Mediterranean Journal of Mathematics

Cheng-Yau Operator and Gauss Map of Rotational Hypersurfaces in 4-Space

Erhan Güler and Nurettin Cenk Turgay

Abstract. We consider rotational hypersurface in the four-dimensional Euclidean space \mathbb{E}^4 . We study the Gauss map \mathbf{G} of rotational hypersurface in \mathbb{E}^4 with respect to the so-called Cheng-Yau operator L_1 acting on the functions defined on the hypersurfaces. We obtain the classification theorem that the only rotational hypersurface with Gauss map \mathbf{G} satisfying $L_1\mathbf{G} = \mathbf{AG}$ for some 4×4 matrix \mathbf{A} are the hyperplanes, right circular hypercones, circular hypercylinders, and hyperspheres.

Mathematics Subject Classification. Primary 53A35; Secondary 53C42.

Keywords. Euclidean spaces, Cheng–Yau operator, finite type mappings, rotational hypersurfaces, L_k -operators.

1. Introduction

Published online: 16 April 2019

The notion of finite type immersion of submanifolds of a Euclidean space has been used in classifying and characterizing well-known Riemannian submanifolds [5]. Chen posed the problem of classifying the finite type surfaces in the three-dimensional Euclidean space \mathbb{E}^3 . A Euclidean submanifold is said to be of Chen finite type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian Δ [5]. Further, the notion of finite type can be extended to any smooth functions on a submanifold of a Euclidean space or a pseudo-Euclidean space. Then the theory of submanifolds of finite type has been studied by many geometers.

Takahashi [27] stated that minimal surfaces and spheres are the only surfaces in \mathbb{E}^3 satisfying the condition $\Delta r = \lambda r$, $\lambda \in \mathbb{R}$. Ferrandez et al. [12] proved that the surfaces of \mathbb{E}^3 satisfying $\Delta H = AH$, $A \in Mat(3,3)$ were either minimal, or an open piece of sphere or of a right circular cylinder. Choi and Kim [8] characterized the minimal helicoid in terms of pointwise 1-type Gauss map of the first kind.

Dillen et al. [9] proved that the only surfaces in \mathbb{E}^3 satisfying $\Delta r = Ar + B$, $A \in Mat(3,3)$, $B \in Mat(3,1)$ are the minimal surfaces, the spheres