ON ∇_2-STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF ORDER α IN RANDOM 2-NORMED SPACE

ÖMER KİŞİ

Abstract. In this present paper, we introduce the notion of ∇_2-statistical convergence of double sequences of order α, ∇_2-statistical Cauchy double sequences of order α in random 2-normed spaces and obtain some results. We display examples which show that our method of convergence is more general in random 2-normed space.

1. Introduction

The idea of the statistical convergence was given by Zygmund [36] in the first edition of his monograph published in Warsaw in 1935. The concept of statistical convergence was introduced by Fast [7] and Steinhaus [34] and then reintroduced by Schoenberg [31] independently. Over the years, statistical convergence has been developed in ([3], [13], [14], [21], [25], [29], [35]) and turned out very useful to resolve many convergence problems arising in Analysis.

Definition 1. ([7]) A number sequence $x = (x_k)$ is said to be statistically convergent to the number l if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \left\{ |k \leq n : |x_k - l| \geq \varepsilon \right\} = 0.$$

In this case we write $st-lim_{k \to \infty} x_k = l$. Statistical convergence is a natural generalization of ordinary convergence. If $\lim x_k = l$, then $st-lim x_k = l$. The converse does not hold in general.

In literature, several interesting generalizations of statistical convergence have been appeared. One among these is λ-statistical convergence given by Mursaleen [23] with a non-decreasing sequence $\lambda = (\lambda_n)$ of positive real numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$.

The idea of λ-statistical convergence can be connected to the generalized de la Vallée-Poussin mean. It is defined by

$$t_n (x) = \frac{1}{\lambda_n} \sum_{k \in T_n} x_k$$

2000 Mathematics Subject Classification. 40A05, 40A35.
Key words and phrases. λ-convergence; 2-norm; 2-normed space.
©2018 Universitetit i Prishtines, Prishtina, Kosove.
Communicated by F. Basar.
We thank the editor and referees for their careful reading, valuable suggestions and remarks.