New Sequence Spaces with Respect to a Sequence of Modulus Functions

Ömer Kişi*a, Erhan Gülerb

*a,b Department of Mathematics, Faculty of Science, Bartın University, 74100, Bartın, Turkey
Email: okisi@bartin.edu.tr
Email: eguler@bartin.edu.tr

Abstract

In this paper, we introduce the notions of \(A^l \)-invariant convergence, \(A'' \)-invariant convergence with respect to a sequence of modulus functions and establish some basic theorems. Furthermore, we give some properties of \(A^{l_{\sigma}} \)-Cauchy sequence and \(A^{l_{\sigma}} \)-Cauchy sequence. We basically study some connections between \(A^l \)-invariant statistical convergence and \(A^l \)-invariant lacunary statistical convergence with respect to a sequence of modulus functions and between strongly \(A^l \)-invariant convergence and \(A^l \)-invariant lacunary statistical convergence with respect to a sequence of modulus functions. Also, we establish some inclusion relations between new concepts of \(l_{\sigma} \rightarrow \lambda \) statistically convergence and \(A^l \)-invariant statistically convergence with respect to a sequence of modulus functions.

Keywords: Lacunary invariant statistical convergence; Invariant statistical convergence; modulus function.

1. Introduction

The notion of statistical convergence of sequences of numbers was introduced by Fast [12]. Later on, statistical convergence turned out to be one of the most active areas of research in summability theory after the works of [15,29].