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The main goal of this article is to present the notion of Fibonacci Received 10 July 2019
I-convergence of sequences on intuitionistic fuzzy normed linear Revised 17 September 2022
space. To accomplish this goal, we mainly investigate some funda- ~ Accepted 11 December 2022

mental properties of the newly introduced notion. Then, we examine  yevwoRrbps

the Fibonacci I-Cauchy sequences and Fibonacci | completeness in Fibonacci Z-convergence;
the construction of an intuitionistic fuzzy normed linear space. Some Fibonacci Z-Cauchy
intuitionistic fuzzy Fibonacci ideal convergent spaces have been sequence; intuitionistic fuzzy
established. Further, we prove on some algebraic and topological normed linear space

features of these convergent sequence spaces. 1991 MATHEMATICS

SUBJECT
CLASSIFICATIONS

11B39; 41A10; 41A25; 41A36;
40A30; 40G15

1. Introduction and Background

The initial work on the statistical convergence of sequences was carried out by Fast [1].
Schoenberg [2] validated a number of elementary properties of statistical convergence and
represented this notion as a method of summability.

The notion of Z-convergence initially originated in the study of Kostyrko et al. [3].
Kostyrko et al. [4] proposed and proved some new properties of Z-convergence and intro-
duced extremal Z-limit points. Further, the study was extended by Salat et al. [5], Tripathy
and Hazarika [6] and many others.

Fibonacci sequences were published by Fibonacci in the book ‘Liber Abaci’. The
Fibonacci sequences were earlier stated as Virahanka numbers by Indian mathematics [7].
The sequence

(1,1,2,3,5,8,13,21,34,55,89,144,...)

is known as the Fibonacci sequence [8]. The Fibonacci numbers may be given by the
following relation:

fn = fn+1 - fn—2

for some integers n > 2.
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Some properties of Fibonacci numbers are given by

. fn+1 14 \/g
lim = =

n—oo f, 2

o, (Golden ratio)
n

ka =fr2—1 (neN),

k=0

1
Z— converges,
i

fa_1fni1 — f,f = (=)™, n>1. (Cassini formula)

The first application of Fibonacci sequence in the sequence spaces was given by Kara

and Basarir [9]. Then, Kara [10] obtained the Fibonacci difference matrix F via Fibonacci

sequence (f,) forn € {1,2,3,...}, and studied some new sequence spaces in this connec-

tion. The definition of statistical convergence using the Fibonacci sequence was introduced

in [11]. Some works on spaces connected Fibonacci sequence can be found in [12-15].
Kara [10] defined the infinite matrix F = (?k,,) by

_fki n:k_’l
N fi '
fin = fc n=k
figr’
0, 0O<n<k-—1orn>k,

where f is the kth Fibonacci number for every k € N.

The Fibonacci sequence of numbers and the associated ‘Golden Ratio’ are observed in
nature. We examine that various natural things follow the Fibonacci sequence. It appears in
biological settings such as branching in trees, the flowering of an artichoke and the arrange-
ment of a pine cone’s bracts etc. Nowadays Fibonacci numbers play a very significant role
in coding theory. Fibonacci numbers in different forms are extensively applied in construct-
ing security coding. The Fibonacci Numbers are also applied in Pascal’s Triangle. Amazing
applications can be examined in [16].

After the advent of fuzzy set theory by Zadeh [17], fuzzy logic has found its applications
in some subbranches of mathematics like topological spaces [18-20], theory of functions
[21,22] and approximation theory [23].

Fuzzy set theory has found large-scale applications in many fields of science and
engineering, such as computer programming [24], non-linear operators [25], population
changes [26], control of chaos [27], and quantum physics [28].

The intuitionistic fuzzy sets were focused on by Atanassov [29], and it has been utilized
in decision-making problems [30], E-infinity theory of high-energy physics [31]. In intu-
itionistic fuzzy sets (IFSs) the ‘degree of non-belongingness’ is not independent but it is
dependent on the ‘degree of belongingness’. Fuzzy sets (FSs) can be thought as a remark-
able case of an IFS where the ‘degree of non-belongingness’ of an element is absolutely
equal to ‘1-degree of belongingness’. Uncertainty is based on the belongingness degree
in IFSs. An intuitionistic fuzzy metric space was considered by Park [32]. Saadati and Park
[33] obtained an intuitionistic fuzzy normed linear space (IFNLS for short). Karakus et al.
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[34] studied statistical convergence in IFNLS and Mursaleen et al. [35] studied the statisti-
cal convergence of double sequences in IFNLS. Some works related to the convergence of
sequences in a few IFNLS can be found in [36-44].

Recently, Kirisci [45] studied the Fibonacci statistical convergence on IFNLS. He defined
the Fibonacci statistically Cauchy sequences in an IFNLS and investigated the Fibonacci
statistical completeness of the space.

Firstly, some basic definitions of this paper can be seen in [3,33,41,45].

2. Main Results

In this section, we give the Fibonacci Z-convergence in an IFNLS.

Definition 2.1: Let (X, ¢, ¥, %, ) be an IFNLS and Z C P(N) be a nontrivial ideal. A
sequence x = (xk) in X is said to be Fibonacci Z-convergence with regards to the intuition-
istic fuzzy norm (IFN) (¢, ¥) (briefly, FZC-IFN), if there is a number & € X such that for every
p>0ande € (0, 1), the set

Ke(F):={keN:¢ (Fxx —£,p) <1—eory (Fxx —&p) > e} €.
We write Zrz,,, , — limx, = &. The set of FZC-IFN will be demonstrated by I(’I-}),FN.

Example 2.1: TakingZ ={A C N : §(A) = 0}, Z is an admissible ideal in N and so Fibonacci
Z-convergence coincides with Fibonacci statistical convergence in an IFNLS.

Example 2.2: Let (X, |.|) be a normed space and k x| = kI and kQI = min{k + 1,1}, k,
I € [0,1]. Any x € X and p > 0, consider

pop)i= P poop) =
p+ lxll p+ lixll
Then, (X, , ¥, %, 0) be an IFNLS. Define the Fx, = (2, ) = (1,22,32,52,...).Since f2, | —

oo ask — ooand Fx = (1,0,0,...), then Fx e I(?),FN. Consider

Ay (e,p) = {k € N:¢(I3xk,p) <1 —eorw(ka,p) > ¢

fore € (0,1) and forall p > 0. When k becomes sufficiently large, the quantity & (Fxi — &,p)
becomes less than 1 — ¢ and similarly the quantity v (Fxx — &, p) becomes greater than ¢.
So,fore > 0andp>0,A.(F) € T.

Now, we investigate the sequence spaces in IFNLS as the sets of sequences whose F-
transforms are in the spaces COI(¢, ¥), L (¢, ¥) and lgo (¢, ¥). In addition, we put forward
some inclusion theorems and obtain various topological and algebraic features from these
results. Assume that a sequence x = (xx) € w and Z is an admissible ideal of a subset of N.
We identify

COI((W)@={x:(xk)ea):{keN:qb(?xk,p)§1—8orw(ﬁxk,p)ze}el},

B x=(xk)ew:{keN:¢@xk—$,p)§1—eor
Cg’“/’)@_{ v (Fxx — &,p) > eforsomeé e R} e 7 }

iz B x=(xk)ea):EIM>Osothat{keN:qb('l-:xk,p)51—Mor
oo(¢,¥) v (ka,p) >M}eT .
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Theorem 2.1: Let (X, ¢, ¥, x, O) be an IFNLS. The inclusion relation cg(d)lw)(’l-}) C cé,w)(’l-:) C
lgo ) (F supplies.

Proof: It can be observed that cg@,w(l—:) - c@,w)(f). We only denote that C%bnﬁ)(ﬁ) C

Igo(¢lw)(’lf). Take x = (xx) € C(Z(p,]//)(/f':). Then, there is &£ € X so that IrT 4y — limx, = &. So,
forallp>0ande € (0, 1), the set

K=[keN:qb(ka—é,g)>1—sandw(ka—§,g) <8}€.7:(I).

P 5) =sand y(§,5) =tforallp>0.Ass,te (0,1) and ¢ € (0,1), there exist uj,uy €
(0,17 suchthat (1 — &) *s > 1 — uy and et < uy. As aresult, forp>0and ¢ € (0,1), we
obtain

¢ (Prip) =@ P+ 6 —£.p) = & (P —6,5) 0 (5.5)
>(1—&e)*xs>1—u

and
- p p
¥ (Prp) = v P+ & —&.p) < v (Puc—8,5) 0w (5.5)
< eQt < uy.
Taking u = max{uj, uz}, we get the set

{x: (X¢) € @ :3u > 0o that {keN:cp(l-:xk,p) > 1—uand }
¥ (Fxi,p) <u} e F(D).

Hence, x = (xy) € ’Zow,w)(?) implies Cé,w)(?) C loIo(¢,w)(?)- [ |

The converse of the inclusion relation does not supply. We establish the following
example to prove our claim.

Example 2.3: Assume (X =R, ||.||) be a normed space such that ||x|| = supy |xk|. Suppose
k = I = min{k, I} and kO! = max{k, I} for each k, | € [0, 1]. Identify the norm (¢, ) on X2 x
(0, 00) as follows

P yp e M
p+ x|’ ' p+ x|

Then, (X, ¢, ¥, *, Q) is an IFNS. Define the sequence Fx = (1,0,0,...), it can be easily
observed that (x;) € C(Z(;, pEand g, —limx = 1,but () ¢ cg( o) (F)-

X, p) =

Example 2.4: Suppose (X =R, ||.||) be a normed space and (¢, ) be the IFN as deter-
mined in the above example. Examine the sequence (xx) = (—1)K. Then (x,) € /go((ﬁlw)(’f),

but (xy) ¢ c@w)(f).

Lemma 2.1: Let (X, ¢, ¥, *, Q) bean IFNLS. For all ¢ > 0 and p > 0, the following statements
are equivalent:



FUZZY INFORMATION AND ENGINEERING . 259

@ Trriy,, —limx =§; R

(b) (ke N:¢p(Fxy —&,p) <1—¢c}eZand{k e N: Yy (Fxy —&,p) > ¢} € Z;

(© {keN:pFxx—&p) >1—candy(Fxg — &,p) < e} € F(D),

(d) keN:pFxk—&,p)>1—¢} € F@) and ik € N: ¢ (Fxx — &,p) < ¢} € F(T) and
() Trz,, —limoFxc — & p) =1and Iz, , —limwFx —&p) = 0.

Proof: It is easy to demonstrate the equivalence of (a)-(d). Here, we just prove the equiva-
lence of (b) and (e). Let (b) holds. For every ¢ > 0and p > 0, we get

[keN:|¢ (Fxk —&,p) — 1] = ¢}
=lkeN:p(Fxk—&p)=1+efUlkeN:¢ (Fx—&p) <1—¢}

andforeverye > Otheset{k e N: ¢(’l->xk —&,p) > 1+ ¢} =0 € Z,itfollows together with
(b)that {k € N: |¢(Fx — &,p) — 1| > e} € Z.Hence,we have Zrz,, , — lim ¢ (Fx — &,p) =
1.1n a similar way, foralle > 0and p >0,

[k e N:|y (Fxx —&p) — 0| > ¢}
=lkeN:y (Fy—¢&p)>elUlkeN:y (Fx —&p) < —¢}

and (ke N:y(Fxq —£,p) < —e} =0 € Z, implies that Zrz,, — limy (Fxc —&,p) = 0.
Also, it is clear that (e) implies (b). [ |

Theorem 2.2: Let (X, ¢, V¥, *, O) be an IFNLS. If (xx) is Fibonacci Z-convergent with regards to
the IFN (¢, w), then Trz,,,,) — lim x is unique.

Proof: Assume thatthere exist two distinctelements &y, & € X such thatIFI(M) — limx, =
& and IrTiyy) — limx, = &.Given e € (0,1), choose y > Osuchthat(1 —y)* (1 —y) >
1 —¢eand yQy < .50, forany p > 0, we determine the following:

Ko (v.p) = {kENifﬁ(?Xk—éhg) <1 —)/},

Ky (y.p) = {ke N:y (ka—éhg) > 7/},

Koz r.p) = [keNig (P —&,5) <1-v],

Kya(r.p) = {keN:y (Fo—at) = v},
and

Koy (vip) = (Kpg (v, ) UKg2 (v,p) N (Ky 1 (v,p) UKy 2 (v.p)).

Since Zrz, ,, — limx, =& and Ir1 4y — limx, = &, all the sets Ky 1(v,p), Ky,1(v,p),
Kp2v.p) Ky2(y,p) and Ky y (y,p) belongs to I. This implies that its complement
Icgw(y,p) is a non-empty setin F(Z).Letm € chw(y,p). Then we have m ¢ IC%I1 (y.p)N
Ko 2(v.p)orm e K 1 (v, p) N Ky, 5 (v, p).
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Case (i): Suppose thatm € ICC 1(r.p N IC;,z(y,p).Then we have ¢ Fxm — &1, g) >1-—r,
¢ (Fxm — &2, £)>1—rand therefore
b6 —62p) = ¢ (Fn—1,0) 0 (Fm — 2.2
>(1=y)x(1—y)>1—e¢.

Since ¢ > Qs arbitrary, we get ¢ (&1 — &2, p) = 1 forall p > 0, which yields & = &;.
Ease (ii): Suppose that m € ICf//’1 (y,p) N Ki,z(%p)- Then, we have ¢ (Fxp, — &1, g) <y,
¥ (FXm — £2,5) < y and therefore

- <4 (=020 (-2
<yQy <e.

Since arbitrary ¢ > 0, we get ¥ (&1 — &, p) = 0 forall p > 0. This occurs that &, = &;. So, we
conclude that T4y — lim x is unique. |

Theorem 2.3: Suppose (X, ¢, ¥, *, Q) be an IFNLS, and x = (xx), y = (yx) be two sequences
inX.

(@) If (¢, ) —limx = & then Tez, , — limFx, = £.
(b) If Trz,,,, — lim Fxx = & and Zr1y,, — limFyx = &, then Trz, , — lim(Fx + Fyx) =
1+ &)

(c) lfIFI(qw) — Iim’I?xk = & and o be any real number, then IFI(W) — lim aka = af.

Proof: (a) As (¢, ) — limx, = &, so for each ¢ > 0 and p > 0 there exists ry € N such that
¢k —&,p) >1—cand ¥ (xx — &,p) < eforallk > rg. The set

A={keN:¢p—§p) =1 —ecory (xc—§,p) = ¢}

is contained in {1,2,...,rg — 1}, then
[keN:¢(Fxx —&p) <1—cory (Fxx —&p) > e} €T,
since 7 is admissible. This shows that IFT 4y — limx, = &.

(b) Lete > 0begiven.Choosey > Osuchthat(1 —y)* (1 —y) > 1—¢candy{y < e.
Forany p > 0, give

Ko (v.p) = k€N3¢(ka—€1,§>§1—V},

Kg2 (y,p) = k€N¢¢(/FYk—52:§>§1—V}r

{

Kuav.p) = fke Ny (Fo—.5) = v},
{

Ky2y,p) = {

ket (Fr—a) 2]
and

Koy (vip) = (Kpg (v, ) UKg2 (v,p) U (Ky 1 (v,p) UKy 2 (v.p)).



FUZZY INFORMATION AND ENGINEERING . 261

Since Zrz,,, — limxy = & and Z¢z, ,, — limyx = &, so for p>0, Ky,1(y,p), Ky,1(v,p),
Kg2(v.p) Ky 2(y,p) and Ky (v, p) belongs to I. So, K;Iw(y,p) is a non-empty set in
F(I). We show that

keN:o (Fox+y) — ($1+$2)P)>1—Sand}
v (Fou+y) — & +8).p) <

Letm e IC(?W (v,p). Then, we get

¢(7:\Xm_§1:§> >1—vy, ¢<?Ym_§2:g) >T—y
v (Bm-a) <y v(Bm-8t)<
Now, we have
& (F Gtn +ym) = € +£2),) = & (P — £, ) ¢ (Fym — 2,5
>T—-y)«x(1—y)>1—c¢
and
¥ (F Om +ym) — & +62,p) < ¥ (Bam — 6.2 ) 0w (Fym — 2,2
< yQy <e.

This shows that

eN:gp (Fou+y0) — 1+ &), p)>1—sand}
v (FOx+y) — &1 +8).p) <

Since K, , (v, p) € F(D).Hence Irg, , — lim(xk + yi) = (61 + &2).

(c) Case(i): Whena =0, foralle > 0andp > O,¢(f0xk —0,p=00,p)=1>1—¢
and W(fOXk —0&,p) = w(0,p) =0 < e.ltgivesus (¢, ¥) — lim Ox, = 0, and by part (i), we
getZrz,,, — Iimexk =0.

Case (ii): When o # 0. As IFI(W) —limx, = &,foreache > 0andp > O,

A=lkeN:¢ (Fxk —&p)>1—ecandy (Fxx — &,p) < e} € FD). )

To show the result it is enough to prove that foreache > 0Oandp > 0,

Koy (v:P) C {

AC{keN:¢(a?xk—a$,p)>1—eand1//(a’ka—a§,p)<s}.
Letm € A.Then, we get¢(’l-:xm —&,p)>1—¢and w(fxm —&,p) < e.Now,
¢(aFXm—Ol‘§p ((\Xm_ _>>¢(\Xm éEp *¢< | | P)
= (Fxm —£,p) ¥ 1=¢ (Fxm —£,p) > 1—¢

and

1/f(()lFXm_Olst ((\Xm_ _><1/f(\xm %‘P <>1/f< || p)
= ¢ (Fxm — £,p) 00 = ¢ (Fxm —£,p) <
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Hence, we have
A C {keN:¢(a7—'\Xk—a$,p) > 1 —eandl//(oell-}xk—aé,p) <e¢}.

But (1) shows that T4y — lim aka = af. [ |

Before the next theorem, we recall the following:
Let (X, ¢, ¥, %, Q) be an IFNLS. The open ball BI(p,s)(F) with center at x and radius p
w.r.t. parameter of fuzziness 0 < ¢ < 1is given as

Bipe)F)={y=ex:¢(Fo0-F.,p)<1—cory (Foo-Fy),p)=¢}eT

where p > 0. A subset A of X is called ZF-bounded if there exists p>0and 0 < ¢ < 1 such
thatq&(’l-:y,p) >1—¢and lp(fy,p) < eforally € A

Let I"q‘;w (X) denotes the space of all ZF-bounded sequences whereas by 7, @, w)(X) we
denote the space of all IF-bounded and Z-convergent sequences in (X, ¢, , x, ). Now, we
have the following theorem.

Theorem 2.4: Let (X, ¢, v, Q) be an IFNLS. Then ZFT ) (X) is a closed linear space of
1) ()-

(&)
Proof: Itis clear that 777 (@)

ofI@‘jw)(X) As (M,)(X) C (mv)(X) provides, so we show that Z (W)(X) - (¢1//)(X)'

Letx € I&fw)(X) Then, B (p,e)NZ @ W)(X) =+ (), for each open ball BI(p ) centered at x

and radius p w.r.t. parameter of fuzziness 0 < ¢ < 1.Takingy € BI(p,s) mIM,)(X) p>0
and ¢ € (0,1). Choosing y € (0,1) suchthat (1 —y)*x (1 —y) >1—¢and yQy < &. As
y € B (p, &) ﬂI(p]/,)(é\,’) there exists a subset I C N such that K € F(Z) and for all k €
K, we get ¢ (Fx _FYk:p) >1—y, ¥ Fx _FYk:p) <7 ¢(FYk:p) >1-vy, w(FYk, ) <V
But for all k € IC, we get

(X) is a subspace of I | (X). Next, we prove the closedness

0] (?Xklp =¢ (/EXk — Fyk + Fy, p)

>¢(ka—Fyk, )*¢>(Fyk, >>(1—y)*(1—y)>1—8

and
¥ (Fxi,p) = v (Fxk — Fyk + Fyi p)
< v (Pxc—Fu 2) o (B ) < voy <ee.
It gives

K clkeN:¢(Fxwp) >1—eand ¢ (Fxip) <e}.
Since K € F(Z), it concludes that

[k eN:¢ (Fx,p) > 1—eand ¥ (Fx,p) < ¢} € F(D).

Therefore, we get x € ¢w)(X) [ |
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Theorem 2.5: All open ball with center at x and radius p w.r.t. parameter of fuzziness0 < ¢ <
1,i.e. BL (p, &) (F) is an open set in c(fw) (F).

Proof: Examine the open ball B%(p,e)(f) with center at x and radius p w.r.t. parameter of
fuzziness0 < ¢ < 1,

Bipe)F)={y=wex:¢(Foo-Fy.p)<1—sory Fo)—F),p)=s} el
Then

C o~
(BF) wo)(F)={y=ww ex:6(Fo—F),p) > 1-eand
v (Fo)—Fy).p) <e} e FD).
Assumey = (yx) € (B%)‘(p, s)(f). Then, the set
ly=00eX:¢(F)—F),p)>1—candy (Fx) —F(y),p) <e} e F (D).
For
¢(Fo0—F),p)>1—-eandy (F) —F),p) <
thereisapg € (0,p) so that
¢ (Fo0 —F(y).po) > 1—eandy (F0) —Fy),po) <e.

Taking g9 = ¢(F(x) - F(y),po) means &g > 1 — . Then, there exists u € (0, 1) so that g9 >
1—u>1—¢. Foregy>1—u, we get 1,62 € (0,1) such that g x&7 > 1—u and (1 —
£0)Q(1 — g9) < u.Take e3 = max{e, &2}. Consider the open ball Bf(p —po, 1 — 83)(7-:).We
have to denote Bf(p —po, 1 — 83)(/':) - B%(P,e)(f).

Assumez = (z¢) € (Bf)c(p —po, 1 — &3)(F), then

{keN:¢ (Fox) —F@),p—po) > e3and ¥ (F i) —F (20),p—po) < 1—s3} € F (D).
So

p(Fx)—F@,p) = ¢ (F)—F¥),po) * ¢ (Fy) —F(.p— po)

>egoke3>goxe1>1—Uu>1—¢,

hence
lkeN:¢p(Fox) —F@),p)>1-¢} e FD),
and
v (F)—F@.p) <v (Fx) —F¥).po) 0¥ (F(y) —F (2).p — po)
S(0-e0)0(0—-e3)=(1-e)0( - <u<g
hence

lkeN:y (Foo—F@),p) <e} e FD).
Therefore the set
{k e N:qﬁ(l-:(xk) —/I-:(zk),p) > 1 —eandw(l-:(xk) —?(zk),p) <el e F (D).

Soz = (z) € (B))(p,e)(F). As a result, we get (B))°(p — po, 1 — £3)(F) C (B))(p, &) (P).
We prove Bf(p, s)(?) is an open setin c@w)(?). |
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Theorem 2.6: The spaces Conn) (F) and ) (F) are Hausdorff spaces.

Proof: It is clear that C0(¢ w)(F) - c(¢ 1//)(F) We have to prove the result for only c(¢ w)(F).
Assume x = (xx), ¥ = (Vx) € c(¢ 1//)(F) such that x # y. At that time, for all p € N, we get

0< ¢(/?xk—Fyk,p) <1, 0< @[f(l-:xk—Fyk,p) <1
Presume

e1=¢ ('EXk —7:\,\//(.!9), g2 =1 (f':Xk —/":}/k.p),
and ¢ = max{e1, 1 — g>}. Afterwards, for all ¢g > ¢ there are e3,¢64 € (0,1) sothat ez * £3 >
€0, (1 —e4)>(1 —e4) < (1 — go). Again suppose &5 = max{es, €4} and contemplate the
open balls 63(1 — &5, g)(F) and Bf(] — &5, g)(F) centered at x and y respectively. Then,
we demonstrate that

BY(1-es,% )(‘)mBI( — 65,5 )(F):(ZJ.
If possible assume
z=(z) er( — &5, = )OHBI( — &5, = )(I-:)
Then, we obtain
&e1=¢ (":Xk —/'EYk:P)

> ¢ (Pu — Fai 2) + ¢ (Fa— Py, p)

> €5 % &5

> e3 %63

= &0 > €1,

=y (/":Xk — Fyk, p)

< v (Fxx — Fzi,p) Oy <?Zk — Py g)

< (1 =651 —e5)

=(1—e)S (1 —ea)

< (1 —¢g) < &2.

From the above equations we obtain a contradiction. So,
BE(1-es,5) Py (1-e5.5) F) = 1.
As a result, the space cgw) (’I-:) is a Hausdorff space. [ |

Definition 2.2: Let (X, ¢, ¥, %, ) be an IFNLS and Z c P(N) be a nontrivial ideal. A
sequence x = (xx) in X is named Fibonacci Z-Cauchy with regards to the IFN (¢, V) or
ZF1,,,,-Cauchy sequence if, for all ¢ > 0and p > 0, there exists a positive integer N so that

Ke(F) = {k e N:q&(l-:xk —’I-:XN,p) <l—sory (I-:xk —’IEXN,p) >¢} el
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Theorem 2.7: Let (X, ¢, Y, *, ) be an IFNLS. Then a sequence x = (xi) in X Fibonacci Z-
convergent with regards to the IFN (¢, V) iff it is Fibonacci Z-Cauchy with regards to the IFN

(@, V).

Proof: Necessity. Let x = (x) in X Fibonacci Z-convergent to & with regards to the IFN
(@, V). ie Legy, , — limx, = &. For a given ¢ > 0, choose y > 0 such that (1 —y) x (1 —
y) > 1—¢eandyQy < e.Since Zgz, , — limx, = &, we get

KF) ={keN:p(Fx—&p)<1—yory (Fx—&p)=y}el @

for all p > 0, which implies that
0#KF) ={keN:p(Fxx—&p)>1—yory (Fxx—£p) <y} eFD.

Letm € Kc(f).Butforp > 0, we have ¢ (Fxm — Ep)>1—y orw(fxm —&,p) < y.Taking
BF) = [keN:¢ (/':Xk —fxm,p) <l—cgory (I-:xk —?xm,p) >e}; p>0,

to show the result it is sufficient to prove B(f) is contained in IC(?). Let k € B(’l-:), then
we have ¢ Fxx — Fxm, H<t1—yor v (Fxk — Fxm, £) > y.for p> 0. We have two possible
cases.

Case (i): We consider qb(ka —?xm,p) < 1 —¢.So, we have ¢(ka — &, g) <1-—yand
then, k € IC(’I-:). As otherwise i.e. if¢(ka —£,2) > 1 -y, then we have

1— &> ¢ (Fxi — Fxm, p) z¢(ka—$,§)*¢(fxm—$,g)

>1T—-y)«x(—y)>1—g¢;

which is impossible. Hence, B(f) C IC(?).
Case (ii): If ¥ (Fxx — Fxm,p) > &, we have ¥ (Fx, — &, g) > y and therefore k € K(F). As
otherwise i.e. if v (Fxk — &, 1) < y, we get

e < ¥ (P Poxmp) = v (Px— .5 ) 0w (Pim — &, 5)
<yQy <&

which is impossible. Hence, B(’l-}) C IC(’I-:). Thus, in all cases, we get B(’F\) C IC(’I-:). By (2)
B(’l-}) € 7. This shows that (xk) in X Fibonacci Z-Cauchy sequence.

Sufficiency. Let x = (xy) in X Fibonacci Z-Cauchy with respect to the IFN (¢, ) but not
Fibonacci Z-convergent with regards to the IFN (¢, ¥). Then there exists r such that

Aepy(F) = {k e N:qb@xk —fx,,p) <l—cory (ka —fx,,p) >e} el

and

B(a,p)(lE):{kEN:(P(/I':Xk—s,g) > 1 —sorw(ka—s,g) <s} el

equivalently, B )(f) e F(I).Since

C
(ep

¢ (Fxx — Fxr,p) > 2¢ (ll-}xk—g, g) >1—g
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and
¥ (Fxk — Fxrp) < 29 (ka —§, g) <e,

Ifd)(?xk — &, g) > (12;8) and w(?xk —£9 < % respectively, we have Af&p) (f) € 7,and so

Aep) (f) € F(Z),which s a contradiction, as x = (x,) was Fibonacci Z-Cauchy with respect
to the IFN (¢, ¥). Hence, x = (xx) must be Fibonacci Z-convergent with regards to the IFN

(@, ¥). [

Definition 2.3: Assume that (X, ¢, ¥, %, ¢) is an IFNLS. A sequence x = (xk) in X is called
Fibonacci Z*-convergent to & € X with regards to IFN (¢, ) if there exists a subset

M ={kiky,...:k1 < ky <---}

of Nsuchthat M € F(Z)and ¢, ¥ — lim;_. X, = £. The element £ is called the Fibonacci

Z*-limit of the sequence (x,) with regards to IFN (¢, ¥) and it is demonstrated by I;‘I(¢ n

|ika =§.

Theorem 2.8: Let (X, ¢, ¥, *,O) be an IFNLS and Z C P(N) be a nontrivial ideal. lfI,’,fIw n
limx, =& thenIFz(W) —limx, = &.

Proof: Suppose that I:I(M/) —limxy =&. Then M = {ky,ky,...: k1 <ky <---} e F(D)
suchthat (¢, V) — limp_. o0 Xk, = &.Foralle > 0and p > Othere existsan integer N > 0 such
that ¢ (xx, —&,p) > 1 —eand ¥ (xx, — &,p) < eforall n > N.Since

[neN:¢(x, —&p)>1—cory (xi, —&p) <e} el

Hence,
[keN:¢ (Fxk —&p) >1—cory (Fxx —&,p) < e}
CHUky <ky<---<---<ky_1} el
foralle > 0and p > 0. As a result, we conclude thatZFI(W) — limx, = &. [ |

3. Conclusion

In the current study, using the concept of Fibonacci sequence, we have introduced the
new notion of Fibonacci ideal convergent sequence in IFNLS. We have shown that these
sequences follow many properties similar to that of classical real-valued sequences. Further,
Fibonacci Z-Cauchy sequences have been introduced and the Fibonacci Z-completeness
of an IFNLS has been established. Finally, the concept of Fibonacci Z*-convergence, which
is stronger than Fibonacci ideal convergence, has been investigated. Several intuitionistic
fuzzy Fibonacci ideal convergent spaces have been established and significant features of
these spaces have been obtained.
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