, 1]) for some
function w: T⟶ J(� [0, 1]). A function w: R⟶ J(�
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[0, 1]) is called a fuzzy number if the function w holds the
following properties:

(i) w is convex, i.e., w(t) ≥w(s)Λw(r) � min w(s),{

w(r)}, where s< t< r

(ii) w is normal, i.e., there exists an t0 ∈ R such that
w(t0) � 1

(iii) w is upper semicontinuous, i.e., for every ε> 0,
w− 1((0, a + ε]), for all a ∈ [0, 1] is open in the usual
topology of R

(iv) [w]0 � cl( t ∈ R: w(t){ }≥ 0) is compact, where cl is
the closure operator

We indicate the set of all fuzzy numbers by F(R). ,e set
R of real numbers can be included in F(R) if we take
r ∈ F(R) by

r(t) �
1, if t � r,

0, if t≠ r.
􏼨 (1)

For 0< α≤ 1, α-cut of w is given by [w]α � t ∈ R:{

w(t)≥ α} � [w−
α , w+

α] which is a closed bounded interval of
R. As in [13], the Hausdorff distance between two fuzzy
numbers w and q is denoted by D: F(R) × F(R)⟶
[0,∞):

D(w, q) � sup
α∈[0,1]

d [w]α, [q]α( 􏼁

� sup
α∈[0,1]

max w
−
α − w

+
α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, q

−
α − q

+
α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯,

(2)

where d is the Hausdorff metric.
For K ⊂ N and j ∈ N, δj(K) is named jth partial density

of K if

δj(K) �
|K∩ 1, 2, . . . , j􏼈 􏼉|

j
. (3)

If

δ(K) � lim
n⟶∞

1
n

| k≤ n: k ∈ K{ }| i.e., δ(K) � lim
j⟶∞

δj(K)􏼠 􏼡,

(4)

exists, it is named the natural density of K. Ψ � K ⊂ N:{

δ(K) � 0} is denoted the zero density set.
A sequence of fuzzy numbers (xn) is called to be sta-

tistically convergent to a fuzzy number x0 if for every ε> 0,
δ( n ∈ N: D(xn, x0)≥ ε􏼈 􏼉) � 0, i.e., n ∈ N: D(xn, x0)≥ ε􏼈 􏼉

∈ Ψ. It is demonstrated by st − limxn � x0 or xn⟶
st

x0,
(n⟶∞).

Let A ⊂ N and r ∈ N. δr
θ(A) is named the rth partial

lacunary density of A if

δr
θ(A) �

A∩ Ir

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

hr

, (5)

where Ir � (kr− 1, kr].
,e number δθ(A) is denoted as the lacunary density

(θ-density) of A if

δθ(A) � lim
r⟶∞

1
hr

k ∈ Ir: k ∈ A􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 i.e., δθ(A) � lim
r⟶∞

δr
θ(A)􏼒 􏼓,

(6)

exists. Also, Λ � A ⊂ N: δθ(A) � 0􏼈 􏼉 is called to be zero
density set.

A SFVF (hm) is pointwise lacunary statistically con-
vergent to FVF h on [a, b], denoted by pSθ − limhm(z) �

h(z) or hm⟶p Sθ h; if for each z ∈ [a, b] and all ε> 0 there
exists Tz ∈ Λ such that, for all m ∈ N∖Tz, we get
D(hm(z), h(z)) < ε. It is obvious that hm⟶p Sθ h if for
every z ∈ [a, b] and all ε> 0, δθ( m ∈ N: D(hm(z),􏽮

h(z)) ≥ ε}) � 0. Here, h is named the lacunary statistical limit
function of (hm).

Some definitions and significant results about lacunary
statistical convergence in measure for sequences of fuzzy-
valued functions were given in.

A double sequence θ2 � (kr, ju)􏼈 􏼉 is named lacunary
sequence if there exist two increasing sequences of integers
(ku) and (ju) such that

k0 � 0, hr � kr − kr− 1⟶∞,

j0 � 0, hu � ju − ju− 1⟶∞,

r, u⟶∞.

(7)

We use the following symbols in the sequel:

kru � krju,

hru � hrhu,

Iru � (k, j): kr− 1 < k≤ kr and ju− 1 < j≤ ju􏼈 􏼉,

qr �
kr

kr− 1
,

qu �
ju

ju− 1
,

qur � quqr.

(8)

In the paper, by θ2 � (kr, ju)􏼈 􏼉, we will indicate a double
lacunary sequence of positive real numbers.

In this article, we proposed the concepts of lacunary
statistical convergence, uniformly lacunary statistical con-
vergence, and equi-lacunary statistical convergence for
double sequences of fuzzy-valued functions and proved
some classical results in this new setting and their repre-
sentations of sequences of α-level cuts. We proved lacunary
statistical form of Egorov’s theorem for double sequences of
fuzzy-valued measurable functions defined on a finite
measure space (Ω,M, μ). Finally, we define the notion of
lacunary statistical convergence in measure for double se-
quences of fuzzy-valued measurable functions and prove
some interesting results. Our results were emphasized with
examples.
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2. Main Results

In the section, we presume that h: [a, b]⟶ F(R) and
hmn: [a, b]⟶ F(R) are the fuzzy-valued function and a
double sequence of fuzzy-valued functions for all m, n ∈ N.
We indicate FVF and DSFVF in place of fuzzy-valued
function and double sequence of fuzzy-valued functions.

Definition 1. Let T ⊂ N × N and r, u ∈ N. δru
θ2

(T) is called the
ruth partial lacunary density of T if

δru
θ2 (T) �

T∩ Iru

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

hru

. (9)

,e number δθ2(T) is named the lacunary density or
θ2-density of T if

δθ2(T) � lim
r,u⟶∞

1
hru

(k, j) ∈ Iru: (k, j) ∈ T􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

· i.e., δθ2(T) � lim
r,u⟶∞

δru
θ2

(T)􏼒 􏼓

(10)

exists. Additionally,

Λ2 � T ⊂ N × N: δθ2(T) � 0􏽮 􏽯 (11)

is named to be zero density set.

Definition 2. We call that a DSFVF (hmn) is pointwise
lacunary statistically convergent to FVF h on [a, b], indi-
cated by

pSθ2 − limhmn(z) � h(z) or hmn⟶
p

Sθ2 h, (12)

if for every z ∈ [a, b] and for all ε> 0 there exists Tz ∈ Λ2
such that, for all (m, n) ∈ N × N∖Tz, we have

D hmn(z), h(z)􏼐 􏼑< ε. (13)

It is obvious that hmn⟶p Sθ2 h if for every z ∈ [a, b]

and for each ε> 0

δθ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑 � 0. (14)

Definition 3. We call that a DSFVF (hmn) is uniformly
lacunary statistically convergent to FVF h on [a, b], denoted

by uSθ2 − limhmn(z) � h(z) on [a, b], or hmn⇉
uSθ2

h, if for each
ε> 0 there exists T ∈ Λ2 such that, for all (m, n) ∈ N × N∖T,
we obtain

D hmn(z), h(z)􏼐 􏼑< ε, (15)

which provides for all z ∈ [a, b]. It is obvious that hmn ⇉
uSθ2

h

if, for all ε> 0,

δθ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑 � 0, (16)

for all z ∈ [a, b].

Remark 1. If hmn⇉
uSθ2

h, then hmn⟶p Sθ2 h.

Remark 2. hmn⇉
uSθ2

h iff supz∈[a,b]D(hmn(z), h(z))⟶p Sθ2 0.

Proof. Assume that supz∈[a,b]D(hmn(z), h(z))⟶
pSθ2 0. ,en,

for each z ∈ [a, b] and for every ε> 0, we have
D(hmn(z), h(z))≤ supz∈[a,b]D(hmn(z), h(z)) so that

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε,∀z ∈ [a, b]􏽮 􏽯

⊆ (m, n) ∈ N × N: sup
z∈[a,b]

D hmn(z), h(z)􏼐 􏼑≥ ε
⎧⎨

⎩

⎫⎬

⎭.
(17)

Hence, hmn⇉
uSθ2

h.

Next, suppose that hmn⇉
uSθ2

h on [a, b]. For every ε> 0, we
write

A1 � (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε,∀z ∈ [a, b]􏽮 􏽯,

A2 � (m, n) ∈ N × N: sup
z∈[a,b]

D hmn(z), h(z)􏼐 􏼑≥ ε
⎧⎨

⎩

⎫⎬

⎭.

(18)

If (m,n) ∈N×N∖A1, then D(hmn(z),h(z))<ε, ∀z ∈ [a,

b] which implies

sup
z∈[a,b]

D hmn(z), h(z)􏼐 􏼑< ε, (19)

as ε is arbitrary. ,is gives that (m, n) ∈ N × N∖A2.
,erefore, we obtain

N × N∖A1⊆N × N∖A2⇒A2⊆A1, (20)

which gives δθ2(A2)≤ δθ2(A1) � 0. Hence,
supz∈[a,b]D(hmn(z), h(z))⟶p Sθ2 0. □

Theorem 1. Presume that the sequence of FVF hmn

⟶p Sθ2 h on [a, b], where (hmn) is equi-continuous on

[a, b]; then, h is continuous and hmn⇉
uSθ2

h on [a, b].

Proof. First, we demonstrate that hmn is continuous. Let ε> 0
and z0 ∈ [a, b]. By the equi-continuity of hmn, then there
exists c> 0 such that

D hmn(z), hmn z0( 􏼁􏼐 􏼑<
ε
3
, (21)

for any (m, n) ∈ N × N and z ∈ (z0 − c, z0 + c). For some
z ∈ (z0 − c, z0 + c), since hmn⟶p Sθ2 h, the set

(m, n) ∈ N × N: D hmn z0( 􏼁, h z0( 􏼁􏼐 􏼑≥
ε
3

􏼚 􏼛

∪ (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥
ε
3

􏼚 􏼛 ∈ Λ2.
(22)

So, there exists (m, n) ∈ N × N such that

D hmn z0( 􏼁, h z0( 􏼁􏼐 􏼑<
ε
3
,

D hmn(z), h(z)􏼐 􏼑<
ε
3
.

(23)

We obtain
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D h z0( 􏼁, h(z)􏼐 􏼑≤D h z0( 􏼁, hmn z0( 􏼁􏼐 􏼑 + D hmn z0( 􏼁, hmn(z)􏼐 􏼑

+ D hmn(z), h(z)􏼐 􏼑<
ε
3

+
ε
3

+
ε
3

� ε.

(24)

,erefore, we proved the continuity of h.

At the moment, we will show that hmn⇉
uSθ2

h on [a, b]. Let
ε> 0. Since h is continuous on [a, b], it provides that h is
uniformly continuous and (hmn) is equi-uniformly con-
tinuous on [a, b]. So, pick c> 0 such that, for any z, z′ ∈ [a,

b] and |z − z′|< c, we have

D hmn(z), hmn z′( 􏼁􏼐 􏼑<
ε
3
,

D h(z), h z′( 􏼁􏼐 􏼑<
ε
3
.

(25)

Using the finite covering theorem, select finite open
coverings

z1 − c, z1 + c( 􏼁, z2 − c, z2 + c( 􏼁, . . . , zr − c, zr + c( 􏼁,

(26)

from the cover of [a, b]. Using hmn⟶p Sθ2 h, there exists a
set Mzi

∈ Λ2 such that

D hmn zi( 􏼁, h zi( 􏼁􏼐 􏼑<
ε
3
, (27)

for all (m, n) ∉Mzi
and i ∈ (1, 1), (2, 2) . . . , (r, u){ }. Let

(m, n) ∉Mzi
and z ∈ [a, b]. Hence, z ∈ (zi − c, zi + c) for

some i ∈ (1, 1), (2, 2) . . . , (r, u){ }. As a result

D hmn(z), h(z)􏼐 􏼑≤D hmn(z), hmn zi( 􏼁􏼐 􏼑 + D hmn zi( 􏼁, h zi( 􏼁􏼐 􏼑

+ D h zi( 􏼁, h(z)􏼐 􏼑<
ε
3

+
ε
3

+
ε
3

� ε,

(28)

which gives that hmn⇉
uSθ2

h on [a, b]. □

Definition 4. We call that a DSFVF (hmn) is equi-lacunary
statistically convergent to FVF h, denoted by hmn⟶e Sθ2 h,
if, for given ε> 0,

Gru,ε � δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑,

(29)

with regards to z ∈ [a, b] is uniformly convergent to zero
function.,us, hmn⟶e Sθ2 h iff for all ε, β> 0, ∃k, l ∈ N, for
each r≥ k, u≥ l, for all z ∈ [a, b],

δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑< β. (30)

Note that, by monotonicity of δru
θ2 , we can also utilize

β � ε.

Remark 3. It is obvious that hmn⟶p Sθ2 h iff for every
z ∈ Y and for every ε, β> 0 ∃k, l ∈ N, for all r≥ k, u≥ l,

δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑< β. (31)

In this instance, we may take β � ε. Obviously,
hmn⟶e Sθ2 h implies hmn⟶p Sθ2 h. Furthermore, we see

that hmn⇉
uSθ2

h indicates hmn⟶e Sθ2 h.

Corollary 1. Let (hmn) be a DSFVF and h be a FVF on [a, b].

3en, hmn⇉
uSθ2

h⇒hmn⟶e Sθ2 h⇒hmn⟶p Sθ2 h. 3e con-
verse implications do not hold in general.

Proof. Proving the above result, we can consider the ex-
amples as given below. □

Example 1. Consider DSFVF (hmn) is defined by hmn(z) �

(e− mnz) for z ∈ [0, 1]. ,en, we get D(hmn(z), 0) � e− mnz for
each (m, n) ∈ N × N and z ∈ [0, 1]. ,erefore, (hmn) con-
verges pointwise to h � 0 and so hmn⟶p Sθ2 0. However,
for each (k, l) ∈ N × N, we consider (k, l) ∈ [mn, 2mn − 1].
,erefore, for all z ∈ [0, 1/2mn − 1], we have

D hkl(z), 0􏼐 􏼑 � e
− mnz

≥ e
− (2mn− 1)z

≥
1
e

as z ∈ 0,
1

2mn − 1
􏼔 􏼕􏼒 􏼓

≥
1
3
.

(32)

,us, for all z ∈ [0, 1/(2mn − 1)], one obtains

Amn(z) � δθ2 (k, l) ∈ [mn, 2mn − 1]: D hkl(z), 0􏼐 􏼑≥
1
3

􏼚 􏼛􏼒 􏼓

⟶ 1(≠ 0).

(33)

Hence, (hmn) is not equi-lacunary statistically conver-
gent to 0 on [0, 1].

Example 2. Let us define a DSFVF (hmn) by

hmn(z) �

m
2
n
2
z

1 + m
3
n
3
z
2􏼠 􏼡, for z ∈

1
mn + 2

,
1

mn + 1
􏼔 􏼕,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(34)

,en, for every z ∈ [0, 1], we have

δθ2 (m, n) ∈ N × N: hmn(z)≠ 0􏽮 􏽯􏼐 􏼑 � 0. (35)

,erefore, for every ε> 0,
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1
hru

(m, n) ∈ Iru: D hmn(z), 0􏼐 􏼑≥ ε􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
1

hru

(m, n) ∈ Iru: hmn(z)≠ 0􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

∩ (1, 1), (2, 2), . . . , (m, n){ }≤
1

hru

⟶ 0.

(36)

,is yields that (hmn) is pointwise lacunary statistically
convergent to h � 0. However,

sup
z∈[0,1]

D hmn(z), 0􏼐 􏼑 � sup
z∈[0,1]

m
2
n
2
z

1 + m
3
n
3
z
2

� sup
z∈[0,1]

1
1/m2

n
2
z􏼐 􏼑 + mnz

≠ 0,

(37)

for all m, n ∈ N and (hmn) is not uniformly lacunary sta-
tistically convergent to h � 0 on [0, 1].

Theorem 2. A of SFVMF (hmn) is uniformly lacunary sta-
tistically convergent to FVMF h iff [hmn(z)]α is uniformly
lacunary statistically convergent to [h(z)]α uniformly with
regards to α and z.

Proof. Select ε> 0. Given hmn⇉
uSθ2

h, there exists M ∈ Λ2 such
that D(hmn(z), h(z))< ε, for any (m, n) ∈ N × N∖M and
z ∈ [a, b], i.e.,

sup
α∈[0,1]

max hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛< ε.

(38)

,at is, there are

hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε,

hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε,
(39)

for any (m, n) ∈ N × N∖M and z ∈ [a, b]. Moreover,

hmn(z)􏽨 􏽩α � hmn(z)􏼐 􏼑
−

α , hmn(z)􏼐 􏼑
+

α􏽨 􏽩,

[h(z)]α � h
−

α(z), h
+

α(z)􏽨 􏽩.
(40)

Consequently, we get [hmn(z)]α is uniformly lacunary
statistically convergent to [h(z)]α uniformly with regards to
α and z.

Conversely, for any α ∈ [0, 1] and for any z ∈ [a, b],
[hmn(z)]α is uniformly lacunary statistically convergent to
[h(z)]α with regards to α and z. ,us, for given ε> 0, there
exists M1 ∈ Λ2 such that

hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε, (41)

for all (m, n) ∈ N × N∖M1, z ∈ [a, b], and any α ∈ [0, 1].
Additionally, we see that, for given ε> 0, there exists
M2 ∈ Λ2 such that

hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε, (42)

for all (m, n) ∈ N × N∖M2, z ∈ [a, b] and any α ∈ [0, 1].
Take M � M1 ∪M2 ∈ Λ2. We get

hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε,

hm(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε,
(43)

for all (m, n) ∈ N × N∖M, z ∈ [a, b], and any α ∈ [0, 1]. As a
result, we have

sup
α∈[0,1]

max hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛< ε,

(44)

that is,

D hmn(z), h(z)􏼐 􏼑< ε. (45)

,is concludes the proof. □

Theorem 3. Let h FVMF and (hmn) SFVMF. Fix z0 ∈ [a, b]

if hmn⟶e Sθ2 h on [a, b] and all (hmn) are continuous on z0,
then h is continuous on z0.

Proof. Let ε> 0. hmn⟶e Sθ2 h, and we can identify num-
bers r, u ∈ N such that, for all z ∈ [a, b],

δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥
ε
3

􏼚 􏼛􏼒 􏼓<
1
2
. (46)

Let K(z) � (m, n) ∈ N × N: D(hmn(z), h(z))< (ε/3)􏽮 􏽯,
z ∈ [a, b]. ,erefore, δru

θ2
(K(z)) > (1/2) for all z ∈ [a, b]. Via

the continuity of h11, h22, . . . , hru at z0, there is a neigh-
borhood (z0 − ζ, z0 + ζ) of z0 such that

D hi(z), hi z0( 􏼁􏼐 􏼑<
ε
3
, (47)

for all i � (1, 1), (2, 2) . . . , (r, u){ } and z ∈ (z0 − ζ, z0 + ζ).
Fix z ∈ (z0 − ζ, z0 + ζ). Since δru

θ2
(K(z)) > (1/2) and

δru
θ2 (K(z0))> (1/2), we find p ∈ K(z)∩K(z0). ,us,

D h(z), h z0( 􏼁􏼐 􏼑≤D h(z), hp(z)􏼐 􏼑 + D hp(z), hp z0( 􏼁􏼐 􏼑

+ D hp z0( 􏼁, h z0( 􏼁􏼐 􏼑<
ε
3

+
ε
3

+
ε
3

� ε.

(48)

,us, we obtain

D h(z), h z0( 􏼁􏼐 􏼑< ε, (49)

for all z ∈ U(z0, ζ), i.e., h is continuous on z0. □

Theorem 4. A of SFVMF (hmn) is equi-lacunary statistically
convergent to FVMF h iff [hmn(z)]α is equi-lacunary statis-
tically convergent to [h(z)]α uniformly for any α ∈ [0, 1] and
any z ∈ [a, b].
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Proof. hmn⟶e Sθ h shows that, for any ε> 0 and σ > 0,
there exists k, l ∈ N, for all r≥ k, u≥ l and any z ∈ [a, b] such
that

δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑< σ. (50)

So, for any α ∈ [0, 1], we obtain

δru
θ2 (m, n) ∈ N × N: sup

α∈[0,1]

max hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≥ ε􏼨 􏼩􏼠 􏼡< σ. (51)

,erefore, for any α ∈ [0, 1], we acquire

δru
θ2

(m, n) ∈ N × N: hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓< σ,

δru
θ2

(m, n) ∈ N × N: hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓< σ.

(52)

,en, emphasize that

hmn(z)􏽨 􏽩α � hmn(z)􏼐 􏼑
−

α , hmn(z)􏼐 􏼑
+

α􏽨 􏽩,

[h(z)]α � h
−

α(z), h
+

α(z)􏽨 􏽩.
(53)

Hence, [hmn(z)]α is uniformly lacunary statistically
convergent to [h(z)]α for any α ∈ [0, 1] and any z ∈ [a, b].

Conversely, let ε> 0 and σ > 0, and there exists k1, l1 ∈ N
such that

δru
θ2

(m, n) ∈ N × N: hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓< σ,

(54)

for all r≥ k1, u≥ l1 and any z ∈ [a, b] and for any α ∈ [0, 1].
Similarly, there exists k2, l2 ∈ N such that

δru
θ2

(m, n) ∈ N × N: hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓< σ,

(55)

for all r≥ k2 and u≥ l2 and any z ∈ [a, b] and for any
α ∈ [0, 1]. ,en, select k � max k1, k2􏼈 􏼉 and l � max l1, l2􏼈 􏼉.
We obtain

δru
θ2 (m, n) ∈ N × N: hmn(z)􏼐 􏼑

−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓< σ,

δru
θ2 (m, n) ∈ N × N: hmn(z)􏼐 􏼑

+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓< σ,

(56)

for all r≥ k and u≥ l and any z ∈ [a, b] and for any α ∈ [0, 1].
,us, we have

δru
θ2 (m, n) ∈ N × N: sup

α∈[0,1]

max hmn(z)􏼐 􏼑
−

α − h
−

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, hmn(z)􏼐 􏼑
+

α − h
+

α(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≥ ε􏼨 􏼩􏼠 􏼡< σ, (57)

that is,

δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯􏼐 􏼑< σ. (58)

,is concludes the proof.
,e next result is the lacunary statistical form of Egorov’s

theorem for the DSFVF. □

Theorem 5. Take measurable space (Ω,M, μ). Presume that
h and (hmn) are measurable and identified almost everywhere
onΩ. Suppose also that hmn⟶p Sθ2 h almost everywhere on
Ω. 3en, for every ε> 0, there exists A ⊂M such that
μ(Ω\A)< ε and hmn|A⟶e Sθ2 h|A on A.

Proof. We presume that h and (hmn) are defined everywhere
on Ω and also suppose that hmn(z)⟶p Sθ2 h(z) for all
z ∈ Ω. Now, for any fix σ, r, u ∈ N, consider that the set

P � z ∈ Ω: δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥

1
σ

􏼚 􏼛􏼒 􏼓<
1
σ

􏼚 􏼛,

(59)

is measurable. ,en, the function Φmn(z) � D(hmn(z),

h(z)), z ∈ Ω, is measurable. Let Hmn � Φ− 1
mn([(1/σ),∞)).

For every z ∈ Ω, we have z ∈ P iff

1
hru

􏽘

r

m�1
􏽐
u

n�1
χHmn

(z)<
1
σ

. (60)

Since the function

h �
1

hru

􏽘

r

m�1
􏽐
u

n�1
χHmn

(z) (61)

is measurable, so we have P � h− 1((− ∞, (1/σ))). For
k, l ∈ N, one writes

Ψσ,k,l � z ∈ Ω: ∀r≥ k, u≥ l, δru
θ2􏽮

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥
1
σ

􏼚 􏼛􏼒 􏼓<
1
σ

􏼛.

(62)

From the previous observation, we conclude thatΨσ,k,l is
measurable. Also, we obtain
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Ψσ,k,l ⊂ Ψσ,k+1,l+1, (∀k, l ∈ N),

Ω � 􏽛

∞

k�1
􏽛

∞

l�1
Ψσ,k,l.

(63)

As a result, μ(Ω) � limm,n⟶∞μ(Ψσ,k,l). Take ε> 0. For
each k, l ∈ N, select k(σ), l(σ) ∈ N such that μ(Ω∖
Ψσ,k(σ),l(σ))< (ε/2σ). Set

T0 � 􏽛

∞

σ�1
Ω∖Ψσ,k(σ),l(σ)􏼐 􏼑. (64)

,en, we have

μ T0( 􏼁≤ 􏽘
∞

σ�1
μ Ω∖Ψσ,k(σ),l(σ)􏼐 􏼑< ε. (65)

Let

T � Ω∖T0 � 􏽜

∞

σ�1
Ψσ,k(σ),l(σ). (66)

,us, μ(Ω∖T) � μ(T0)< ε. Hence, we get ∀σ ∈ N,∀r≥
k(σ), u≥ l(σ),∀z ∈ T,

δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥
1
σ

􏼚 􏼛􏼒 􏼓<
1
σ

. (67)

,is gives that hmn|A⟶
eSθ2

h|A on A. □

Now, we give the concepts of inner and outer lacunary
statistical convergence in measure of DSFVF and demon-
strate the equivalence of these concepts. For our conve-
nience, we use FVMF and DSFVMF in place of fuzzy-valued
function and double sequence of fuzzy-valued measurable
function, respectively.

Definition 5. Take measurable space (Ω,M, μ). Presume
that the setL0 of all FVMF defined almost everywhere onΩ.
Take (hmn) and h in L0. ,e outer lacunary statistical
convergence in measure of a DSFVMF (hmn) to a FVMF h is
defined by

δru
θ2

(m, n) ∈ N × N: μ z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ η􏽮 􏽯􏼐 􏼑≥ ζ􏽮 􏽯􏼐 􏼑⟶ 0, if r, u⟶∞, (68)

for η, ζ > 0. It is denoted by hmn⟶
δθ2 , μ h. If we take (68) as

follows, we get the inner statistical convergence in measure
of a DSFVMF (hmn) to a FVMF h:

μ z ∈ Ω: δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ η􏽮 􏽯􏼐 􏼑≥ ζ􏽮 􏽯􏼐 􏼑⟶ 0, if r, u⟶∞. (69)

It is demonstrated by hmn⟶μ, δθ2 h.

Theorem 6. Take measurable space (Ω,M, μ). Presume
(hmn) and h in L0:

(i) If hmn⟶
δθ2 , μ h, then hmn⟶μ, δθ2 h

(ii) If hmn⟶μ, δθ2 h, then hmn⟶
δθ2 , μ h, provided

μ(Ω)<∞

Proof. Since δru
θ2 : P1⟶ [0, 1] (r, u ∈ N) is a probability

measure, we can think the product measure μ × δru
θ2 on the

product algebra M⊗P1 of subsets of Ω × (N × N). For fix
η> 0, we obtain

Sη � (z, (m, n)) ∈ Ω ×(N × N): D hmn(z), h(z)􏼐 􏼑≥ η􏽮 􏽯.

(70)

Define a function Φ: Ω × (N × N)⟶ R as

Φ((z, (m, n))) � D hmn(z), h(z)􏼐 􏼑, (z, (m, n)) ∈ Ω ×(N × N),

(71)

is M⊗P1-measurable. ,erefore, we get Sη ∈M⊗P1. For
any K ⊂ Ω × (N × N), one writes

K(z) � (m, n) ∈ N × N: (z, (m, n)) ∈K{ }, if z ∈ Ω,

K(m, n) � z ∈ Ω: (z, (m, n)) ∈K{ }, if (m, n) ∈ (N × N).

(72)

(i) In order to acquire this, we have to show that

∀ε, q> 0,∃r0, u0 ∈ N,∀r

≥ r0, u≥ u0, μ z ∈ Ω: δru
θ2 Sη(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑< ε.

(73)

Fix q> 0 and ε> 0. Since hmn⟶
δθ2 , μ h, one can

find r0, u0 ∈ N such that r≥ r0, u≥ u0, one get the
following:

δru
θ2

(m, n) ∈ N × N: μ Sη(m, n)􏼐 􏼑≥ 1􏽮 􏽯􏼐 􏼑<
q

2
, (74)

δru
θ2

(m, n) ∈ N × N: μ Sη(m, n)􏼐 􏼑≥
qε
4

􏼚 􏼛􏼒 􏼓<
qε
4

. (75)

Assume that

P � (m, n) ∈ N × N: μ Sη(m, n)􏼐 􏼑< 1􏽮 􏽯. (76)

,en, we have from situation (74) that

δru
θ2

(N × N∖P)<
q

2
∀r≥ r0, u≥ u0( 􏼁. (77)
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Hence, for all ∀r≥ r0 and u≥ u0, one acquires

μ z ∈ Ω: δru
θ2 Sη(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑

≤ μ z ∈ Ω: δru
θ2 Sη(z)∩P􏼐 􏼑≥

q

2
􏼚 􏼛􏼒 􏼓

+ μ z ∈ Ω: δru
θ2

Sη(z)∖P􏼐 􏼑≥
q

2
􏼚 􏼛􏼒 􏼓

≤ μ z ∈ Ω: δru
θ2 Sη(z)∩P􏼐 􏼑≥

q

2
􏼚 􏼛􏼒 􏼓.

(78)

Take S∗η � Sη ∩ (Ω × P). ,erefore, we have

S
∗
η(z) � Sη(z)∩P(z ∈ Ω),

S
∗
η(m, n) � Sη(m, n)((m, n) ∈ P).

(79)

To acquire relation (73), it is enough to demonstrate
that

∀r≥ r0, u≥ u0, μ z ∈ Ω: δru
θ2 S
∗
η(z)􏼐 􏼑≥

q

2
􏼚 􏼛􏼒 􏼓< ε. (80)

For the set S∗η ⊂ Ω × P and for every fix r, u ∈ N, we
can utilize the Fubini theorem for the characteristic
function of S∗η of the finite measure μ × δru

θ2 . Actually,

S
∗
η � 􏽛

(m,n)∈P
(m, n) × Sη(m, n)􏼐 􏼑, (81)

where

μ Sη(m, n)􏼐 􏼑< 1(∀(m, n) ∈ P),

δru
θ2 ( (m, n){ }) � 0(∀m> r, n> u).

(82)

,us,

B
P
μ S
∗
η(m, n)􏼐 􏼑dmdn � μ × δru

θ2􏼐 􏼑 S
∗
η􏼐 􏼑

� 􏽚
Ω
δru
θ2

S
∗
η(z)􏼐 􏼑dz.

(83)

Suppose r0 and u0 ∈ N such that r≥ r0 and u≥ u0,
one obtains

qε
2
>

qε
4

+ δru
θ2

(m, n) ∈ N × N: μ Sη(m, n)􏼐 􏼑≥
qε
4

􏼚 􏼛􏼒 􏼓

≥B
(m,n)∈P: μ Sη(m,n)( 􏼁<(qε/4)􏼈 􏼉

μ Sq(m, n)􏼐 􏼑dmdn

+ B
(m,n)∈P: μ Sη(m,n)( 􏼁≥ (qε/4)􏼈 􏼉

1 · dmdn

≥B
P
μ Sη(m, n)􏼐 􏼑dmdn � 􏽚 􏽚

P
μ S
∗
η(m, n)􏼐 􏼑dmdn

� 􏽚
Ω
δru
θ2 S
∗
η(z)􏼐 􏼑dz

≥􏽚
z∈Ω: μ S∗η(z)􏼐 􏼑≥ (q/2)􏽮 􏽯

δru
θ2

S
∗
η(z)􏼐 􏼑dz

≥
q

2
μ z ∈ Ω: δru

θ2 S
∗
η(z)􏼐 􏼑≥

q

2
􏼚 􏼛􏼒 􏼓,

(84)

which gives that strict inequality (80) is valid.
(ii) Presume that μ(Ω)<∞. Fix η> 0. To verify our

result, we need to denote that

∀ε, q> 0,∃r0, u0 ∈ N,∀r

≥ r0, u≥ u0, δ
ru
θ2 (m, n) ∈ N × N: μ Sη(m, n)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑< ε.

(85)

Let ε> 0 and q> 0 be given. Since hmn⟶μ, δθ2 h, one
can find r0, u0 ∈ N such that, for all r≥ r0 and u≥ u0, we have

μ z ∈ Ω: δru
θ2 Sη(z)􏼐 􏼑≥

qε
2μ(Ω)

􏼨 􏼩􏼠 􏼡<
qε
2

. (86)

By considering the Fubini theorem for the function of
Sη ⊂ Ω × (N × N), we obtain

􏽚
Ω
δru
θ2 Sη(z)􏼐 􏼑dz � μ × δru

θ2􏼐 􏼑 Sη􏼐 􏼑 � B
N×N

μ Sη(m, n)􏼐 􏼑dmdn.

(87)

Supposing r0 and u0 such that, for all r≥ r0 and u≥ u0,
we have

qε>
qεμ(Ω)

2μ(Ω)
+ μ z ∈ Ω: δru

θ2 Sη(z)􏼐 􏼑≥
qε

2μ(Ω)
􏼨 􏼩􏼠 􏼡

≥􏽚
z∈Ω: δru

θ2
Sη(z)( 􏼁<((qε)/(2μ(Ω)))􏽮 􏽯

δru
θ2 Sη(z)􏼐 􏼑dz

+ 􏽚
z∈Ω: δru

θ2
Sη(z)( 􏼁>((qε)/(2μ(Ω)))􏽮 􏽯

1dz

≥􏽚
Ω
δru
θ2 Sη(z)􏼐 􏼑dz � B

N×N
μ Sη(m, n)􏼐 􏼑dmdn

≥B
(m,n)∈N×N: μ Sη(m,n)( 􏼁≥ q􏼈 􏼉

μ Sη(m, n)􏼐 􏼑dmdn

≥ qδru
θ2 (m, n) ∈ N × N: μ Sη(m, n)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑.

(88)

,is concludes the proof. □

,eorem 6 indicates that both kinds of convergence (in
Definition 5) in measure are equivalent if Ω is a finite
measurable set. By thinking the set Ω, we give the following
definition.

Definition 6. DSFVMF (hmn) is called to be lacunary sta-
tistical convergent in measure (shortly, LSCM) to a FVMF h,
in symbol, hmn⟶μ Sθ2 h, if μ( z ∈ Ω: D(hmn(z)),􏽮 h(z)}≥
q) is lacunary statistically convergent to zero for any q> 0
and all (m, n) ∈ N × N. ,is concept can be denoted by the
following formula:

∀η> 0,∀q> 0, (m, n) ∈ N × N: μ􏼈

· z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑> η􏽯 ∈ Λ2.
(89)

Here, we can take η � q or q � (1/r), r ∈ N.
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Proposition 1. Take measurable space (Ω,M, μ). Suppose

that (hmn) and h in L0. 3en, hmn⇉
uSθ2

h⇒hmn⟶μ Sθ2 h.

Proof. We presume that hmn⇉
uSθ2

h. Take q> 0. In this way,
there is a set W ∈ Λ2 such that

D hmn(z), h(z)􏼐 􏼑< q, ∀(m, n) ∉W, z ∈ Ω. (90)

,us, we obtain

(m, n) ∈ N × N: μ z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑> q􏽮 􏽯

⊂ (m, n) ∈ N × N: μ z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≠∅􏽮 􏽯

⊂W ∈ Λ2.
(91)

,is indicates that hmn(z)⟶μ Sθ2 h(z). □

Theorem 7. Let h be a FVMF such that, for each z ∈ Ω,
hmn(z)⟶p Sθ2 h(z). 3en, given ε> 0 and δ > 0, there is a
measurable set W ⊂ Ω with μ(W)< δ and integers m0 and n0
such that

D hmn(z), h(z)􏼐 􏼑< ε, ∀z ∉W andm≥m0, n≥ n0( 􏼁.

(92)

Proof. Let

Zmn � z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ ε􏽮 􏽯, (93)

and set

Ωm0,n0
� 􏽛

∞

m�m0

􏽛

∞

n�n0

Zmn

� z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ ε, for somem≥m0, n≥ n0􏽮 􏽯.

(94)

We have that Ωm0+1,n0+1 ⊂ Ωm0 ,n0
, and for each z ∈ Ω,

there is some Ωm0 ,n0
to which z does not belong, since

hmn(z)⟶ h(z). ,us, we get ∩ m0
∩ n0
Ωm0 ,n0

� ∅, so we
have limμ(Ωm0 ,n0

) � 0. Hence, given δ > 0, ∃m0, n0 ∈ N so
that μ(Ωm0 ,n0

)< δ, i.e.,

μ z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ ε, for somem≥m0, n≥ n0􏽮 􏽯􏼐 􏼑< δ.

(95)

If we write W for this Ωm0 ,n0
, then μ(W)< δ and

W � z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ ε, for somem≥m0, n≥ n0􏽮 􏽯.

(96)
□

Theorem 8. If DSFVMF (hmn) pointwise lacunary statisti-
cally convergent to a FVMF h almost everywhere on Ω, then
hmn⟶μ Sθ2 h.

Proof. Assume that hmn(z)⟶p Sθ2 h(z) almost every-
where onΩ. We have from,eorem 6 that hmn⟶μ, δθ2 h is
the same as hmn(z)⟶μ Sθ2 h(z). So, to demonstrate our

result, we have to show that hmn(z)⟶μ, δθ2 h(z). Presume
that ε> 0 and q> 0. It is clear from ,eorem 5 that A ⊂M
such that hmn|A⟶e Sθ2 h|A and μ(Ω\A)< ε. Select indexes
k and l such that

δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑< q, (97)

for every r≥ k, u≥ l, and y ∈ A. ,us, for all r≥ k and u≥ l,
we obtain

z ∈ Ω: δru
θ2

(m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≥ q􏽮 􏽯 ⊂ Ω\A.

(98)

,erefore, for every r≥ k and u≥ l,

μ z ∈ Ω: δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑< ε,

(99)

as desired. □

Theorem 9. If hmn(z)⟶p Sθ2 h(z) almost everywhere on
Ω, then hmn(z)⟶μ Sθ2 h(z).

Proof. Take q, ε> 0. By considering ,eorem 5, there is an
A ⊂M such that hmn|A⟶e Sθ2 h|A and μ(Ω\A)< ε.
Consider k, l ∈ N such that

δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑

< q (∀r≥ k, u≥ l and z ∈ A),
(100)

which yields

z ∈ Ω: δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≥ q􏽮 􏽯

⊂ Ω\A (∀r≥ k, u≥ l).

(101)

,erefore, one obtains

μ z ∈ Ω: δru
θ2 (m, n) ∈ N × N: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑< ε.

(102)
□

Corollary 2. If hmn(z)⟶μ Sθ2 h(z), then ∃ a subsequence
(hmknl

) of (hmn) such that hmknl
(z)⟶p Sθ2 h(z) almost

everywhere on Ω.

Proof. Presume that hmn(z)⟶μ Sθ2 h(z), so any subse-
quence (hmknl

) of (hmn) also lacunary statistically convergent
in measure to h. In this way, (hmn) possesses a subsequence
that lacunary statistically convergent in measure to h almost
everywhere on Ω. ,is gives that hmknl

(z)⟶p Sθ2 h(z)

almost everywhere on Ω. □

Definition 7. Take finite measurable space (Ω,M, μ). As-
sume that (hmn)

+

α , (hmn)
−

α , h
+

α , and h
−

α ∈L
0. ,e double

sequence [hmn(z)]α is uniformly lacunary statistically con-
vergent inmeasure (briefly, we can write ULSCM) to [h(z)]α
with regards to α if
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μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡,

μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡,

(103)

both lacunary statistically convergent measure to zero for
each q> 0. Notice that this concept is given by the following
formula:

∀η> 0,∀q> 0, (m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡≥ η􏼨 􏼩 ∈ Λ2,

∀η> 0,∀q> 0, (m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡≥ η􏼨 􏼩 ∈ Λ2.
(104)

In that case, we can write η � q or q � (1/r), r ∈ N.

Theorem 10. DSFVMF (hmn) is LSCM to FVMF h iff
[hmn(z)]α is ULSCM to [h(z)]α with regards to α.

Proof. Suppose that (hmn) is LSCM to h. ,en,

μ z ∈ Ω: Dhmn(z), h(z)≥ tq􏽮 􏽯􏼐 􏼑, (105)

is lacunary statistically convergent to zero for each q> 0, i.e.,

(m, n) ∈ N × N: μ z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≥ q􏽮 􏽯 ∈ Λ2.

(106)

,us,

(m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

max hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≥ q􏼨 􏼩􏼠 􏼡≥ q􏼨 􏼩 ∈ Λ2. (107)

For every q> 0, one obtains

(m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡≥ q􏼨 􏼩 ∈ Λ2,

(m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡≥ q􏼨 􏼩 ∈ Λ2,
(108)

which gives that

μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡⟶
μ

Sθ2 0, μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡⟶
μ

Sθ2 0. (109)

Hence, [hmn(z)]α is ULSCM to [h(z)]α with regards to α. Next, we presume that [hmn(z)]α is ULSCM to [h(z)]α
with regards to α. ,en, for every q> 0, one has

μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡⟶
μ

Sθ2 0, μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡⟶
μ

Sθ2 0. (110)
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,us,

(m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡≥ q􏼨 􏼩 ∈ Λ2,

(m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ q􏼨 􏼩􏼠 􏼡≥ q􏼨 􏼩 ∈ Λ2.
(111)

From the last two relations, we obtain

(m, n) ∈ N × N: μ z ∈ Ω: sup
α∈[0,1]

max hmn(z)􏼐 􏼑
−

α − (h(z))
−

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, hmn(z)􏼐 􏼑
+

α − (h(z))
+

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≥ q􏼨 􏼩􏼠 􏼡≥ q􏼨 􏼩 ∈ Λ2, (112)

which gives that

(m, n) ∈ N × N: μ z ∈ Ω: D hmn(z), h(z)􏼐 􏼑≥ q􏽮 􏽯􏼐 􏼑≥ q􏽮 􏽯 ∈ Λ2.

(113)

It means that (hmn) is LSCM to FVMF h. □

3. Conclusion 1

In this study, we propose the notions of pointwise lacu-
nary statistical convergence, uniformly lacunary statistical
convergence, and equi-lacunary statistical convergence of
the double sequence of fuzzy-valued functions and discuss
the reationship between various kinds of lacunary sta-
tistical convergence for the double sequence of fuzzy-
valued functions and the sequence of α-level cut func-
tions. In addition, we obtain the Egorov theorem for the
double sequence of fuzzy-valued functions and investigate
the lacunary statistical convergence in measure for the
double sequence of fuzzy-valued functions. Note that, in
contrast to the case for single sequences, a convergent
double sequence need not be bounded, so the studies on
lacunary statistical convergence of double sequences have
a rapid growth and an emerging area in mathematical
research. We conclude that our results are more general
than the one proved earlier for single sequences by Kişi
and Dündar. As an application, researchers who linked
two theories such as the theory of approximation and the
theory of lacunary statistical summability may prove fuzzy
analogue of Korovkin’s type approximation theorem for
several test functions by using our convergence methods.
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[28] E. Savaş, “On statistically convergent sequences of fuzzy
numbers,” Information Sciences, vol. 137, no. 1–4, pp. 277–
282, 2001.
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