2nd INTERNATIONAL CONFERENCE ON ANALYSIS AND ITS APPLICATIONS

JULY, 12-15, 2016, KIRSEHIR / TURKEY

Abstract Book

Editors:

Prof. Dr. Vatan KARAKAYA
Rector of Ahi Evran University
Kirşehir, TURKEY

Prof. Dr. Mohammad MURSALEEN
Aligarh Muslim University
Aligarh, INDIA

Prof. Dr. Qamrul Hasan ANSARI
Aligarh Muslim University
Aligarh, INDIA

ISBN: 978-605-85712-3-5
Ahi Evran University, Kirşehir / TURKEY - 2016
FOREWORD

Dear Conference Participants,

Welcome to the 2nd International Conference on Analysis and Its Applications (ICAA-2016).

The purpose of the 2nd International Conference on Analysis and Its Applications (ICAA-2016) is to bring together experts and young analysts from all over the world working in analysis and its applications to present their researches, exchange new ideas, discuss challenging issues, foster future collaborations and interact with each other.

The main objective of the workshop is to discuss recent results in nonlinear and variational analysis and their applications, particularly the fixed point theory, optimization and applications to medicine.

We expect the participation of many prominent experts from different countries who will present the state-of-the-art in summability theory, sequence spaces, approximation theory, nonlinear analysis, variational analysis, optimization, and their applications.

The conference brings together about 400 participants from 22 countries (Ajaria, Algeria, Azerbaijan, Bulgaria, China, England, France, India, Indonesia, Iran, Iraq, Morocco, Pakistan, Romania, Saudi Arabia, Senegal, Serbia, South Africa, Taiwan, Tunisia, Turkey, United States of America), out of which 331 are contributing to the meeting with oral and 35 with poster presentations, including nine plenary talks. Also, there are non-presenting 27 participants from India, Kuwait, Oman, Saudi Arabia, Tunisia, Turkey, and Turkmenistan.

It is also a goal of the conference to promote collaborative and networking opportunities among senior scholars and graduate students in order to advance new perspectives. Additional emphasis at ICAA-2016 is put on applications in related areas, as well as other science, such as natural science, economics, computer science and various engineering sciences. The papers presented in this conference will be considered in the journals listed on the conference websites and below:

- Advances in Difference Equations (SCI-Exp),
- Carpathian Journal of Mathematics (SCI-Exp),
- Journal of Nonlinear and Convex Analysis (SCI-Exp),
- Journal of Inequalities and Applications (SCI-Exp.),
- Creative Mathematics and Informatics,
- Istanbul Commerce University Journal of Science.

This booklet contains the titles and abstracts of almost all invited and contributed talks at the 2nd International Conference on Analysis and Its Applications. Only some abstracts were not available at the time of printing the booklet. They will be made available on the conference website http://icaa2016.ahievran.edu.tr when the organizers receive them. All talks will take place in Faculty of Arts and Sciences in Ahi Evran University, Bağbaşı Campus, Kırşehir/Turkey.

We wish everyone a fruitful conference and pleasant memories in Kırşehir, Turkey.

Prof. Vatan KARAKAYA
On Behalf of Organizing Committee
Chairman
(Rector of Ahi Evran University)
It was a great moment of excitement when Prof. (Dr.) Vatan Karakaya, Rector, Ahi Evran University, discussed with me the matter of organizing the “International Conference on Analysis and Its Applications (ICAA-2016)” at Ahi Evran University, Kırşehir. Now it is a matter of great pleasure that the matter of holding this conference is finally materialized. This conference is in the sequel of the first one which was held during December 19-21, 2015 (ICAA-2015) in Aligarh Muslim University, India. Being one of the Co-Chairmen of the conference, I feel privileged and delighted to welcome all delegates, eminent mathematicians, speakers and young researchers in this international event. It is expected that the delegates and the participants will be benefitted by the experience of this conference and the legacy of knowledge dissemination will be continued.

I wish all of you to have a nice and enjoyable participation in the conference.

Prof. Mohammad MURSALEEN

Analysis is one of the most important topics in mathematics and has been a focus of attention of all great mathematicians. There are many areas comes under this topic. However, this conference mainly devoted to some selected topics from analysis, mainly, Theory of Summability and Approximation, Fixed Point Theory, Fourier Analysis, Wavelet and Harmonic Analysis, Variational Analysis, Convex Analysis and Optimization, Geometry of Banach Spaces, Sequence Spaces and Matrix Transformations. During the last half century, nonlinear and variational analysis have been developed very rapidly because of their numerous applications to optimization, control theory, economics, engineering, management, medical sciences and other disciplines. On the other hand, the modern summability theory plays a very important role in linking theory of sequence spaces and matrix transformations with measures of noncompactness. Measures of noncompactness are widely used tools in fixed point theory, differential equations, functional equations, integral and integro-differential equations, optimization, etc. In the recent years, measures of noncompactness have also been used in defining geometric properties of Banach spaces as well as in characterizing compact operators between sequence spaces. We expect the participation of many prominent experts from different countries who will present their current research work and will also mention some hot topics for further research.

Prof. Qamrul Hasan ANSARI
Scientific Committee

A. Ioan RUS (Romania) Kaleem Raza KAZMI (India)
Abdul Rahim KHAN (Saudi Arabia) Kazimierz GOEBEL (Poland)
Adrian PETRUSEL (Romania) Manaf MANAFLI (Turkey)
Akhtam DZHALILOV (Uzbekistan) Mehmet Ali SARIGÖL (Turkey)
Aldona DUKKEWICZ (Poland) Mehmet Emin ÖZDEMİR (Turkey)
Ayhan ŞERBETÇİ (Turkey) Metin BAŞARIR (Turkey)
Bilal ALTAY (Turkey) Mikail ET (Turkey)
Billy E. RHOADES (USA) Mohamed Amine KHAMSI (USA)
Brailey SIMS (Australia) Mohammad MURSALEEN (India)
Bünyamin AYDIN (Turkey) Mohammad IMDAD (India)
Calogero VETRO (Italy) Murat KIRIŞÇİ (Turkey)
Cemil TUNÇ (Turkey) Murat ÖZDEMİR (Turkey)
Davide LA TORRE (UAE, Italy) Murat SARI (Turkey)
Daya Ram SAHU (India) Narin PETROT (Thailand)
Doğan KAYA (Turkey) Nazim B. KERIMOV (Turkey)
Duran TÜRKOGLU (Turkey) Necdet BATIR (Turkey)
Eberhard MALKOWSKY (Turkey) P. VEERAMANI (India)
Ekrem SAVAŞ (Turkey) Poom KUMAM (Thailand)
Emrah Evren KARA (Turkey) Pratulananda DAS (India)
Erdal KARAPINAR (Turkey) QamrulHasan ANSARI (India)
Fahreddin ABDULLAYEV (Turkey) Rais AHMAD (India)
Fatih NURAY (Turkey) Ravi P. AGARWAL (USA)
Feyzi BAŞAR (Turkey) Rifat ÇOLAK (Turkey)
Franco GIANNESSI (Italy) Richard F. PATTERSON (USA)
Gradimir V. MILOVANOVIC (Serbia) Sebahattin BALCI (Kırgızistan)
Hamdullah ŞEVLİ (Turkey) Sebaheddin ŞEVGİN (Turkey)
Hanlar REŞİDOĞLU (Turkey) Seyit TEMİR (Turkey)
Harun POLAT (Turkey) Sezgin AKBULUT (Turkey)
Hasan AKIN (Turkey) Suheil A. KHOURY (UAE)
Henryk HUDZIK (Poland) Ştefan MARUŞTER (Romania)
Heybetkulu Ş MUSTAFAYEV (Turkey) Themistocles M. RASSIAS (Greece)
Hong-Kun XU (China) Tomás Domínguez BENAVIDES (Spain)
Hüseyin ÇAKALLI (Turkey) Vagif GULİYEV (Azerbaijan)
İlham ALİYEV (Turkey) Vasile BERINDE (Romania)
İlhan İÇEN (Turkey) Viktor I. BURENKOV (England)
İsmail EKINCİOĞLU (Turkey) Vishnu Narayan MISHRA (India)
İsmail KÖMBE (Turkey) W.C. WONG (Taiwan)
İsmail KÜÇÜK (Turkey) William Art KIRK (USA)
Jen-Chih YAO (Taiwan) Yılmaz ALTUN (Turkey)
Jesús García-FALSET (Spain) Wataru TAKAHASHI (Japan)
Johannes J. A. EKSTEEN (South Africa) Yusuf ZEREN (Turkey)
Johnson O. OLALERU (Nigeria) Zuhair NASHED (USA)
Józef BANAS (Poland)
Organizing Committee

Vatan KARAKAYA (Chairman) (Turkey)
Mohammad MURSALEEN (co-Chair) (India)
Qamrul Hasan ANSARI (co-Chair) (India)
Billy E. RHOADES (co-Chair) (USA)
Necip ŞİMŞEK (coord.) (Turkey)
Ali AKBULUT (coord.) (Turkey)
Faik GÜRSOY (coord.) (Turkey)
Kadri DOGAN (coord.) (Turkey)
Yunus ATALAN (coord.) (Turkey)
Javid ALI (India)
Arife Aysun KARAASLAN (Turkey)
Aysun SOYSAL (Turkey)
Derya SEKMAN (Turkey)
Emirhan HACIOĞLU (Turkey)
Ezgi ERDOĞAN (Turkey)
M. Abdussamed MALDAR (Turkey)
Melih DİKMEN (Turkey)
Müzeyyen ERTÜRK (Turkey)
Nour El Houda BOUZARA (Turkey)

Local Organizing Committee

Department of Mathematics
Ahi Evran University

Levent KULA (Turkey)
Vagif GULİYEV (Turkey-Azerbaijan)
Ali AKBULUT (Turkey)
Abdullah KOÇ (Turkey)
Ayşegül ÇETİN KAYA (Turkey)
Benem AKINCİ (Turkey)
Bülent ALTUNKAYA (Turkey)
Cem OĞUZ (Turkey)
Emine ÖNAL (Turkey)
Emrah AYDEMİR (Turkey)
Emre TAŞ (Turkey)
Fatih DERİNGÖZ (Turkey)
Ferdaş KAHRAMAN AKSOY (Turkey)
Handan KÖSE (Turkey)
Hasan ALTBAS (Turkey)
Hasan ÜNAL (Turkey)
Hatice ÖZCAN (Turkey)
Hüseyin BULUT (Turkey)
İlkay BİLGİN (Turkey)
İsmail Onur KIYMAZ (Turkey)
Kasım Emre AKSOY (Turkey)
Kemal ARIKAN (Turkey)
Kemal KURT (Turkey)
Kıvanç KARAKAŞ (Turkey)
Mahmut MAK (Turkey)
Mesut ALTINOĞ (Turkey)
Nagehan KILINÇ GEÇER (Turkey)
Nesrin GÜLÜOĞLU (Turkey)
Nil MANSUROĞLU (Turkey)
Ömer UÇAR (Turkey)
Şebnem YILDIZ (Turkey)
Sezin AYKURT SEPET (Turkey)
Süleyman ÇELİK (Turkey)
Turhan KARAMAN (Turkey)
Yasin KARAKAYA (Turkey)
Zehra GÜZEL ERGÜL (Turkey)
Contents

FOREWORDS ... 3

SCIENTIFIC COMMITTEE ... 5

ORGANIZING COMMITTEE ... 6

LOCAL ORGANIZING COMMITTEE .. 6

PLENARY TALKS ... 25

- Upper and Lower Solution Method for Nth Order BVPs on an Infinite Interval 25
 - Ravi P. Agarwal
- Measures of Noncompactness and Their Several Applications ... 25
 - Mohammad Murşalėn
- The Challenge and Magic of Inverse Problems and the Mathematics of Signal Processing 26
 - Zuhair Nashed
- Fixed Point Algorithms for Optimization ... 26
 - Hong-Kun Xu
- Quadrature Methods for Computing Highly Oscillatory Integrals with Bessel Functions 27
 - Gradimir V. Milovanović
- A Glance into the World of Iterative Schemes: Stability and Rate of Convergence 28
 - Vasile Berinde
- Coupled Fixed Points and Diagonal Operators .. 28
 - Adrian Petruşel
- Weak Sharp Solutions and Minimum and Maximum Principle Sufficiency Properties for Nonsmooth Variational Inequalities ... 29
 - Qamrul Hasan Ansari

INVITED TALKS ... 30

- An Algorithm of Asymptotically Nonexpansive Mappings Without Fast Rate Convergence Condition in Hyperbolic Spaces ... 30
 - Abdul Rahim Khan, Hafiz Fukhar-Ud-Din
- Chebyshev Centers, Fixed Point Theorems and Best Proximity Point Theorems 31
 - P. Veeramani
- Optimality Conditions for Generalized Vector Equilibrium Problems ... 31
 - Ali Farazadeh
- Generalized Morrey Regularity for Parabolic Equations with Discontinuous Data 32
 - Vagif S. Guliyev
- Comparative Evaluation of a New Iterative Learning Control Algorithm by Numerical Examples ... 33
 - Jan Eksteen, Stephan Heyns

CONTRIBUTED TALKS ... 34

- Generalized Boundary Problem Governed by the Bilaplacienn Operator 34
 - A. Boulaouad, B. Merouani
- On Order of Approximation Function by Generalized Bernstein-Chlodovski Polynomials 35
 - A.E. Abdullayeva
- Strong Uniform Consistency Rates of Conditional Quantiles for Functional Data in the Functional Single-Index Model ... 36
 - Abbes Rabhi
A NOTE ON THE VALUES OF THE TWISTED BARNES ZETA FUNCTIONS AND THEIR APPLICATIONS 37
Abdelmejid BAYAD, Yılmaz SIMSEK

GENERALIZATIONS OF KAPLANSKY’S THEOREM INVOLVING UNBOUNDED LINEAR OPERATORS 38
Abdelkader BENALİ

THE BOUNDEDNESS OF MAXIMAL AND CALDERON-ZYGMUND OPERATORS ON LOCAL MORREY-LORENTZ SPACES ... 39
Abdulhamit KUCUKASLAN

DISCRETIZATION SCHEME TO FRACTIONAL DIFFUSION EQUATION WITH MEMORY TERM 39
Abderrazez CHAOUI

TWO-PARAMETER regularization METHOD FOR AN ILL-POSED CAUCHY PROBLEM FOR ELLIPTIC EQUATIONS ... 40
A. BENRABAH, N. BOUSSITELA, F. REBBANI

ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR THREE-POINT BOUNDARY VALUE PROBLEM ... 41
Abulakdar DOGAN

POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR p-LAPLACIAN DYNAMIC EQUATION ON TIME SCALES ... 42
Abulakdar DOGAN

\(\Delta^\ast_s \)-STATISTICAL CONVERGENCE ... 43
Abulakdar KARAKAŞ, Yavuz ALTIN

STURMIAN THEORY FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH MIXED NONLINEARITIES 44
Abdullah ÖZBEKLER

A UNIFIED APPROACH TO WEIGHTED Lp HARDY-TYPE INEQUALITIES ON RIEMANNIAN MANIFOLDS 45
Abdullah YENER

RELATION-THEORETIC CONTRACTION PRINCIPLE ... 46
Aftab ALAM, Mohammad IMDAD

DYNAMICS OF A PRE-STRESSED AND IMPERFEECTLY BONDED SANDWICH PLATE-STRIP CONSISTING OF ELASTIC LAYERS AND PIEZOELECTRIC CORE ... 47
Ahmet DAŞDEMİR

TWO WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRALS ASSOCIATED WITH THE LAPLACE-BESSEL DIFFERENTIAL OPERATOR ... 48
A. EROĞLU, M. G.HAJIBAYOV

INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE THIRD DERIVATIVE ABSOLUTE VALUES ARE PREINVEX ... 48
Akhlad IQBAL

TRIGONOMETRIC APPROXIMATION IN WEIGHTED LORENTZ SPACES USING LOWER TRIANGULAR MATRICES 49
Ahmet Hamdi AVSAR, Yünuş Emre YILDIRİR

CONFORMABLE FRACTIONAL INTEGRALS AND RELATED GRÜSS TYPE INTEGRAL INEQUALITIES 50
Ahmet Oacak AKDEMİR, Alper EKİNCİ, Erhan SET

NEW INTEGRAL INEQUALITIES FOR GEOMETRICALLY CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS ... 51
Ahmet Oacak AKDEMİR, Merve AVÇI-ARDIÇ, Abdullatif YALÇIN

NEW RESULT IN STABILITY ANALYSIS OF SINGULAR PROBLEM ... 52
Ahu ERCAN, Etibar S. PANAKHOV

ANALYSIS OF EFFECT OF FLEXIBLE WING ON LIFT AND DRAG COEFFICIENT .. 53
Akshaya DEVI

ROUGH FRACTIONAL MULTILINEAR INTEGRAL OPERATORS ON GENERALIZED WEIGHTED MORREY SPACES.. 53
Ali AKBULUT
HYPERBOLIC SMOOTHING METHOD FOR DC PROBLEMS OBTAINED FROM CLUSTERING PROBLEMS 54
Ali Hakan TOR

SOME APPROXIMATION PROPERTIES OF TWO DIMENSIONAL CHLODOVSKY-BERNSTEIN OPERATORS BASED ON (P, Q) INTEGER ... 55
Ali KARAİSA

GAMMA TYPE GENERALIZATION SZASZ-CHARLIER OPERATORS ... 56
Ali KARAİSA, Bilal ÇAVDAR

MULTIPLY SOLITARY WAVE SOLUTIONS OF THE HIGHER KDV EQUATIONS IN A STRATIFIED SHEAR FLUID FLOW WITH A FREE SURFACE ... 57
Aly R. SEADAWY

EXTENDED TAN-COT METHOD FOR THE SOLUTIONS TO EVOLUTION EQUATIONS 58
Anwar J'a'far Mohamad JAWAD

STUDY OF A FOURTH-ORDER PARABOLIC EQUATION IN TIME-DEPENDENT DOMAINS 59
Arezki KHELLOUI, Boubaker-Khaled SADALLAH

CONVERGENCE THEOREMS OF FIXED POINTS FOR HEMICONTRACTIVE MAPPINGS IN S-PROBABILISTIC NORMED SPACES ... 60
Arife Aysun KARAASLAN, Vatan KARAKAYA

COLLOCATION METHOD USING RADIAL BASIS FUNCTION FOR SOLUTION OF FRACTIONAL CKDÖV EQUATION ... 61
Asif YOKUS, Sema Gülbaşar

HILBERT TRANSFORM ON LOCAL MORREY-LORENTZ SPACES .. 62
Ayhan ŞERBETÇİ

SOME IDENTITIES ASSOCIATED WITH HURWITZ-LERCH ZETA FUNCTION 63
Aykut Ahmet AYGÜNĘŞ

APPROXIMATION BY TWO DIMENSIONAL GENERALIZED SZASZ OPERATORS 64
Aynur N. MAMMADOVA

SOME PROPERTIES OF DOUBLE SEQUENCES AND THE p-CONVERGENCE OF A DOUBLY-SEQUENCE ITERATION WITH ERROR TERMS IN CAT(0) SPACES ... 65
Aynur ŞAHİN, Metin BAŞARIR, Richard F. PATTERSON

MEASURE OF NONCOMPACTNESS AND FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACE 66
Aysun SOYSAL, Vatan KARAKAYA

A RELIABLE COMPUTATIONAL METHOD FOR SINGULAR PROBLEMS .. 67
Ayşe Betül KOÇ

EKELAND'S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO EQUILIBRIUM PROBLEMS 68
Azadeh HOSSEINPOUR, Somayot PLUBTIENG, Ali FARAJZADEH

DYNAMIC EVOLUTION OF DAMAGE AND FRICTION IN PIEZOELECTRIC MATERIALS 69
Abdelaziz AZEB AHMED, Tedjani HADJ AMMAR

BACKWARD DOUBLY SDES AND SPDES WITH SUPERLINEAR GROWTH GENERATORS 70
Badreddine MANSOURI

SUBORBITAL GRAPHS FOR THE RESIDUE CLASS OF PSL(2,Zn) ... 71
Murat BEŞENK, Bahadır Özgür GÜLER, Tuncay KÖR

A NEW RESULT ON GENERALIZED ABSOLUTE MATRIX SUMMABILITY 72
Hikmet Seyhan ÖZARSLAN, Bağdadagül KARTAL

ON REFLEXIVITY OF THE BOCHNER SPACE Lp(µ,E) FOR ARBITRARY µ 73
Banu AYTAĞÜNTÜRK, Bahaeettin CENGİZ

CERTAIN HERMITE-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH COMFORMABLE FRACTIONAL INTEGRAL OPERATORS ... 74
Erhan SET, Barış ÇELİK
SHOCK AND RAREFACTION WAVES FOR BURGERS MODELS ON SPACETIME GEOMETRIES COMPARISON AND ANALYSIS ... 75
Baver OKUTMUŞTUR
ON FLOQUET SOLUTIONS FOR DISCRETE STURM-LIOUVILLE PROBLEM WITH PERIODIC GENERALIZED FUNCTION POTENTIALS ... 76
Manaf MANAFOV, Bayram BALA, Abdullah KABLAN
A NONLINEAR HYPERBOLIC PROBLEM FOR VISCOELASTIC EQUATIONS ... 77
Benabderrahmane BENYATTOU, Rahmoune ABITA
PROJECTED TIKHONOV REGULARIZATION METHOD FOR FREDHOLM INTEGRAL EQNS OF THE FIRST KIND..... 77
Bousettila NADJIB
ON SOME INTEGRAL INEQUALITIES ON TIME SCALES AND APPLICATIONS ... 78
Boukerrioua KHALED
SINGULAR QUASILINEAR ELLIPTIC SYSTEMS WITH (SUB-, SUPER-) HOMOGENEOUS CONDITION 78
Brahim KHODJA, Hana DIDI, Abdelkrim MOUSSAOUI
A NOTE APOSTOL TYPE (P,Q)-FROBENIUS-EULER POLYNOMIALS .. 79
Burak KURT
ANALYSIS OF A SECOND ORDER AND UNCONDITIONALLY STABLE BDF2-AB2 METHOD FOR THE NAVIER-STOKES EQUATIONS ... 80
Osman Raşit İŞİK, Bülent DEMİR
STRONGLY SUMMABLE AND STATISTICALLY CONVERGENT BIVARIATE FUNCTIONS ... 81
Bünyamin AYDIN
ASYMPTOTICALLY IS-CESÁRO EQUIVALENCE OF DOUBLE SEQUENCES OF SETS ... 82
Uğur ULUSU, Erdinç DÜNDAR, Bünyamin AYDIN
A NEW GENERALIZATION OF THE FIBONACCI p —FUNCTIONS WITH PERIOD k .. 83
Yasin YAZLIK, Cahit KÖME
ASSOCIATE SPACES OF GENERALIZED WEIGHTED WEAK-LORENTZ SPACES .. 84
Çanay AYKOL YÜCE
SOME REFINEMENTS OF CERTAIN GAMIDOV INTEGRAL INEQUALITIES ON TIME SCALES AND APPLICATIONS 85
Chiheb TARIK
THE RIESZ CAPACITY IN VARIABLE EXPONENT LEBESGUE SPACES.. 85
Cihan ÜNAL, İsmail AYDIN
ON EXISTING OF FIXED POINT FOR MULTIVALUED MAPPING VIA MEASURE OF NONCOMPACTNESS............. 86
Derya SEKMAN, Vatan KARAKAYA, Nour El Houda BOUZARA
DEFECT-DEFERRED CORRECTION METHOD FOR THE TWO-DOMAIN CONVECTION-DOMINATED CONVECTION-DIFFUSION PROBLEM ... 87
Dilek ERKMEN, Alexander E. LABOVSKY
NONLINEAR WAVELETS AND THEIR STATISTICAL APPLICATIONS... 88
Djabrane YAHIA
SOLUTION OF FRACTIONAL HARRY DYLM EQUATION WITH COLLOCATION USING RADIAL BASIS FUNCTION ... 89
Doğan KAYA, Asif YOKUŞ
CHARACTERIZATION AND REVERSIBILITY OF 2D CELLULAR AUTOMATA WITH REFLECTIVE BOUNDARY 90
Ecem ACAR, Selman UĞUZ, Rahime KOÇ
ANALYSIS OF TRAINING PERFORMANCES OF INTERPOLATION METHODS FOR MODELLING HUMAN BODY MOTION ... 91
Egemen HALICI, Erkan BOSTANCI
A FRACTIONAL ORDER MODEL FOR OBESITY EPIDEMIC ... 92
Elif DEMİRCİ
EXISTENCE AND CONVERGENCE THEOREMS FOR MULTIVALUED GENERALIZED HYBRID MAPPINGS IN CAT(κ)SPACES .. 93
Emirhan HACIOGLU, Vaton KARAKAYA

IDEAL CAUCHY CONDITION FOR INFINITE PRODUCTS .. 94
Emrah Evren KARA, Metin BAŞARIR, Merve İLKHan

SOME INEQUALITIES FOR α-GAMMA FUNCTION .. 95
İnci EGE, Emrah YILDIRIM

SOLVING INVERSE NODAL PROBLEM WITH JUMP CONDITIONS BY USING CHEBISYCHEV POLYNOMIALS AND SOME RESULTS ON STABILITY .. 96
Emrah YILMAZ, Hikmet KOYUNBAKı, N. Shahrbanoо KBARPOOR

SPECTRAL THEORY OF DIRAC SYSTEM ON TIME SCALES .. 97
Tuba GULSEN, Emrah YILMAZ

SUMMABILITY OF DOUBLE SEQUENCES OF 0’S AND 1’S .. 98
Emre TAŞ

UNBOUNDED UPPER AND LOWER SOLUTION METHOD FOR FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS ON THE HALF-LINE ... 99
Erbıl ÇETİN, Ravi P.AGARIWAL

STABILITY AND SQUARE INTEGRABILITY OF SOLUTIONS OF NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATIONS WITH DELAY ... 100
Erdal KORKMAZ, Cemil TUNC

JENSEN’S INEQUALITY WITH OPERATOR s-CONVEXITY (or BRECKNER s-CONVEXITY) IN HILBERT SPACE AND SOME ITS APPLICATIONS ... 101
Erdal UNLUYOL

WUJSMAN STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF SETS .. 102
Fatih NURAY, Uğur ULUSU, Erdinç DÜNDAR

ROTATIONAL HYPSURFACE IN 4-SPACE .. 102
Erhan GÜLER, Martin MAGID, Yusuf YAYLI

ENNEPER TYPE SURFACES IN 4-SPACE .. 103
Erhan GÜLER, Ömer KİŞI, Semra SARAÇOĞLU ÇELİK

ASYMPTOTICALLY Iα-EQUIVALENCE OF SEQUENCES OF SETS .. 103
Uğur ULUSU, Esra GÜLLE

GENERALIZED WEIGHTED STATISTICAL CONVERGENCE IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES 104
Selma ALTUNDAĞ, Esra KAMBER

OPERATOR IDEAL OF S-TYPE OPERATORS USING WEIGHTED MEAN SEQUENCE SPACE ... 105
Ezgi ERDOĞAN, Vatan KARAKAYA

ON EIGENVALUES AND EIGENFUNCTIONS OF A BOUNDARY VALUE PROBLEM WITH RETARDED ARGUMENT 106
Khanlar R. MAMEDOV, F. Ayça ÇETİNKAYA

SOME MATRIX CHARACTERIZATIONS ON THE SERIES SPACE Npθμ AND APPLICATIONS .. 107
Fadime GÖKÇE, Mehmet Ali SARIGöl

ON THE ONE SUFFICIENT CONDITION FOR SHARP ESTIMATION OF ORTHONORMAL POLYNOMIALS OVER A
CONTOUR OF THE COMPLEX PLANE ... 108
Fahreddin ABDULLAYEV, Gülnare ABDULLAYEV

WEAK W2 —STABILITY AND DATA DEPENDENCY OF MANN ITERATIVE SCHEME OF STRONGLY
DEMICONTRACTIVE OPERATORS .. 109
Faik GÜRSOY

APPROX. FIXED POINTS OF ALMOST CONTRACTIONS BY A SIMPLER AND FASTER ITERATIVE SCHEME 110
Faik GÜRSOY, Vatan KARAKAYA, Kadri DOĞAN
ON THE TAYLOR SEQUENCES SPACES OF NON-ABSOLUTE TYPE WHICH INCLUDE THE SPACES
\(\ell_p \) AND \(\ell_\infty \): \(1 \leq p < \infty \) .. 131
Hacer Bilgin ELLİDOKUZOĞLU, Serkan DEMİRİZ

LACUNARY STATISTICAL CONVERGENCE OF ORDER \(\alpha, \beta \) AND STRONG \(N_\alpha\beta, p \) — SUMMABILITY .. 132
Hacer ŞENGÜL

LACUNARY STATISTICAL CONVERGENCE OF ORDER \(\alpha, \beta \) IN TOPOLOGICAL GROUPS ... 133
Hacer ŞENGÜL, Mikail ET

\(A^\langle \beta \rangle \) — STATISTICAL CONVERGENCE OF ORDER \(\alpha, \beta \) \((0 < \alpha < 1) \) .. 134
Hafize GÜMÜŞ

A NUMERICAL ANALYSIS FOR SOLUTION OF DIFFERENTIAL EQUATIONS USING THE COMPLEMENTARY
FUNCTIONS METHOD .. 135
Hakan PEKEL

PERFORMANCE ANALYSIS OF STOCHASTIC BEAM AND VARIABLE NEIGHBORHOOD SEARCH UNDER PARTIALLY
SHARED PHOTOVOLTAIC SYSTEMS .. 136
Zehan KESİMLİ, Halil EROL, Mahmut UÇMAN

A STUDY ON ABSOLUTE ALMOST CONVERGENCE .. 137
Hamdullah ŞEVİLİ, Büşra BALKAŞ

COMPOSITION OPERATORS ON WEIGHTED BESOV SPACES .. 138
Hamid VAEZİ, Ebrahim ZAMANI

IMPROVING THE CONVERGENCE ORDER OF THE REGULARIZATION METHOD FOR FREDHOLM INTEGRAL
EQUATIONS OF THE SECOND KIND .. 139
Hamza GÜEBBAI, Sami SEGNI

EULER SUMMABILITY KIND VARIOUS CONVERGENCE OF SETS .. 140
Harun POLAT

GIBBS MEASURES FOR THE POTTS-SOS MODEL WITH FOUR STATES ON CAYLEY TREE OF ORDER ARBITRARY 141
Halit SAYGILI, Hasan AKIN

BOUNDEDNESS OF THE CALDERON-ZYGMUND SINGULAR INTEGRAL OPERATOR AND ITS COMMUTATORS ON
MODIFIED MORREY SPACES .. 142
Hatice ARMUTCU, Yusuf ZEREN, Vagif S. GÜLIYEV

ON WEIGHTED IYENGAR TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS ... 143
M. Zeki SARIKAYA, Hatice YALDIZ

ON TRIGONOMETRIC APPROXIMATION BY DEFERRED-NÖRLUND (D.N_p) MEANS IN LIP CLASS .. 144
Hilal BAYINDIR, Uğur DEĞER

EXPONENT OF CONVERGENCE OF SOLUTIONS OF CERTAIN LINEAR DIFFERENTIAL EQUATIONS IN THE DISC.. 145
Houari FETTOUCH

COUPLED COINCIDENCE POINT THEOREMS FOR A GENERALIZED COMPATIBLE IN PARTIALLY M. S. .. 146
Hukmi KİZILTUNC, Esra YOLACAN

A VARIATION ON HALF CAUCHY SEQUENCES .. 147
Huseyin ÇAKALLI

A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES .. 148
Huseyin ÇAKALLI, Huseyin KAPLAN

ON COMPUTING THE AVERAGE LOWER DOMINATION NUMBERS OF SOME TREES .. 149
Hüseyin AKSAN, Tufan TURACI

THE AVERAGED MODULUS OF SMOOTHNESS AND ONE SIDED APPROXIMATION IN ORLICZ SPACES .. 150
Hüseyin KOÇ

ON THE PARAMETERIZED SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS .. 151
Ilhame AMIRALI, Gabil M. AMIRALIYEV
OPERATIONS ON $B^\iota(-1)$-CONVEX SETS AND $B^\iota(-1)$-CONVEX FUNCTIONS ... 152

Gabol ADILOV, Ilknur YESILCE

SOME SPECIAL NUMBERS AND POLYNOMIALS RELATED TO K-ARY LYNDON WORDS ... 153

Irem KUCUKOGLU, Yilmaz SIMSEK

A NEW ITERATION SCHEME FOR A HYBRID PAIR OF NONEXPANSIVE MAPPINGS ... 154

Izhar UDDIN

TAUBERIAN THEOREMS FOR WEIGHTED MEANS OF DOUBLE SEQUENCES OF FUZZY NUMBERS .. 155

Ümit TOTUR, Ibrahim ÇANAK

SPECTRAL SINGULARITIES OF THE IMPULSIVE STURM LIOUVILLE OPERATORS ON THE SEMI AXIS ... 156

İbrahim ERDAL, Şeymus YARDIMCI

NORM INEQUALITIES FOR A PARTICULAR CLASS OF MATRICES ... 157

İbrahim Halil GÜMÜŞ, Omar HİRZALLAH, Fuad KİTTANEH

ZWEIER SUPER BANACH SPACES .. 158

İbrahim ŞANLIBABA

AN OPTIMAL MULTIPLE SWITCHING PROBLEM UNDER WEAK ASSUMPTIONS ... 159

İmen HASSAIRI

ROBIN BOUNDARY VALUE PROBLEM FOR THE BELTRAMI EQUATION .. 160

İlker GENÇTÜRK, Kerim KOCA

A SIMPLE APPROACH TO THE SOLUTION OF SPECIAL STRUCTURED NONHOMOGENEOUS HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS ... 161

İnayet DERIN, Yakup HAMEŞ

ON SOME PROPERTIES OF VECTOR-VALUED WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES ... 162

İsmail AYDIN

EDGE OPERATIONS IN GRAPHS AND ZAGREB INDICES ... 163

İsmail Naci CANGUL, Ayşen YURTTLAS, Muge TOGAN, Ahmet Sinan CEVK

INITIAL TIME DIFFERENCE GENERALIZED MONOTONE ITERATIVE TECHNIQUE UNIFIED BY THE UPPER AND LOWER SOLUTIONS .. 164

İsmet ARSLAN, Coşkun YAKAR, Muhammed ÇİÇEK

ON NONLINEAR BOUNDARY VALUE PROBLEM .. 165

Janpou NEE

UNIFIED RELATION-THEORETIC METRICAL FIXED POINT THEOREMS UNDER AN IMPLICIT CONTRACTIVE CONDITION WITH AN APPLICATION .. 166

Md. AHMADULLAH, Javid ALI, M. IMDAD

PARAMETRIC ORDERED GENERALIZED VARIATIONAL INCLUSIONS INVOLVING NODSM MAPPINGS .. 167

Javid IQBAL, Rais AHMAD

ON SOME RESULTS OF NEW THREE-STEP ITERATION PROCESS ON THE CONVEX METRIC SPACES 167

Kadri DOĞAN, Yılmaz ALTUN

ON THE CONVERGENCE RESULTS OF NEW THREE-STEP ITERATION PROCESS ON THE GENERALIZED BANACH SPACES ... 168

Kadri DOĞAN, Vatan KARAKAYA, Faik GÜRSOY

BACKWARD SOBOLEV TYPE FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES 168

Kerboua MOURAD

Q- GREEN’S FORMULA ON THE COMPLEX PLANE IN THE SENSE OF HARMAN .. 169

Kerim KOCA, İlker GENÇTÜRK, Mustafa AYDIN

BERNOLLI MATRIX-COLLOCATION METHOD FOR SOLVING GENERAL FUNCTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH HYBRID DELAYS .. 170

Kübra ERDEM BİÇER, Mehmet SEZER

ON WIJSMAN ASYMPTOTICALLY DEFERRED STATISTICAL EQUIVALENT OF SEQUENCES .. 192
Mikail ET
NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS FOR NONEXISTENCE RESULTS TO CERTAIN EVOLUTION EQUATION ... 193
Mohamed BERBICHE
ANALYTICAL SOLUTION OF A CLASS OF NONLINEAR VOLterra INTEGRAL EQUATIONS USING VARIATIONAL ITERATION METHOD .. 194
Mohammed S. MECHEE, RaadIM. KADUM
A NOT ON PROPERTIES THAT IMPLY THE FIXED POINT PROPERTY .. 195
Mohammad KNEFATI, Vatan KARAKAYA
INTEGRAL TYPE ALMOST CONTRACTION MAPPINGS IN METRIC SPACES .. 196
M. Abdussamed MALDAR, Vatan KARAKAYA
MAXIMUM NORM ANALYSIS OF SCHWARZ METHOD FOR ELLIPTIC QUASI-VARIATIONAL EQUILITIE 197
Mohammed BEGGAS, Mohamed HAIOUR
VARIATION DIMINISHING INTEGRAL OPERATORS OF THE CONVOLUTIONS TYPE ASSOCIATED WITH THE DUNKL OPERATOR ON R .. 198
Moncef DZIRI
PERTURBED PARTIAL FRACTIONAL ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN FRECHET SPACES .. 198
Mouffak BENCHOHRA, Mohamed HELLAL
ON SHERMAN'S INEQUALITY .. 199
Muhammad Adil KHAN
ON GENERALIZED DIFFERENCE SEQUENCES OF FUNCTIONS .. 199
Muhammed ÇINAR, Mikail ET
INVERSE SOURCE PROBLEM FOR TIME-FRACTIONAL HEAT EQUATION WITH A GENERALIZED IMPEDANCE BOUNDARY CONDITION .. 200
Muhammed ÇİÇEK, Mansur İSİGOROGLU (ISMAILOV)
A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEM ... 201
Mehmet Fatih KARAASLAN, Muhammer KURULAY
OSTROWSKI TYPE INEQUALITIES FOR GENERALIZED s-CONVEX FUNCTIONS IN THE SECOND SENSE 202
Muharram TOMAR, Erhan SET
ON I-CONVERGENCE OF SEQUENCES OF FUNCTIONS IN 2-NORMED SPACES ... 203
Mukaddes ARSLAN, Erdinç DÜNDAR
DEFECT-DEFERRED CORRECTION METHOD FOR A FLUID FLOW AT HIGH REYNOLDS NUMBERS 203
Mustaфа AĞGUL
ALMOST CONVERGENCE METHOD WITH FRACTIONAL ORDER OPERATOR ... 204
Murat KİRİŞÇİ
ON SOME FIXED POINT THEOREMS WITH GENERALIZED CONTRACTIONS IN COMPLETE CONE METRIC SPACE SENDOWED WITH A PARTIAL ORDER AND INVOLVING A GRAPH ... 205
Murat CANCAN
DISCUSSION ON ADVECTION-DIFFUSION EQUATION THROUGH FINITE DIFFERENCE SCHEMES 206
Murat SARI, Lamia J.M. AL-MASHHADANI, Arshed A. AHMAD
THE GENERATING FUNCTIONS FOR THE FAMILY OF THE GENERALIZED BERNOULLI POLYNOMIALS 207
Mustaфа ALKAN
TWO NEW PROOFS OF GENERALIZED BIPERIODIC FIBONACCI IDENTITY IN TERMS OF THE DETERMINANTS OF TRIDIAGONAL MATRIX ... 207
Yasin YAŻLIK, Musa BAŞBÜK
SOME NOTES ON THE SEQUENCE SPACES $l_p\lambda Gm$ AND $l^{\infty}\lambda Gm$ 208
Mustafa Cemil BİŞİN, Abdulcabbar SÖNMEZ
A PARAMETERIZED SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM .. 209
Mustafa KÜDU, Gabil M. AMIRALİYEV
P-ADIC GIBBS MEASURES FOR THEISING-VANNIMENUS MODEL ON CAYLEY TREE OF ORDER THREE 210
Mutlay DOGAN, Hasan AKIN
AN EXISTENCE THEOREM FOR ANALYTIC SOLUTION OF A FRACTIONAL DIFFERENTIAL EQUATION WITH
CAPUTO DERIVATIVE ... 211
Müfit ŞAN
SOME CONVERGENCE AND DATA DEPENDENCE RESULTS IN A GENERAL CLASS OF CONTRACTIVE TYPE
OPERATORS .. 212
Müzeyyen ERTÜRK, Vatan KARAKAYA
INTEGRABLE SOLUTIONS OF A NONLINEAR INTEGRAL EQUATION VIA SCHAEFER-KRASNOSELSKII FIXED POINT
THEOREM .. 212
N.ABADA, L. AITKAKI
A FIXED POINT PROOF OF THE CONVERGENCE OF A NEWTON-LIKE METHOD OBTAINED BY THE NORMAL S-
ITERATION PROCESS ... 213
Nazli KARACA, Isa YILDIRIM
A REARRANGEMENT ESTIMATE FOR THE GENERALIZED MULTILINEAR ANISOTROPIC FRACTIONAL INTEGRAL ... 213
Nezrin GADIROVA
CLASSSES OF I-CONVERGENTDOUBLE SEQUENCES OVER \mathbb{N}-NORMED SPACES 214
Nazeen KHAN
ON SOME GEOMETRICAL PROPERTIES .. 215
Necip ŞİMŞEK, Zhamile ASKEROVA
AVERAGE VECTOR FIELD METHOD AND CAPUTO FRACTIONAL DERIVATIVE DEFINITION FOR LINEAR
FRACTIONAL SCHRODINGER EQUATION ... 216
Neslihan Fatma Er, Canan Akkoyunlu, Hikmet Çağlar
SOME CONTRACTIONS AND FIXED POINT THEOREMS IN MODULAR METRIC SPACES 217
Duran TÜRKOĞLU, Nesrin MANAV
ALGORITHM FOR ZEROS OF MAXIMAL MONOTONE MAPPINGS IN CLASSICAL BANACH SPACES 218
A. H. ADOUM, O. DIOP, M. SENE, N. DJITTE
SPECTRAL ANALYSIS OF MATRIX STURM-LIOUVILLE OPERATORS .. 219
Nihat YOKUS, Nimet COSKUN
NEW RESULTS ON GRAPH PRODUCT OF SPECIAL SEMIGROUPS .. 220
Nihat AKGÜNEŞ
PRINCIPAL FUNCTIONS OF DISCRETE STURM-LIOUVILLE EQUATIONS WITH HYPERBOLIC EIGENPARAMETER 221
Nihat YOKUS, Nimet COSKUN
WÜSMAN I-INVARIANT CONVERGENCE OF SEQUENCES OF SETS ... 222
Nimet PANCAROĞLU AKIN, Erdinç DÜNDAR, Fatih NURAY
ON NEW FIXED POINTS THEOREMS FOR SET CONTRACTION MULTIVALUED MAPPINGS AND APPLICATIONS TO
DIFFERENTIAL INCLUSIONS ... 222
Nour El Houda BOUZARA, Vatan KARAKAYA
APPLYING POWELL'S SYMMETRICAL TECHNIQUE TO CONJUGATE GRADIENT METHODS WITH THE
GENERALIZED CONJUGACY CONDITION .. 223
Noureddine BENRABIA
CONVERGENCE OF SPLIT-STEP FOURIER COLLOCATION METHOD FOR BENJAMIN-BONA-MAHONY TYPE
EQUATIONS .. 224
Nurcan GÜCÜYENEN
STATISTICALLY RELATIVELY A-SUMMABILITY OF CONVERGENCE OF DOUBLE SEQUENCES OF POSITIVE LINEAR OPERATORS ... 245

Pınar OKÇU, Fadime DİRİK

SOME SPECTRAL PROPERTIES OF LINEAR OPERATORS ON EXOTIC BANACH SPACES .. 246

Robah DEBBAR

SUPPORT VECTOR MACHINES SVM .. 247

Rachid BELGACEM, Abdessalam AMIR

CHARACTERIZATION OF MIXED MODULUS OF SMOOTHNESS IN WEIGHTED Lp SPACES .. 248

Ramazan AKGÜN

SOME DIRECT APPROXIMATION THEOREMS IN WEIGHTED ORLICZ SPACES .. 249

Ramazan ÇETINTAŞ

UNCONDITIONALLY CAUCHY SERIES AND ZEWIER MATRIX METHOD ... 250

Ramazan KAMA, Bilal ALTAY

TAUBERIAN CONDITIONS FOR DOUBLE SEQUENCES WHICH ARE STATISTICALLY SUMMABLE (C,1,1) IN FUZZY NUMBER SPACE .. 251

Reha YAPALI, Ozer TALO

THE REALIZATION OF THE FEEDBACK AMPLIFIER DESIGN WITH USING ARTIFICIAL NEURAL NETWORK 252

Remzi TUNTAS

PREDICTION OF HARDNESS VALUES OF COLD WORKED Al/SiC COMPOSITE AT DIFFERENT REDUCTION RATIO BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM ... 253

Remzi TUNTAS, Burak DİKİCİ

DIFFERENCE SEQUENCES SPACES AND MATRIX TRANSFORMATIONS OF SOME BILATERAL SEQUENCES 254

Ridvan Cem DEMİRKOŁ, Harun POLAT

TWO-WEIGHTED INEQUALITIES FOR MULTIDIMENSIONALHARDY OPERATOR IN VARIABLE WEIGHTEDLEBESGUESSPACES WITH MIXED NORM ... 255

R. A. BANDALIYEV, S. G.HASANOV

GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONSAROUND AN ISOLATED ESSENTIAL SINGULARITY .. 256

SaadaHAMOUDA

ALGEBRAIC PROPERTIES OF JOIN AND CORONA PRODUCT OF GRAPHS .. 257

Sadık DELEN, Ismail Naci CANGUL

COMMON FIXEDPOINT THEOREMS FOR WEAKLY SUBSEQUENTIALLY CONTINUOUS MAPS IN MODIFIED INTUINSISTIC METRIC SPACES .. 258

Sait SAN

EXACT SOLUTIONS AND CONSERVATION LAWS OF 3+1 DIMENSIONAL YTSF EQUATION .. 259

Said MEZOUZI

GENERALIZED RESULT OF GLOBAL SOLUTIONS TO A CLASS OF A REACTION-DIFFUSION SYSTEM 260

Samer BADRAOUI

A MODIFIED REGULARIZATION METHOD FOR A NON-LINEAR ABSTRACT PARABOLIC EQUATION 261

Salah DJEZZAR, Roumaissa BENMARAI

ASYMPTOTIC BEHAVIOR OF WEAKLY COUPLED THERMOELASTIC WAVE MODEL ... 262

Salem NAFAŘI

ON THE CONVERGENCE FOR A SEQUENCE OF INTERVALS OF FUZZY NUMBERS ... 263

Salih AYTAR

SOME INEQUALITIES FOR DOUBLE INTEGRALS AND APPLICATIONS FOR CUBATURE FORMULA ... 264

SaadaHAMOUDA
SOME PERTURBED INEQUALITIES OF OSTROWSKI TYPE FOR TWICE DIFFERENTIABLE FUNCTIONS 265
Samet ERDEN, Hüseyin BUDAK, M. Zeki SARIKAYA
ON THE PALINDROMICS CONTINUED FRACTIONS IN THE FIELD \(F_\alpha((X^\alpha-1)) \) 266
Sana DRISS
CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND GENERALIZED HYBRID MAPPINGS 266
Sattar ALIZADEH, Fridoun MORADLOU
HYERS-ULAM-RASSIAS STABILITY OF A VOLterra INTEGRAL-DIFFERENTIAL EQUATION 267
Sebaheddin ŞEVGİN
APPROXIMATION PROPERTIES OF ANALYTIC FUNCTIONS BY THE SEQUENCES OF \(\kappa \)-POSITIVE LINEAR OPERATORS IN SOME SUBSPACE OF ANALYTIC FUNCTIONS ... 268
Tülin COŞKUN, Seda KARATEKE
HERMITE-HADAMARD AND SIMPSON-LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE \(p \)-QUASI-CONVEX FUNCTIONS .. 269
İmdat İŞCAN, Sercan TURHAN, Selahattın MADEN
ON SOME EQUALITIES OF ORDINARY LEAST SQUARES AND BEST LINEAR UNBIASED ESTIMATORS UNDER A GENERAL PARTITIONED LINEAR MODEL .. 270
Selahattın MADEN
SOME RESULTS ON THE GENERALIZED MELLIN TRANSFORMS AND APPLICATIONS 271
Selcan KOCABAŞ, Erzgi ERDOĞAN, A. Neşe DERNEK
APPROXIMATE SOLUTION FOR SOLVING THE SINE-GORDON EQUATION BY REDUCED DIFFERENTIAL TRANSFORM METHOD WITH FIXED GRID SIZE .. 272
Sema SERVİ, Yıldıray KESKIN, Galip OTURANC
EULER SPIRALS .. 273
Semra SARAÇOĞLU ÇELIK, Erhan GÜLER, Ömer KıŞİ
SIMPLE EQUATION METHOD FOR TRAVELING WAVESOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ... 273
Serbay DURAN, Ibrahim E. INAN, Yavuz UĞURLU
ENTROPY CONVERGENCE FOR SEQUENCES OF FUZZY NUMBERS .. 274
Sevda ATPINAR, Mehmet ŞENGÖNÜL
ENTROPY VALUE OF QRS COMPLEX IN THE ELECTROCARDIOGRAPHY .. 275
Sevda ATPINAR, Mehmet ŞENOL
OPTIMIZATION OF HIGHER ORDER POLYHEDRAL DISCRETE AND DIFFERENTIAL INCLUSIONS 276
Sevilay DEMİR, Elimhan MAHMUDOV
WEIGHTED APPROXIMATION BY NONLINEAR DOUBLE SINGULAR INTEGRAL OPERATORS 277
Gümrah UYSAL, Sevilay KIRIÇ SERENBAY, Ertan İBIKLİ
ON STATISTICAL CONVERGENCE OF SEQUENCES OF FUNCTIONS IN 2-NORMED SPACES 278
Sevim YEGÜL, Erdinç DÜNDAR
SOME DOUBLE SEQUENCE SPACES OF INTERVAL NUMBERS ... 279
Sibel YASEMİN GÖLBOL, Uğur DEĞER, Ayhan ESİ
APPROXIMATING SOLUTIONS OF NONLINEAR ABSTRACT MEASURE DIFFERENTIAL EQUATIONS 280
Sidheshwar BELLALE, Bapu Rao DHAGE
ON \(\lambda \)-CONVERGENCE OF SECOND ORDER AND NEW BANACH SPACES ... 281
Sinan ERCAN, Çiğdem A. BEKTAŞ
COMPARISON OF SOME SET OPEN AND UNIFORM TOPOLOGIES ON \(C(X,Y) \) .. 282
Smail KELAIAIA, Lamia HARKAT
SOLUTION OF A LINEAR MULTIOBJECTIVE PROBLEM BY THE ADAPTIVE METHOD 283
Zohra Sabrina DELHOUM, Sonia RADIEF, Fatima BOUDAOU
GROUPS WHOSE PROPER SUBGROUPS ARE HYPERCENTRAL .. 284
Souad AZRA, Nadir TRABELSI

SOLUTION OF FRACTIONAL ORDER ORDINARY DIFFERENTIAL EQUATION: A NUMERICAL APPROACH 284
Soumen SHAW

ERROR ANALYSIS FOR EXTENDED DISCONTINUOUS GALERKIN(XDG) METHODS 285
Süaüip TOPRAKSEVEN

ON A C* - MODULE NORMED SPACE AND ITS TOPOLOGICAL PROPERTIES 286
SUPAMA, Atok ZULIANTO, Imam SOLEKHUDIN, SUMARDI

NUMERICAL SOLUTIONS OF SINGULARLY PERTURBED TURNING POINT PROBLEMS EXHIBITING AN INTERIOR LAYER VIA MAGNUS SERIES EXPANSION METHOD ... 287
Sure KÖME, Aytekin ERYILMAZ

ON GENERALIZATION ABSOLUTE RIESZ SUMMABILITY FACTORS OF FOURIER SERIES 288
Hikmet Seyhan ÖZARSLAN, Şebnem YILDIZ

SPECTRAL SINGULARITIES OF IMPULSIVE DISCRETE DIRAC OPERATORS .. 289
Şerifenur CEBESOY, Elgiz BAIKRAMOV, Şeyda SOLMAZ

FIXED POINT RESULTS FOR BERINDE-TYPE ALMOST CONTRACTIONS ON Gp-METRIC SPACES 290
Şeyma ÇEVİK, Hasan FURKAN

WISMAN F2 -INVARIENT CONVERGENCE OF DOUBLE SEQUENCE OF SETS ... 291
Süküri TORTOP, Erdinç DÜNDAR

A PRIORI ESTIMATES OF SOLUTIONS BOUNDARY VALUE PROBLEMS FOR THE HIGHER ORDER ELLIPTIC EQUATIONS IN GENERALIZED MORREY SPACES .. 291
Tahir GADJIEV, Shahla GANDAROVA

TWO PARAMETRIC (P; Q)-STANCU-BETA OPERATORS AND THEIR APPROXIMATION PROPERTIES 292
Taqsier KHAN

A COMPARISON OF FINITE-DIFFERENCE METHOD BY FIRST ORDER AND SECOND ORDER CENTRAL DIFFERENTIATION FORMULAS FOR LINEAR ODES UP TO FOURTH DEGREE AND A GENERALIZED CODE 293
Tefaruk HAKTANIR, Hatice CITAKOGLU, Murat COBANER

MATHEMATICAL ANALYSIS OF LENGYEL-EPSTEIN MODEL BY FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS SYSTEMS .. 294
Teslima DAŞBAŞI, Bahatdin DAŞBAŞI

GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR A TYPE OF NONLINEAR INTEGRO DIFFERENTIAL EQUATIONS OF THIRD ORDER .. 295
Timur AYHAN

A NEW RESULT ON THE CONTINUABILITY AND BOUNDEDNESS OF SOLUTIONS TO A CLASS OF VECTOR DIFFERENTIAL EQUATIONS OF THIRD ORDER WITH DELAY ... 296
Timur AYHAN

AN INVERSE NODAL PROBLEM TO CONSTRUCT COULOMB POTENTIAL FOR p-LAPLACIAN STURM-LIOUVILLE EQUATION WITH POLYNOMIALLY BOUNDARY CONDITIONS ... 297
Tuğba GÜLSEN

SOME GENERAL RESULTS FOR THE AVERAGE LOWER 2-DOMINATION NUMBER OF GRAPHS 298
Tuğan TURACI

A NEW EFFECTIVE METHOD TO SOLVE NONLINEAR PARTIAL DIFFERENTIAL EQN.: THE UNIFIED METHOD ... 299
Şamil AKÇAĞIL, Tuğba AYDEMIR And Ömer Faruk GÖZÜKIZIL

THE MULTIDIMENSIONAL REVERSE HARDY-TYPE INEQUALITIES FOR SUPREMAL OPERATOR 300
Rza MUSTAFAYEV, Tuğçe ÜNVER

ON STATISTICAL CONVERGENCE WITH RESPECT TO THE GEOMETRIC MEAN AND ITS APPLICATIONS TO APPROXIMATION THEOREMS ... 301
Uğur KADAK, Feyzi BAŞAR
NECESSARY AND SUFFICIENT CONDITIONS FOR FIRST ORDER DIFFERENTIAL OPERATORS TO BE ASSOCIATED WITH A GENERALIZED CAUCHY-RIEMANN OPERATOR IN CLIFFORD ANALYSIS .. 302
Üğur YÜKSEL

INVERSE NUMERICAL RADIUS INEQUALITY FOR REPRODUCING KERNEL HILBERT SPACE OPERATORS 303
Ulaş YAMANCI, Mehmet GÜRDAL

SECOND-ORDER BOUNDARY VALUE PROBLEM ON A HALF-LINE .. 304
Ummahan AKCAN, Erbil ÇETİN

PARABOLIC OBLIQUE DERIVATIVE PROBLEM WITH DISCONTINUOUS COEFFICIENTS IN GENERALIZED WEIGHTED MORREY SPACES .. 305
V. S. GULIYEV, M. N. OMAROVA

FIXED POINT THEOREMS FOR MAPPINGS (E.A)-PROPERTY IN PARTIAL METRIC SPACE 306
Vildan ÖZTÜRK, Duran TÜRKÖĞLU

RIESZ POTENTIAL IN GENERALIZED MORREY SPACES ON THE HEISENBERG GROUP 306
Y. PELİN MAMMADO, V A. EROGLU

ON EXISTENCE AND CONVERGENCE THEOREMS FOR A NEW GENERAL NONLINEAR MAPPING ON CAT(0) SPACES .. 307
Vatan KARAKAYA, Emirhan HACIOĞLU, Yunus ATALAN

SOME THEOREMS ABOUT STATISTICAL CONVERGENCE ON TIME SCALES .. 308
Yavuz ALTIN

AUTO-BÄCKLUND TRANSFORMATION FOR SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATION 309
İbrahim E. INAN, Yavuz UĞURLU, Hasan BULUT

A NEW APPROACH TO FRACTIONAL q-DIFFERENCE EQUATIONS AND THE q-LAPLACE TRANSFORM 310
Yavuz YAZICI, Umut Mutlu ÖZKAN

ON THE CONSTRUCTION OF GENERAL SOLUTION OF THE EQUATION \(\partial w(z)\partial \phi(z) - 12\phi(z) - 1.\lambda wz=0 \) .. 311
Yeşim SAĞLAM ÖZKAN, Sezayi HIZLIBEL

CENTRAL FACTORIAL TYPE NUMBERS ASSOCIATED WITH AVERAGING OPERATOR 312
Yılmaz ŠİMŞEK

STABILITY OF NONLINEAR VOLterra-FREDHOLM INTEGRAL DIFFERENTIAL EQUATION:A FIXED POINT APPROACH ... 313
Yunus ATALAN, Vatan KARAKAYA

ON STATISTICAL E-CONVERGENCE OF DOUBLE SEQUENCES .. 314
Yurdal SEVER, Özer TALO

THE VARIATIONAL FORMULATION OF AN INVERSE PROBLEM FOR A PARABOLIC EQUATION 315
Yusuf KOÇAK

COMPACTNESS OF FRACTIONAL MAXIMAL OPERATOR IN WEIGHTED \(L^p(\alpha) \) (0,1) SPACE 316
Yusuf ZEREN, Lutfi AKIN

NEW SOLUTIONS OF THE SPACE-TIME FRACTIONAL SHARMA-TASSO-OVER EQUATION WITH CONFORMABLE DERIVATIVE .. 317
Yücel ÇENESİZ, Orkun TAŞBOZAN, Ali KURT, Olaniyi Samuel IYIOLA

NONCOMMUTATIVE SPACE AND 2D SCHRÖDINGER EQUATION WITH CENTRAL POTENTIAL 318
Slimane ZAIM, Hakim GUELMAKENE

DETERMINING THE CENTER OF GRAVITY AND SIMILARITY MEASURES OF SEQUENCE SPACES OF TRIANGULAR FUZZY NUMBERS ... 319
Zorfe ZARARISZ

OBTAINING MATHEMATICAL MODELS OF THE PIEZOELECTRIC SYNTHETIC JET 320
Zeynep EKLİCİOĞLU KÜZECİ, Celal Sami TÜFEKÇİ

LACUNARY \(1-\sigma \)-CONVERGENCE ... 321
Üğur ULUSU, Fatih NURAY
EXISTENCE AND NONEXISTENCE FOR NONLINEAR PROBLEM ... 321
B. ABDELLAOUI, K. BIROUD, J. DAVILA, AND F. MAHMoudI
MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEM OF FORWARD BACKWARD WITH A JUMP IN THE MEAN-FIELD MODEL ... 322
N. CHAOUCHKHOUANE, B. LABED, L. TAMER
ON A SOLUTIONS IN PC(O,B;X) OF SOME INTEGRAL EQUATION WITH APPLICATION TO AN IMPLULSIVE SEMILINEAR DIFFERENTIAL EQUATION .. 322
Leila AITKAKI, Nadjet ABADA
PERSISTENCE AND GLOBAL STABILITY IN A BEDDINGTON-DEANGELIS TYPE THREE SPECIES FOOD CHAIN .. 323
W. KHELLAF
POSTER SESSION .. 323
ON THE PARABOLIC EQUATION WITH NONLOCAL CONDITIONS .. 323
Abdelhak Berkane, Abdelkrim Zekri
A NONLOCAL SPECTRAL PROBLEM .. 324
Abdelkrim Zekri, Abdelhak Berkane
FIXED POINT THEOREM AND EM ALGORITHM ... 324
Ahsene LANANI, Rahima BENCHABI
A NEW MODIFIED SCHEME FOR LINEAR SHALLOW-WATER EQUATIONS .. 326
Aicha BOUSSAHA
ELECTRO-VISCOELASTIC ANTIPLAN CONTACT PROBLEM WITH POWER FRICTION LAW 327
Allaoua BOUDJEDOUR, Mohamed DALAH
HIGH ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE ON AN UNBOUNDED INTERVAL 327
Assia FRIOU
THE FRACTIONAL-ORDER MATHEMATICAL MODELING OF BACTERIAL RESISTANCE AGAINST MULTIPLE ANTIBIOTICS IN CASE OF LOCAL BACTERIAL INFECTION ... 328
Bahatdin DAŞBAŞI, Emre Hayri BARAZ
CHELYSHKOV COLLOCATION APPROACH FOR MODEL DESCRIBING BIOLOGICAL SPECIES LIVING TOGETHER 329
Cem OĞUZ, Mehmet SEZER
EXISTENCE OF SOLUTIONS FOR P(X)-SOLITONS TYPE EQUATIONS IN SEVERAL SPACE DIMENSIONS 330
Dellal ABDELKADER, Henderson JOHNNY, Ouaab ABDELGHANI
THE EXISTENCE OF SOLUTIONS FOR A FRACTIONAL-ORDER BOUNDARY VALUE PROBLEM 331
Dondu OZ, Ilkay KARACA
PROPERTIES OF MINIMIZING CURVES FOR GEOMETRIC OPTIMAL CONTROL PROBLEMS 332
Draï Nedjoura
A NEW APPROACH OF THE CUTTING PLANE ALGORITHM USING INTERIOR POINT METHOD 333
El Amir DJEFFAL
ON THE GENERALIZATION OF THE GRAPH-DIRECTED ITERATED FUNCTION SYSTEMS 334
Yunus ÖZDEMİR, Fatma Diğdem YILDIRIM
APPROXIMATION OF THE UNILATERAL CONTACT PROBLEM BY THE FINITE ELEMENT METHOD 335
Frekh TAALLAH
SOME SPECIAL CURVES AND MANNHEIM CURVES IN THREE DIMENSIONAL EUCLIDEAN SPACE 336
Fundu KAYMAZ, Ferdağ KAHRAMAN AKSOYAK
LAMB SHIFT IN HYDROGEN LIKE ATOM INDUCED FROM NON COMMUTATIVE QUANTUM SPACE TIME ... 337
Hakim GUELMAINE
MODELING AND CONTROL FOR NONLINEAR SYSTEM ... 338
Hachemi GLAOUI
EXISTENCE OF POSITIVE SOLUTIONS FOR SOME SYSTEMS OF SINGULAR SECOND-ORDER DIFFERENTIAL EQUATIONS .. 339
Karima MEBARKI, Smail DJEBALI
ON INARIANT WIDE BAND NOISE FILTER ... 340
Kanda ABUASSBA
ANALYSE AND STUDY OF ANTIPLANE ELECTRO-VISCOELASTIC CONTACT PROBLEM .. 341
Hacene Chaouche SOUMEYA, Mohamed DALAH, Alloua BOUDJEDOUR
ON FINITE ELEMENT APPROXIMATION IN THE L^{|\omega|}-NORM OF SYSTEM OF PARABOLIC QUASI-VARIATIONAL INEQUALITIES RELATED TO STOCHASTIC CONTROL PROBLEMS .. 342
Mohamed El Amine BENCHEIK LE HOCINE
THE EFFECT OF ALLEE FACTOR ON STABILITY IN A NONLINEAR DISCRETE-TIME POPULATION MODEL INVOLVING DELAY ... 343
Özlem AK GÜMÜŞ
OPTIMAL CLAIM BEHAVIOUR FOR VEHICLE DAMAGE INSURANCES .. 344
S. SEGNI
VOLterra INTEGRO-DIFFERENTIAL EQUATIONS OF CONVOLUTION TYPE .. 344
Sami SEGNI
THE WEAK SOLUTION OF ANTIPLANE ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH REGULARIZED FRICTION LAW .. 345
Hacene Chaouche SOUMEYA, Mohamed DALAH
NEW EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING TRIAL EQUATION METHOD .. 346
Riad HEDLI, Abdelouahab KADEM
A STUDY OF THE APPLICATION OF CHAOS TO THE GLOBAL OPTIMIZATION .. 347
Tayeb HAMAIZIA
DETERMINATION OF SOME NON LINEAR GROWTH CURVES WITH THE SUM OF SQUARE REDUCTION TEST FOR TURKEYS REARING IN FREE RANGE SYSTEM .. 348
Ufuk KARADAVUT, Atilla TAŞKIN, Mehmet Emin YAZICI
LOCAL CONDITIONS FOR THE EXISTENCE OF CYCLES .. 349
Zineb BENMEZIANE
MAPPINGS BETWEEN C*- ALGEBRAS THAT PRESERVE THE SPECTRUM .. 350
Hakan AVCI, Nilay SAGER
EXISTENCE OF MINIMAL AND MAXIMAL SOLUTIONS FOR A SECOND ORDER QUASILINEAR DYNAMIC EQUATION WITH INTEGRAL BOUNDARY CONDITIONS .. 351
Mohammed DERHAB, Mohamed NEHARI
INDEX .. 352
PLENARY TALKS

UPPER AND LOWER SOLUTION METHOD FOR nth ORDER BVPs ON AN INFINITE INTERVAL

Ravi P. AGARWAL
Texas A&M University-Kingsville, USA
Ravi.Agarwal@tamuk.edu

Abstract: This work is devoted to study nth order ordinary differential equation on a half-line with Sturm-Liouville boundary conditions. The existence results of a solution and triple solutions are established by employing a generalized version of the upper and lower solution method, Schäuder fixed point theorem, and topological degree theory. In our problem the nonlinearity depends on derivatives, and we allow solutions to be unbounded, which is an extra interesting feature. To demonstrate the usefulness of our results we illustrate two examples.

Keywords: nth order ODE, Schäuder fixed point theorem, topological degree theory.

MEASURES OF NONCOMPACTNESS AND THEIR SEVERAL APPLICATIONS

Mohammad MURSALEEN
Department of Mathematics, Aligarh Muslim University, Aligarh/INDIA
mursaleenm@gmail.com

Abstract: In this talk, we present technique of measures of noncompactness to characterize compact operators between some sequence spaces. We also present some applications of measures of noncompactness to the theory of infinite system of differential equations in some sequence spaces. Further, we present some new results on applications to integral equations.

Keywords: Measures of noncompactness, differential equations, sequencespaces.

References:

THE CHALLENGE AND MAGIC OF INVERSE PROBLEMS AND THE MATHEMATICS OF SIGNAL PROCESSING

Zuhair NASHED
Department of Mathematics
University of Central Florida
Orlando, Florida, USA

Abstract: Inverse Problems deal with determining for a given input-output system an input that produces an observed output, or determining an input that produces an output that is as close as possible to a desired output, often in the presence of noise. Most inverse problems are ill-posed, so their resolution requires some methods of regularization. Signal Analysis/Processing deals with digital representations of signals and their analog reconstructions from digital representation. Sampling expansions, filters, reproducing kernel Hilbert spaces, various function spaces, and techniques of functional analysis, computational and applied harmonic analysis play pivotal role in this area. This talk will highlight some landmarks in these two areas and discuss some common threads between them. We will show that function spaces, in particular reproducing kernel Hilbert spaces, play a magical role in both ill-posed inverse problems and sampling expansion theorems.

The year 2016 marks the 110th birthday of the great Russian mathematician Andrey Nikolaevich Tikhonov (October 30, 1906 - October 7, 1993) and the 100th birthday of the great American mathematician Claude Elwood Shannon (April 30, 1916 - February 24, 2001). We celebrate their memory and seminal contributions to regularization theory of ill-posed problems, and sampling expansions and communication theory, respectively.

FIXED POINT ALGORITHMS FOR OPTIMIZATION

Hong-Kun XU
Department of Mathematics
Hangzhou Dianzi University
Hangzhou 310018, China
xuhk@hdu.edu.cn

Abstract: We will report fixed point algorithms and their applications in convex and nonconvex optimization problems.

Keywords: Fixed point algorithms, optimization problems.
QUADRATURE METHODS FOR COMPUTING HIGHLY OSCILLATORY INTEGRALS WITH BESSEL FUNCTIONS

Gradimir V. MILOVANOVIĆ

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade/SERBIA

gvm@mi.sanu.ac.rs

Abstract: In this lecture, we deal with integration of rapidly oscillating functions, which appear in the theory of special functions, as well as in applied and computational sciences and engineering. Using suitable integral representations of special functions, we show how existing or specially developed quadrature formulas can be successfully applied to effectively calculation of such highly oscillatory integrals of Fourier type with Hankel kernel, oscillatory Bessel transformation, Bessel-Hilbert transformation, etc. Theoretical results and numerical examples illustrate the efficiency and accuracy of the proposed methods.

Keywords: Gaussian quadrature rule, oscillatory Bessel transform, Hankel function, Whittaker W function, error analysis.

References:

A GLANCE INTO THE WORLD OF ITERATIVE SCHEMES:
STABILITY AND RATE OF CONVERGENCE

V. BERINDE
Technical University of Cluj-Napoca
North University Center at Baia Mare
Baia Mare/ Romania
vasile.berinde@gmail.com

Abstract: Iterative schemes are ubiquitous among the constructive methods in nonlinear analysis. Some of their most important accessories are:

1. Computability; 2. Stability; 3. Rate of convergence (error estimate). Starting from the various numerical demands coming from concrete problems in pure and applied mathematics, the main aim of this talk is to present some recent approaches to study of stability and rate of convergence of one step and multi-step iterative schemes.

Numerical tests and experiments to illustrate the main ideas of the lecture will also be presented.

Keywords: Iterative schemes, stability, rate of convergence.

COUPLED FIXED POINTS AND DIAGONAL OPERATORS

Adrian PETRUȘEL
Department of Mathematics, Babeș-Bolyai University Cluj-Napoca, Romania
petrusel@math.ubbcluj.ro

Abstract: In this talk, we will study coupled fixed point problems for single-valued and multi-valued operators. The notion of diagonal operator and its historical roots will be also presented. Our approach is based on the weakly Picard operator technique. Some applications and research directions are also suggested.

References:

WEAK SHARP SOLUTIONS AND MINIMUM AND MAXIMUM PRINCIPLE SUFFICIENCY PROPERTIES FOR NONSMOOTH VARIATIONAL INEQUALITIES

Qamrul Hasan ANSARI

Abstract: In this talk, we present a brief introduction of nonsmooth variational inequalities defined by of generalized directional derivatives. We first introduce gap functions, and then by using such gap functions we study the minimum and maximum principle sufficiency properties for nonsmooth variational inequalities. We provide several characterizations of these two sufficiency properties. We also study the weak sharp solutions for nonsmooth variational inequalities and give a characterization in terms of error bound. Some characterizations of the solution sets of nonsmooth variational inequalities will be presented. Under certain conditions, we prove that the sequence generated by an algorithm for finding a solution of nonsmooth variational inequalities terminates after a finite number of iterates provided that the solutions set of the nonsmooth variational inequality is weakly sharp. We also study the finite termination property of the gradient projection method for solving nonsmooth variational inequalities under weak sharpness of the solution set.

Keywords: Three step iteration, strong convergence, rate of convergence, data dependence integral equation.

References:

INVITED TALKS

AN ALGORITHM OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITHOUT FAST RATE CONVERGENCE CONDITION IN HYPERBOLIC SPACES

Abdul Rahim KHAN¹, Hafiz FUKHAR-UD-DIN¹,²

¹Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
arahim@kfupm.edu.sa

²Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
hfdin@kfupm.edu.sa

Abstract: In the context of a hyperbolic space, we introduce and study convergence of implicit iterates of a finite family of asymptotically (quasi-) nonexpansive mappings with and without the fast rate convergence condition associated with the family of mappings. The results presented in this paper substantially improve and extend several recent well-known results in uniformly convex Banach spaces.

Keywords: Hyperbolic space, asymptotically (quasi-)nonexpansive mapping, common fixed point, implicit iteration process, semi-compactness, ∆ – convergence, strong convergence.

References:

CHEBYSHEV CENTERS, FIXED POINT THEOREMS AND BEST PROXIMITY POINT THEOREMS

P. VEERAMANI
Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India
pvmani@iitm.ac.in

Abstract: In this talk, it is aimed to discuss the relation between normal structure and the invariance of the set of Chebyshev centers of a non-expansive (isometry) map defined on a weakly compact convex subset of a Banach space. We also indicate some problems involving Chebyshev centers, normal structure and fixed points of non-expansive (isometry) maps.

Keywords: Nonexpansive maps, Chebyshev centers, best proximity.

OPTIMALITY CONDITIONS FOR GENERALIZED VECTOR EQUILIBRIUM PROBLEMS

Ali FARAJZADEH
Department of Mathematics, Razi University, Kermanshah, 67149, Iran.
farajzadehali@gmail.com

Abstract: In this presentation, existence of a nonempty pointed convex cone with empty topological interior and nonempty algebraic interior for an arbitrary infinite dimensional linear topological space is proved. A multivalued version of Farakas's lemma in the setting of ordered linear spaces is established. By using it, an equivalence relation between the solution set of some generalized vector equilibrium problems and the corresponding minimization problems are provided. The techniques are used in this note different from the KKM theory and fixed point theory. Some examples in order to support the main results are given.

Keywords: Pointed convex cone KKM, farakas’s lemma, generalized vector equilibrium problems, minimization problems, infinite dimensional linear topological space.
GENERALIZED MORREY REGULARITY FOR PARABOLIC EQUATIONS WITH DISCONTINUOUS DATA

Vagif S. GULIYEV¹,²

¹Department of Mathematics, Ahi Evran University, Kirsehir/TURKEY
²Institute of Mathematics and Mechanics, Baku/azerbaijan
vagif@guliyev.com

Abstract: We obtain two types of results:

- Boundedness of sublinear operators generated by singular and nonsingular integrals in generalized Morrey spaces $M^{p,\varphi}$. Continuity in $M^{p,\varphi}$ of some classical integral operators as the Calderon-Zygmund one.
- Global $M^{p,\varphi}$-regularity of the solutions of boundary value problems for linear uniformly elliptic/parabolic equations with discontinuous coefficients.

The results presented here are published in [1,2,3,4,5].

The research of V. Guliyev was partially supported by the grant of Presidium of Azerbaijan National Academy of Science 2015.

References:

COMPARATIVE EVALUATION OF A NEW ITERATIVE LEARNING CONTROL ALGORITHM BY NUMERICAL EXAMPLES

Jan EKSTEEN¹, Stephan HEYNS¹

¹Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria/SOUTH AFRICA
jan.eksteen@up.ac.za
stephan.heyns@up.ac.za

Abstract: Model-based iterative learning control (ILC) [1] of nonlinear dynamical systems is an off-line control algorithm that is routinely used in structural integrity testing of mechanical systems in the laboratory. In a recent paper [2] the connections between the ILC algorithm and Mann iteration was explored and an alternative model-based ILC algorithm was developed, however without a comparative evaluation of the new method in terms of numerical examples. This paper presents a comparative evaluation of the new method in terms of numerical examples similar to those in [2], proving that the new method is competitive with the conventional algorithm.

Keywords: Iterative learning control, nonlinear dynamical systems, Mann iteration.

References:

CONTRIBUTED TALKS

GENERALIZED BOUNDARY PROBLEM GOVERNED BY THE BILAPLACIENOPERATOR

A. BOULAOUAD, B. MEROUANI

Univ. F. ABBAS-Sétif 1, Algeria.
a_boulaouad@yahoo.fr
Univ. F. ABBAS-Sétif 1, Algeria
mermathsb@hotmail.fr

Abstract: In this work, we study the existence and the uniqueness of a mathematical model solution of a thin plate with a polygonal rectilinear frontier under generalized boundary conditions such as those of Fourier. Concerning, the particular cases of Laplace’s operators and Lame’s elasticity had been respectively studied by Mghazli in [8] and by Merouani in [7].

Keywords: Boundary Problem, Bilaplacien operator, Existence, Uniqueness.

References:

ON ORDER OF APPROXIMATION FUNCTION BY GENERALIZED BERNSTEIN-CHLODOVSKI POLYNOMIALS

A.E. ABDULLAYEVA

Institute of Mathematics and Mechanics of National Academy of Sciences of Azerbaijan

Abstract: The generalized Bernstein-Chlodovsky polynomials order \((n, r)\) defined as

\[
B_{(n,r)}(f; x) = \sum_{k=0}^{n} \sum_{i=0}^{r} \frac{f(kb_n)}{i!}(x - \frac{kb_n}{n})^i \frac{x^k}{b_n^k}(1 - \frac{x}{b_n})^{n-k}, 0 \leq x \leq b_n
\]

Here \(\lim_{n \to \infty} b_n = \infty, \lim_{n \to \infty} \frac{b_n}{n} = 0\).

In particular, if, then (1) coincides with the classical Bernstein-Chlodovsky polynomials

\[
B_{(n,r)}(f; x) = \sum_{k=0}^{n} \sum_{i=0}^{r} f(kb_n)C^n_k \frac{x^k}{b_n^k}(1 - \frac{x}{b_n})^{n-k}, 0 \leq x \leq b_n,
\]

Let the \(C^r[0, \infty)\) class \(r\)-times continuously differentiable function on the \([0, \infty)\).

Theorem: Let the \(C^r[0, \infty)\) and \(B_{(n,r)}(f; x)\) is a generalized Bernstein-Chlodovsky polynomials. Then for any fixed \(A > 0\) asymptotic equality

\[
\|f(\cdot) - B_{(n,r)}(f; \cdot)\|_{C[0,A]} = O(\frac{b_n^{r+2}}{n^{r/2}} \Omega(f^{(r)}; \frac{b_n}{\sqrt{n}})).
\]

References:

STRONG UNIFORM CONSISTENCY RATES OF CONDITIONAL QUANTILES FOR FUNCTIONAL DATA IN THE FUNCTIONAL SINGLE-INDEX MODEL

Abbes RABHI
Department of Mathematics, University of Sidi Bel Abbes, Sidi Bel Abbes/ALGERIA
rabhi_abbes@yahoo.fr

Abstract: This presentation, deals with a scalar response conditioned by a functional random variable. The main goal is to estimate nonparametrically the quantiles of such a conditional distribution when the sample is considered as an i.i.d sequence. Firstly, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we derive an estimation of the quantiles by inverting this estimated cond-cdf and asymptotic properties are stated when the observations are linked with a single-index structure. We establish the pointwise almost complete convergence and the uniform almost complete convergence (with the rate) of the kernel estimate of this model. The functional conditional quantile approach can be used both to forecast and to build confidence prediction bands.

Keywords: Conditional distribution, conditional quantile, functional data, functional single-index process, small ball probability.

References:

A NOTE ON THE VALUES OF THE TWISTED BARNES ZETA FUNCTIONS AND THEIR APPLICATIONS

Abdelmejid BAYAD\(^1\), Yılmaz SIMSEK\(^2\)

\(^1\)Department of Mathematics, d'Évry Val d'Essonne University, Paris/FRANCE
abayad@maths.univ-evry.fr

\(^2\)Department of Mathematics, Akdeniz University, Antalya/TURKEY
ysimsek@akdeniz.edu.tr

Abstract: The aim of this paper is to study and investigate some properties of the twisted zeta function related to the complex parameters with positive real parts such as \(a_1; \ldots; a_N\). We give many interesting properties of these functions with their functional equations. We also give relationships between these functions and other well-known zeta families such as the Barnes zeta functions the Hurwitz zeta functions and the Riemann zeta functions. Finally we give some applications of these functions by the analytic continuation.

Keywords: Riemann Zeta function, Hurwitz zeta function, Barnes zeta functions, Bernoulli numbers.

References:

GENERALIZATIONS OF KAPLANSKY’S THEOREM INVOLVING UNBOUNDED LINEAR OPERATORS

Abdelkader BENALİ

Department of Mathematics, Faculty of science, University of Hassiba Benbouali Chlef 02000, Algeria

benali4848@gmail.com

Abstract: The purpose of this paper is to generalize a very famous result on products of normal operators, due to I. Kaplansky. The context of generalization is that of bounded hyponormal and unbounded normal operators on complex separable Hilbert spaces. Some examples "spice up" the paper, enough so that even monographs have been devoted to them. See for instance [3] and [10].

In this paper we are mainly interested in generalizing the following result to unbounded normal and bounded hyponormal operators.

Keywords: Products of operators, Bounded and unbounded, Normal Hypo normal subnormal operators, data Kaplansky Theorem, Fuglede Putnam Theorem.

References:

THE BOUNDEDNESS OF MAXIMAL AND CALDERON-ZYGMUND OPERATORS ON LOCAL MORREY-LORENTZ SPACES

Abdulhamit KUCUKASLAN
Ministry of Health, Central Organization
Ankara/TURKEY
abdulhamitk@hotmail.com

Abstract: In this talk the boundedness, including the limiting cases, of the Hardy-Littlewood maximal operator M, the Calderon-Zygmund operators T and the maximal Calderon-Zygmund operators T^* on the local Morrey-Lorentz spaces $M^{\text{loc}}_{p,q,\lambda}(\mathbb{R}^n)$ will be proved. Further some applications of obtained results will be given.

Keywords: Local Morrey-Lorentz spaces, Maximal operator, Calderon-Zygmund operators, maximal Calderon-Zygmund operators.

References:

DISCRETIZATION SCHEME TO FRACTIONAL DIFFUSION EQUATION WITH MEMORY TERM

Abderrazek CHAOUI

Abstract: In this work we use the method of Rohe to approximate the solution of fractional diffusion equation with second-order differential Volterra operator and fractional integral condition. Existence and uniqueness of weak solution in an appropriate sense as well as some regularity results are obtained.
TWO-PARAMETER REGULARIZATION METHOD FOR AN ILL-POSED CAUCHY PROBLEM FOR ELLIPTIC EQUATIONS

A. BENRABAH¹, N. BOUSSETILA² and F. REBBANI³

¹,²Department of Mathematics, 8 May 1945 University, Guelma/ALGERIA
babderafik@yahoo.fr, naboussetila@yahoo.fr
³Department of Mathematics, Badji Mokhtar University, Annaba/ALGERIA
faouzia.rebbani@univ-annaba.org

Abstract: The paper is devoted to investigating a Cauchy problem for homogeneous elliptic PDEs in the abstract Hilbert space given by \(u''(t) - Au(t) = 0 \), \(0 < t < T \), \(u(0) = \varphi \), \(u'(0) = 0 \) where \(A \) is positive self-adjoint and unbounded linear operator. The problem is severely ill-posed in the sense of Hadamard (1), we shall give a new regularization method for this problem when the operator \(A \) is replaced by \(A_\alpha = A(I + \alpha A)^{-1} \) and \(u(0) = \varphi \) is replaced by a nonlocal condition. We show the convergence of this method and we construct a family of regularizing operators for the considered problem. Convergence estimates are established under a priori regularity assumptions on the problem data. Some numerical results are given to show the effectiveness of the proposed method.

Keywords: Three step iteration, strong convergence, rate of convergence, data dependence integral equation.

References:

ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR
NONLINEAR THREE-POINT BOUNDARY VALUE
PROBLEM

Abdulkadir DOGAN

Department of Applied Mathematics, Faculty of Computer Sciences, Abdullah Gul
University,
Kayseri/TURKEY
abdulkadir.dogan@agu.edu.tr

Abstract: We study the existence of a nonlinear three-point boundary
value problem

\begin{align*}
 u''(t) + a(t)f(u(t)) &= 0, \quad 0 < t < 1, \\
 \beta u(0) - \gamma u'(0) &= 0, \quad \alpha u(\eta) = u(1),
\end{align*}

where \(0 < \eta < 1, \quad 0 < \alpha < \frac{1}{\eta}, \quad \beta, \gamma \geq 0, \quad \beta + \gamma > 0, \) and

\[d = \beta(1 - \alpha \eta) + \gamma(1 - \alpha) > 0. \]

By applying the fixed point theorem in cones, we prove the existence of at
least one positive solutions if \(f \) is either superlinear or sublinear.

Keywords: Boundary value problems, positive solutions, superlinear and
sublinear, operators on a cone.

References:

[1] A. Dogan, "On the existence of positive solutions for the second-

POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR p-LAPLACIAN DYNAMIC EQUATION ON TIME SCALES

Abdulkadir DOGAN
Department of Applied Mathematics, Faculty of Computer Sciences, Abdullah Gul University, Kayseri/TURKEY
abdulkadir.dogan@agu.edu.tr

Abstract: We study a three-point boundary value problem for p-Laplacian dynamic equation on time scales. By using the Avery and Peterson fixed point theorem, we prove the existence at least three positive solutions of the boundary value problem. The interesting point is that the non-linear term f involves a first-order derivative explicitly. As an application, an example is given to illustrate the result.

Keywords: Time scales, boundary value problem, p-Laplacian, positive solution, fixed point theorem.

References:

\(\Delta_p^n\)-STATISTICAL CONVERGENCE

Abdulkadir KARAKAŞ1, Yavuz ALTIN2

1Department of Mathematics, Siirt University, Siirt / TURKEY
2Department of Mathematics, Firat University, Elazığ/TURKEY

kadirkarakas21@hotmail.com, yaltin23@yahoo.com

Abstract: In this work, we introduce \(\Delta_p^n\)-statistical convergence and give inclusion relation between \(\Delta_p^n(\ell_q)\)-convergence and \(\Delta_p^n\)-statistical convergence.

Keywords: Statistical Convergence, Difference sequence spaces.

References:

STURMIAN THEORY FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH MIXED NONLINEARITIES

Abdullah ÖZBEKLER

Department of Mathematics, Atılım University, Ankara/TURKEY
aozbecker@gmail.com

Abstract: In the presentation, Sturmian comparison theory is developed for the pair of second-order differential equations; first of which is the nonlinear differential equations

\[(m(t)y')'+s(t)y'+\sum_{i=1}^{n} q_i(t)|y|^{\alpha_i-1}y=0, \quad (A)\]

with mixed nonlinearities \(\alpha_1 > \ldots > \alpha_m > 1 > \alpha_{m+1} > \ldots > \alpha_n\), and the second is the nonselfadjoint differential equations

\[(k(t)x')'+r(t)x'+p(t)x=0. \quad (B)\]

Under the assumption that the solution of Eq. (B) has two consecutive zeros, we obtain Sturm-Picone type and Leighton type comparison theorems for Eq. (A) by employing the new nonlinear version of Picone's formula that we derive. Wirtinger type inequalities and several oscillation criteria are also attained for Eq. (A). Examples are given to illustrate the relevance of the results.

Keywords: Comparison, Leighton, Mixed nonlinear, Nonselfadjoint, Sturm-Picone, Wirtinger.

References:

A UNIFIED APPROACH TO WEIGHTED L^p HARDY-TYPE INEQUALITIES ON RIEMANNIAN MANIFOLDS

Abdullah YENER1

1Department of Mathematics, İstanbul Commerce University, İstanbul/TURKEY
ayener@ticaret.edu.tr

Abstract: In this work, we provide an approach that recovers and improves most of the Hardy-type inequalities appeared on Riemannian manifolds M to date regarding. More precisely, let M be a complete noncompact Riemannian manifold endowed with a metric g and dV, ∇, div and Δ denote respectively the Riemannian volume element, the Riemannian gradient, the Riemannian divergent and the Laplace Beltrami operator on M. We proved that if a and b are nonnegative weight functions and w is a positive function such that

$$-\text{div}(a(x)|\nabla w|^{p-2}\nabla w) \geq b(x)w^{p-1}$$

almost everywhere in M, then the following L^p Hardy-type inequality

$$\int_M a(x)|\nabla \phi(x)|^p dV \geq \int_M b(x)|\phi(x)|^p dV$$

is valid for all $\phi \in C_0^\infty(M)$ and $p \geq 1$. It is worth emphasizing here that, one can readily obtain as many weighted Hardy-type inequalities as one can construct the functions a and w satisfying the above hypothesis.

Keywords: Riemannian manifolds, Hardy inequality.

References:

RELATION-THEORETIC CONTRACTION PRINCIPLE

Aftab ALAM¹, Mohammad IMDAD²

¹Department of Mathematics, Aligarh Muslim University, Aligarh/INDIA
aaufu.amu@gmail.com
²Department of Mathematics, Aligarh Muslim University, Aligarh/INDIA
mhimdad@gmail.com

Abstract: In this presentation, we present yet another new and novel variant of classical Banach contraction principle on a complete metric space endowed with a binary relation which under universal relation reducesto Banach contraction principle. In process, we observe that various kinds of binary relations such as: partial order, preorder, transitive relation, tolerance, strict order, symmetric closure etc. utilized by earlier authors in several well-known metrical fixed point theorems can be weakened to the extent of an arbitrary binary relation.

Keywords: Complete metric spaces; binary relations; contraction mappings.

References:

DYNAMICS OF A PRE-STRESSED AND IMPERFECTLY BONDED SANDWICH PLATE-STRIP CONSISTING OF ELASTIC LAYERS AND PIEZOELECTRIC CORE

Ahmet DAŞDEMİR

Department of Mathematics, Kastamonu University, Kastamonu/TURKEY
ahmetdasdemir37@gmail.com

Abstract: In this presentation, the dynamics of a sandwich plate-strip consisting of a piezoelectric core and elastic layers with initial stress under the action of a time-harmonic force resting on a rigid foundation is considered within the scope of the piecewise homogeneous body model with utilizing of the three dimensional linearized theory of electro-elasticity waves in initially stressed bodies. The piezoelectric core is poled along the direction perpendicular to the rigid foundation and imperfectly bonded to the elastic layers. The mathematical model corresponding to the current situation is created, and the governing system of the partial differential equations of motion is solved by employing Finite Element Method (FEM). The numerical results illustrating the effect of the different dependencies of the problem on the distribution of the stresses and the electric displacements at the interface planes between the upper and lower elastic layers and the piezoelectric core and between the plate-strip and the rigid foundation are presented. In particular, the influence of a change in the value of the shear-spring imperfectness parameter on the behavior of the corresponding parameter, i.e. the initial stress or the dimensionless frequency, is investigated.

Keywords: Sandwich plate-strip, initial stress, shear-spring type imperfectness, dimensionless frequency, forced vibration.

References:

TWO WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRALS ASSOCIATED WITH THE LAPLACE-BESSEL DIFFERENTIAL OPERATOR

A. EROGLU¹, M. G. HAJIBAYOV²

¹Department of Mathematics, Nigde University, Nigde/TURKEY
aeroglu@nigde.edu.tr
²National Academy of Aviation, Baku/azerbaijan
hajibayovm@yahoo.com

Abstract: In this report it is proved that two weighted inequalities for fractional integrals $I_{a,y}f$ (B-fractional integrals) associated with the Laplace-Bessel differential operator Δ_B (see [1]).

This result is an analog of Heinig’s result [2] for the B-fractional integral. Further, the Stein-Weiss inequality for B-fractional integrals is proved as an application of this result.

The research of M. Hajibayov was partially supported by the grant of Presidium of Azerbaijan National Academy of Science 2015.

This talk is present jointly with A. Serbetci.

References:

INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE THIRD DERIVATIVE ABSOLUTE VALUES ARE PREINVEX

Akhlad IQBAL

Department of Mathematics, AMU Aligarh
Email: akhlad6star@gmail.com, akhlad.mm@amu.ac.in

Abstract: In this paper, we establish some new integral inequalities of Hermite-Hadamard’s type for functions whose third derivative absolute values are preinvex. Applications to some special means are also considered.

Keywords: Hermite-Hadamard inequality, Preinvex function, Integral inequality, arithmetic mean, logarithmic mean.
TRIGONOMETRIC APPROXIMATION IN WEIGHTED LORENTZ SPACES USING LOWER TRIANGULAR MATRICES

Ahmet Hamdi AVSAR1, Yunus Emre YILDIRIR2

1Department of Mathematics, Necatibey Education Faculty, Balikesir University, Balikesir, TURKEY
ahmet.avsar@balikesir.edu.tr

2Department of Mathematics, Necatibey Education Faculty, Balikesir University, Balikesir, TURKEY
yildirir@balikesir.edu.tr

Abstract: We investigated the approximation to functions in weighted Lorentz spaces by the sums $r_n(f, x) = \sum_{k=0}^{n} a_{nk} S_k(f, x)$ where (a_{nk}) will denote a lower triangular regular matrices with nonnegative entries and $S_k(f, x)$ will denote partial sums of Fourier series of f. We obtain the degree of approximation for derivatives of functions in weighted Lorentz spaces.

Keywords: Weighted Lorentz space, trigonometric approximation, Fourier series, Muckenhoupt weight.

References:

CONFORMABLE FRACTIONAL INTEGRALS AND RELATED GRÜSS TYPE INTEGRAL INEQUALITIES

Ahmet Ocak AKDEMİR¹, Alper EKİNCİ², Erhan SET³

¹Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrı/TURKEY
aocakakdemir@gmail.com

²Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrı/TURKEY
alperekinci@hotmail.com

³Department of Mathematics, Ordu University, Ordu/TURKEY
erhanset@yahoo.com

Abstract: In the present note, we have given the definition of Conformable fractional integrals and some further properties. In the second part, we have established some Grüss type integral inequalities by using the bounded functions via Conformable fractional integrals.

Keywords: Bounded functions, Conformable fractional integrals, Grüss Inequality.

References:

NEW INTEGRAL INEQUALITIES FOR GEOMETRICALLY CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS

Ahmet Ocal Akdemir¹, Merve Avcı Arıç², Abdullatif Yalcın³

¹Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrı/TURKEY
aocakakdemir@gmail.com
²Department of Mathematics, Adıyaman University, Adıyaman/TURKEY
mavci@adiyaman.edu.tr
³Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrı/TURKEY
latif.yalcin012@gmail.com

Abstract: In this paper, Conformable fractional derivative and Conformable fractional integrals have been introduced. Based on these definitions, a new Hadamard type integral inequality have been proved for Geometrically convex functions. Also, we have obtain a new integral identity and by using this identity, we have established some new integral inequalities for Geometrically convex functions via Conformable fractional integrals.

Keywords: Geometrically convex functions, Conformable fractional integrals, Hermite-Hadamard Inequality.

References:

NEW RESULT IN STABILITY ANALYSIS OF SINGULAR PROBLEM

Ahu ERCAN¹, Etibar S. PANAKHOV¹,²

¹Department of Mathematics, Firat University, Elazig/TURKEY
ahuduman24@gmail.com
²Institute of Applied Mathematics, Baku State University, Baku/AZERBAIJAN
epenahov@hotmail.com

Abstract: In this study, the meaning of the stability problem is to calculate the difference of two spectral functions, solutions and potentials when finite numbers of eigenvalues of considered problems is coincided. These type problem for regular Sturm-Liouville problems was studied [1],[2]. We dealt with this type stability problem for Dirac operators in [4]. Marchenko and Maslov dealt with similar issue in the case of the spectral function coincide on given interval [2]. As far as we know, the stability problems for singular operator have not been studied. Moreover, we give a formula for expression of norming constants respect to its two spectra.

Keywords: Stability, Sturm-Liouville Equation, singularity.

References:

ANALYSIS OF EFFECT OF FLEXIBLE WING ON LIFT AND DRAG COEFFICIENT

Akshaya DEVI

Abstract: Flexible wing is an aircraft wing which is not rigid but can deform in flight. This project is intended to carry out an analysis on flexible wing as well as a rigid wing. The expected outcome is flexible wing provides better Lift and Drag Co-efficient than a rigid wing. The disadvantages of rigid wings such as increased drag, vulnerability to high speed loads and decreased performance during crosswinds are overcome by flexible wings. Flexible wings in aircrafts possess great control over tip vortices, high roll efficiency at high speed. In addition, the induced drag can be reduced which significantly improves the take-off and landing performances. Flexible wings can also be used as an alternate arrangement to cancel the adverse effect of wing tip vortices, which in turn reduces the time between two consecutive take-offs at an airport. The potential applications include all commercial and fighter airplanes which demand high maneuverability.

ROUGH FRACTIONAL MULTILINEAR INTEGRAL OPERATORS ON GENERALIZED WEIGHTED MORREY SPACES

Ali AKBULUT

Department of Mathematics, AhiEvran University,
Kirsehir/TURKEY
aakbulut@ahievran.edu.tr

Abstract: We consider generalized weighted Morrey spaces. In these spaces, we find the sufficient conditions for the boundedness of the fractional multilinear integral operators with rough kernels from one generalized weighted Morrey space to another one.

Keywords: generalized weighted Morrey spaces, fractional multilinear integral operator.

This work was supported by the Ahi Evran University Scientific Research Projects Coordination Unit. Project Number: FEF.E2.16.015

References:

HYPERBOLIC SMOOTHING METHOD FOR DC PROBLEMS OBTAINED FROM CLUSTERING PROBLEMS

Ali Hakan TOR1

1Department of Mathematics, YüzüncüYıl University, Van/TURKEY
hakantor@yyu.edu.tr

Abstract: In this study, we focused on the non-smooth unconstrained optimization problems, particularly the differences of two convex functions (DC) problems. They can be obtained from the minimum sum of square clustering (MSSC) problems [1,2]. Clustering is an important problem in data mining. In the literature, the hyperbolic smoothing technique is applied to handle nonsmoothness of optimization problems. A new hyperbolic smoothing method proposed to solve them, which made the possible to use smooth optimization algorithms for this type of non-smooth problems.

Keywords: Hyperbolic smoothing method, DC problem, clustering problem.

References:

SOME APPROXIMATION PROPERTIES OF TWO
DIMENSIONAL CHLODOVSKY-BERNSTEIN OPERATORS
BASED ON (P, Q) INTEGER

Ali KARAİSA¹
¹Department of Mathematics- Computer Sciences, Necmettin Erbakan
University,
Konya/TURKEY
alikaraisa@hotmail.com

Abstract: In the present study, we introduce the two dimensional
Chlodovsky type Bernstein operators based on (p, q)-integer. We
examine approximation properties of our new operator by the help of
Korovkin-type theorem. Further, we present the local approximation
properties and establish the rates of convergence by means of the
modulus of continuity and the Lipschitz type maximal function. Also, we
give a Voronovskaja type theorem for this operator. And, we investigate
weighted approximation properties of these operators and estimate rate
of convergence in the same space. Finally, with the help of Maple,
illustrative graphics show the rate of convergence of these operators to
certain functions.

Keywords: (p, q)-integer, strong convergence, rate of
convergence, Voronovskaja type theorem

References:

[1] A. Karaisa, D. T.Tollu, Y.Asar, Stancu typegeneralization of q-$

q-Bernstein-Chlodowsky polynomials. Math.Commun. 2009,14,
255-269.

approximationresults on Bernstein–Schurer operators defined by

10.1002/mma.3650,12.
GAMMA TYPE GENERALIZATION SZASZ-CHARLIER OPERATORS

Ali KARAİSA, Bilal ÇAVDAR

1Department of Mathematics- Computer Sciences, Necmettin Erbakan University, Konya/TURKEY
alikaraisa@hotmail.com, bilalcavdar71@gmail.com

Abstract: In this paper, we define Gamma type generalization Szasz operators which involving Charlier polynomial. We also study the convergence of these operators in a weighted space of functions.

Further, we establish the local approximation properties and establish the rates of convergence by means of the modulus of continuity and the Lipschitz type maximal function. Finally, with the help of Maple, illustrative graphics show the rate of convergence of these operators to certain functions.

Keywords: Gamma type generalization Szasz operators, Charlier polynomial.

References:

MULTIPLY SOLITARY WAVE SOLUTIONS OF THE HIGHER KDV EQUATIONS IN A STRATIFIED SHEAR FLUID FLOW WITH A FREE SURFACE

Aly R. SEADAWY
Mathematics Department, Faculty of science, Taibah University, Al-Ula, Saudi Arabia
Aly7420012@yahoo.com

Abstract: Solitary waves solutions are generated by deriving the nonlinear higher order of extended KdV equations for the free surface displacement. The problem formulations of models for internal solitary waves in a stratified shear flow with a free surface are presented. All coefficients of the nonlinear higher order extended KdV equation are expressed in terms of integrals of the modal function for the linear long-wave theory. The electric field potential and the fluid pressure in form traveling wave solutions of the extended KdV equation are obtained. The stability of the obtained solutions and the movement role of the waves by making the graphs of the exact solutions are discussed and analyzed.

Keywords: Internal solitary waves, Higher order of extended KdV equation, wave solutions, modified direct algebraic method.

References:

EXTENDED TAN-COT METHOD FOR THE SOLUTIONS TO EVOLUTION EQUATIONS

Anwar Ja'afarMohamad JAWAD

Department of Computer Engineering Al-Rafidain University College , Baghdad, Iraq
anwar_jawad2001@yahoo.com

Abstract: The proposed extended Tan-Cot method is applied to obtain new exact travelling wave solutions to evolution equation. The method is applicable to a large variety of nonlinear partial differential equations, the Fifth-order nonlinear integrable equation, the symmetric regularized long wave equation, the higher-order wave equation of Kdv type, and Benney-Luke equation. The Extended Tan-Cot method seems to be powerful tool in dealing with nonlinear physical models.

Keywords: Fifth-order nonlinear integrable equation, the symmetric regularized long wave equation (SRLW), the higher-order wave equation of Kdv type, and Benney-Luke equation (B-L)

References:

STUDY OF A FOURTH-ORDER PARABOLIC EQUATION IN TIME-DEPENDENT DOMAINS

Arezki KHELOUFI¹, Boubaker-Khaled SADALLAH²

¹Department of Technology, Bejaia University, Béjaia/ALGERIA
arezkinet2000@yahoo.fr

²Department of Mathematics, Ecole Normale Supérieure, Algiers/ALGERIA
sadallah@ens-kouba.dz

Abstract: New results on the existence, uniqueness and maximal regularity of a solution are given for a two-space dimensional fourth-order parabolic equation set in conical time-dependent domains. The study is performed in the framework of anisotropic weighted Sobolev spaces. Our method is based on the technique of decomposition of domains. Some details concerning the results given here can be found in [1].

Keywords: Fourth-order parabolic equations, conical domains, anisotropic weighted Sobolev spaces.

References:

CONVERGENCE THEOREMS OF FIXED POINTS FOR HEMICONTRACTIVE MAPPINGS IN S-PROBABILITY NORMED SPACES

Arife Aysun KARAASLAN¹, Vatan KARAKAYA²

¹Department of Mathematics, Işık University, İstanbul/TURKEY
²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
karaaslan.aysun@gmail.com
vkkaya@yahoo.com

Abstract: In this presentation, we study fixed point problems in S-probability normed spaces. We obtain the definition of probabilistic hemicontractive mapping in a probabilistic normed space. Also, probabilistic convergence theorems of fixed points for hemicontractive mappings are proved.

Keywords: Probabilistic normed space, hemicontractive mapping, strong convergence, fixed point.

Acknowledgement: The first author was supported by TÜBİTAK- The Scientific and Technological Research Council of Turkey.

References:

COLLOCATION METHOD USING RADIAL BASIS
FUNCTION FOR SOLUTION OF FRACTIONAL CKdV
EQUATION

Asif YOKUŞ¹, Sema Gülbahar²

¹Department of Actuary, Fırat University, Elazığ/TURKEY
asfyokus@yahoo.com
²Department of Mathematics, İstanbul Commerce University, İstanbul/TURKEY
semaakkus_mat@hotmail.com

Abstract: In this paper, collocation method using radial basis functions is
applied to solution of fractional compound KdV differential equation. In the
solution process, we will use linearization technique for non-linear term
existing in the equation. L₂ and L∞ error norms are calculated with
matematica program to compare the approximate solution with exact
solution.

Keywords: Radial basis functions, Collocation method, Linearization
technique.

References:

Oscillatory Solutions for Compound KdV-Burgers Equation and

exact solutions for compound KdV-type and compound KdV-
Burgers type equations with nonlinear terms of any order”, Phys.

for Compound KdV-Burgers Equations in Mathematical
HILBERT TRANSFORM ON LOCAL MORREY-LORENTZ SPACES

Ayhan ŞERBETÇİ
Department of Mathematics, Ankara University, Ankara/TURKEY
serbetci@ankara.edu.tr

Abstract: In this talk we introduce a new class of functions called local Morrey-Lorentz spaces $M^{\text{loc}}_{p,q,\lambda}$, $0 < p, q \leq \infty$ and $0 \leq \lambda \leq 1$. These spaces generalize Lorentz spaces such that $M^{\text{loc}}_{p,q,0} = L_{p,q}$. We show that in the case $\lambda < 0$ or $\lambda > 1$ the space $M^{\text{loc}}_{p,q,\lambda}$ is trivial, and in the limiting case $\lambda = 1$ the space $M^{\text{loc}}_{p,q,1}$ is the classical Lorentz space $\Lambda_{p,q}^{1/p-1/q}$.

We prove that for $0 < q \leq p < \infty$ and $0 < \lambda \leq q/p$, the local Morrey-Lorentz spaces $M^{\text{loc}}_{p,q,\lambda}$ are equal to weak Lebesgue spaces $WL_{1/p-\lambda/q}$. Furthermore, we obtain the boundedness of the Hilbert transform in the local Morrey-Lorentz spaces.

Keywords: Morrey spaces, Lorentz spaces, local Morrey-Lorentz spaces, Hilbert transform.

References:

SOME IDENTITIES ASSOCIATED WITH HURWITZ-LERCH
ZETA FUNCTION

Aykut Ahmet AYGÜNEŞ

1Department of Mathematics, Antalya/TURKEY
aykutahmet1981@hotmail.com

Abstract: In this paper, we firstly introduce a special integral representation associated with Hurwitz-Lerch zeta function. By using this integral representation, we obtain some functional equations for a special case of the Hurwitz-Lerch zeta function, Also we give some remarks for this identities.

Keywords: Hurwitz-Lerch zeta function, Hurwitz zeta function, Riemann zeta function, Leibniz derivative formula.

References:

APPROXIMATION BY TWO DIMENSIONAL GENERALIZED SZASZ OPERATORS

Aynur N. MAMMADOVA

Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku/ AZERBAIJAN

Abstract: We study approximation theorem for generalized Szasz operator in space a higher order, differentiable weighted continuous functions.

Suppose that $C^{r+2}([0, \infty) \times [0, \infty))$ is a space of r time continuous and differentiable functions is bisemi-axis([0, $\infty)$ \times $[0, \infty))$ and $f \in C^{r+2}([0, \infty) \times [0, \infty))$. Let us consider the following Szasz operator for $f \in C^{r+2}([0, \infty) \times [0, \infty))$

\[
S_{n,m,r}(f;x,y) = e^{-n^r - m^r} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{i=0}^{\infty} \left(x - \frac{k}{n} \right)^i \frac{\partial}{\partial x} f \left(\frac{k}{n} x + \frac{l}{m} y, \frac{m^r}{l!} \right) + \left(y - \frac{l}{m} \right)^i \frac{\partial}{\partial y} f \left(\frac{k}{n} x + \frac{l}{m} y, \frac{m^r}{l!} \right)
\]

Theorem. For $f \in C^{r+2}([0, \infty) \times [0, \infty))$ the following equality is true

\[
S_{n,m,r}(f;x,y) = f(x,y) + \frac{(-1)^r f^{(r+1)}(x,y) T_{r+1}(x,y)}{(r+1)!} + \frac{(-1)^r (r+1)f^{(r+2)}(x,y) T_{r+2}(x,y)}{(r+2)!} + \frac{\rho_{n,m,r}(x,y)}{(nm)^{r/4}},
\]

where

\[
\lim_{n,m \to \infty} \rho_{n,m,r}(x,y) = 0.
\]

References:

SOME PROPERTIES OF DOUBLE SEQUENCES AND THE P-CONVERGENCE OF A DOUBLY-SEQUENCE ITERATION WITH ERROR TERMS IN CAT(0) SPACES

Aynur ŞAHİN¹, Metin BAŞARIR¹, Richard F. PATTERSON²

¹Department of Mathematics, Sakarya University, Sakarya, 54050, TURKEY
ayuce@sakarya.edu.tr, basarir@sakarya.edu.tr

²Department of Mathematics and Statistics, University of North Florida, Jacksonville, Florida, 32224, USA
rpatters@unf.edu

Abstract: In this presentation, we obtain some properties related to double sequences. Moreover, we prove the P-convergence of the Halpern-type double-sequence iteration process with error terms in a CAT(0) space and present an example to support this result. Our results extend and improve some recent results announced in the current literature.

Keywords: Double sequence, iteration process, fixed point, nonexpansive mapping, P-convergence, CAT(0) space.

References:

MEASURE OF NONCOMPACTNESS AND FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACE

Aysun SOYSAL¹, Vatan KARAKAYA²

¹Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
aysunsoysal90@gmail.com

²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
vkkaya@yahoo.com

Abstract: In this paper, we study the existence of solutions for a class of initial value problems for fractional differential equations involving Caputo fractional derivative in Banach space. The arguments are based upon Mönch’s fixed point theorem and the technique of measures of noncompactness.

Keywords: Initial value problem, Caputo fractional derivative, measure of noncompactness, fixed point, Banach space.

References:

A RELIABLE COMPUTATIONAL METHOD for SINGULAR PROBLEMS

Ayşe Betül KOÇ

1Department of Mathematics, Selcuk University, Konya/TURKEY
aysebetulkoc@selcuk.edu.tr

Abstract: In this presentation, a new numerical algorithm is established for singular initial value problems. The solutions are constructed in the series form of the Fibonacci polynomials. The efficiency and validity of the approach are illustrated with few numerical examples.

Keywords: Pseudo-spectral approach, Fibonacci polynomials.

References:

EKELAND’S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO EQUILIBRIUM PROBLEMS

Azadeh HOSSEINPOUR¹, Somyot PLUBTIENG², Ali FARAJZADEH³

¹,²Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok65000, THAILAND.
azadeh.hoseinpour@hotmail.com, somyotp@nu.ac.th

³Department of Mathematics, Razi University, Kermanshah, 67149, Iran.
farajzadehali@gmail.com

Abstract: In this study, we obtain a generalization of vectorial form of Ekeland's variational principle for set valued mapping in Banach space. We get some equivalent results to the mentioned variational principle. As an application of our work, we provide some existence results for equilibrium problems in compact and noncomplete spaces.

Keywords: Ekeland's variational principle, Equilibrium problems, Set valued mappings, Scalarization function, Banach space.

References:

DYNAMIC EVOLUTION OF DAMAGE AND FRICTION IN PIEZOELECTRIC MATERIALS

Abdelaziz AZEB AHMED1, Tedjani HADJ AMMAR2

1Department of Mathematics, University of El Oued /ALGERIA
aziz-azebahmed@univ-eloued.dz
2Department of Mathematics, University of El Oued /ALGERIA
hat_olsz@yahoo.com

Abstract: We consider a dynamic frictional contact problem between a piezoelectric body and an obstacle. The contact is bilateral, and the friction is modeled with Tresca’s friction law. The material's behavior is described by a nonlinear electro-viscoelastic constitutive law with damage. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, and the damage field. Then we provide the existence of a unique weak solution to the model. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators and the fixed point arguments.

Keywords: Dynamic process, piezoelectric material with damage, frictional contact, existence and uniqueness, weak solution, fixed point.

References:

BACKWARD DOUBLY SDES AND SPDES WITH SUPERLINEAR GROWTH GENERATORS

Badreddine MANSOURI
Université Mohamed Khider, BP 145, 07000 Biskra
mansouri.badreddine@gmail.com

Abstract: We deal with multidimensional backward doubly stochastic differential equations (BDSDEs) with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator then we show that they ensure the existence and uniqueness as well as the stability of solutions. Our work go beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one dimensional too. As application, we establish the existence and uniqueness of probabilistic solutions to some semilinear stochastic partial differential equations (SPDEs) with superlinear growth generator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.
SUBORBITAL GRAPHS FOR THE RESIDUE CLASS OF PSL(2,Zₙ)

Murat BEŞENK¹, Bahadır Özgür GÜLER, Tuncay KÖR¹
¹Department of Mathematics, Karadeniz Technical University, Trabzon/TURKEY
mbesenk@ktu.edu.tr, boguler@ktu.edu.tr, tkor@ktu.edu.tr

Abstract: For each integer \(n \geq 2 \), let \(\mathbb{Z}_n \) denote the ring of integers \(\mod n \); then the 2x2 unimodular matrices with coefficients in \(\mathbb{Z}_n \) form a group \(SL(2, \mathbb{Z}_n) \) in which the matrices \(\{ \pm I \} \) form a normal subgroup. The natural ring-epimorphism \(\mathbb{Z} \rightarrow \mathbb{Z}_n, a \mapsto [a] \), induces a group-homomorphism \(SL(2, \mathbb{Z}) \rightarrow SL(2, \mathbb{Z}_n) \) and also it is known that dividing \(SL(2, R) \) by its center \(\{ \pm I \} \) we get the group \(PSL(2, R) \cong SL(2, R)/\{ \pm I \} \). Hence this in turn induces a group-homomorphism \(\varphi_n \) from \(PSL(2, \mathbb{Z}) \) to \(PSL(2, \mathbb{Z}_n) \). In this paper, we investigate some properties of suborbital graphs for the \(PSL(2, \mathbb{Z}_n) \) group. We obtain edge-circuit conditions and also we find some relations between for the \(M \) dessin associated with \(\Gamma(n) \).

Keywords: Suborbital graphs, orbit, circuit, dessin, imprimitive action.

References:

A NEW RESULT ON GENERALIZED ABSOLUTE MATRIX SUMMABILITY

Hikmet Seyhan ÖZARSLAN ¹, Bağdagül KARTAL ²

¹Department of Mathematics, Erciyes University, Kayseri/TURKEY
seyhan@erciyes.edu.tr
²Department of Mathematics, Erciyes University, Kayseri/TURKEY
bagdagulkartal@erciyes.edu.tr

Abstract: In this presentation, we have generalized a known result dealing with the \([N, p_1]\) summability to the \([\phi, [A, p_1]]\) summability by using the concepts of almost increasing and \(\delta\)-quasi-monotone sequences. We also obtain some new and known results.

Keywords: Almost increasing sequences, absolute matrix summability, quasi-monotone sequences, infinite series, Hölder inequality, Minkowski inequality.

References:

ON REFLEXIVITY OF THE BOCHNER SPACE $L^p(\mu, E)$ FOR ARBITRARY μ

Banu AYTAR GÜNTÜRK¹, Bahaettin CENGİZ²

¹Faculty of Engineering, Baskent University, Ankara/TURKEY
bgunturk@baskent.edu.tr

²Faculty of Engineering, Baskent University, Ankara/TURKEY
bcengiz@baskent.edu.tr

Abstract: Let μ be a finite positive measure, E a Banach space, and $1 < p < \infty$ a real number.

(a) It is known that the Bochner space $L^p(\mu, E)$ is reflexive if and only if E is reflexive;
(b) it is also known that $\mathcal{L}(L^1(\mu), E) \approx L^{\infty}(\mu, E)$ if and only if E has the Radon-Nikodým property (RNP), (where for two Banach spaces $E, F, E \approx F$ means that they are isometric, and $\mathcal{L}(E, F)$ denotes the Banach space of all bounded operators from E to F.)

In this article we prove that both statements almost hold for any arbitrary positive measure μ as well, more precisely, if ν is the so-called perfect equivalent of μ, (i.e., for each $1 \leq p < \infty$, ν is perfect and they have the same L^p spaces), we have,

(a′) for $1 < p < \infty$, $L^p(\mu, E) \approx L^p(\nu, E)$ is reflexive if and only if E is reflexive,
(b′) $\mathcal{L}(L^1(\mu), E) \approx \mathcal{L}(L^1(\nu), E) \approx L^{\infty}(\nu, E)$ if and only if E has the RNP.

Keywords: Reflexivity, Radon-Nikodým property, Bochner space, isometry, perfect measure.

References:

CERTAIN HERMITE-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH COMFORMABLE FRACTIONAL INTEGRAL OPERATORS

Erhan SET¹, Barış ÇELİK²

¹Department of Mathematics, Ordu University, Ordu/TURKEY
erhanset@yahoo.com
²Department of Mathematics, Ordu University, Ordu/TURKEY
bariscelik15@hotmail.com

Abstract: The aim of this article is to obtain some new Hermite-Hadamard type inequalities for convex functions via conformable fractional integral. The results presented here would provide extensions of those given in earlier works.

Keywords: Convex function, Hermite-Hadamard inequality, conformable fractional integral.

References:

SHOCK AND RAREFACTION WAVES FOR BURGERS MODELS ON SPACETIME GEOMETRIES COMPARISON AND ANALYSIS

Baver OKUTMUŞTUR

Department of Mathematics, Middle East Technical University (METU), Ankara/TURKEY
baver@metu.edu.tr

Abstract: The relativistic Burgers model has recently been derived on flat geometry, developed and generalized to several spacetime backgrounds such as Schwarzschild, Friedmann-Lemaitre-Robertson-Walker (FLRW), de Sitter (dS), anti-de Sitter (AdS), Schwarzschild-de Sitter (SdS) and Schwarzschild-anti de Sitter (SAdS) spacetimes. In this work we consider these spacetime geometries in order to analyze the derived Burgers models and their finite volume solutions containing shock/rarefaction waves both theoretically and numerically. To this end, we establish a second-order Godunov-type finite volume scheme to the relativistic models for approximation of discontinuous solutions and compare each model of interest by illustrating shock and rarefaction wave propagations.

Keywords: Spacetime, Euler equations, relativistic Burgers models, finite volume approximation, shock waves, rarefaction waves, Godunov scheme.

References:

ON FLOQUET SOLUTIONS FOR DISCRETE STURM-LIOUVILLE PROBLEM WITH PERIODIC GENERALIZED FUNCTION POTENTIALS

Manaf MANAFOV1, Bayram BALA2, Abdullah KABLAN2

1Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
mmanafov@adiyaman.edu.tr

2Department of Mathematics, Gaziantep University, Gaziantep/TURKEY
bayrambala27@gmail.com, kablan@gantep.edu.tr

Abstract: Floquet theory play a central role for Sturm-Liouville problem and difference equations with periodic potentials. This theory for Sturm-Liouville problem and with generalized function potential are studied in [2] and [3] respectively. Floquet solutions for periodic systems and for Hill difference equation have been investigated in [4] and [1]. In this study, we obtain Floquet solutions for discrete Sturm-Liouville problem with periodic generalized function potentials.

Keywords: Sturm-Liouville equation, difference equation, Floquet theory.

References:

A NONLINEAR HYPERBOLIC PROBLEM FOR VISCOELASTIC EQUATIONS

*Benabderrahmane BENYATTOU, **Rahmoune ABITA

* Faculty of Mathematics and Computer Sciences, University of M'Sila, Algeria. bbenyattou@yahoo.com
** Laboratory of Computer Sciences and Mathematics, University Amar Telidji Laghouat, Algeria rahmouneabita@yahoo.fr

Abstract: In this paper, we consider a nonlinear hyperbolic problem for viscoelastic equations with a source term. By basing on Faedo-Galerkin approximations and compactness argument, this work is devoted to prove the existence, uniqueness, and also continuous dependence with respect to the initial data of solutions.

Keywords: Compactness method, continuous dependence, local existence, nonlinear hyperbolic equation, viscoelastic bodies.

PROJECTED TIKHONOV REGULARIZATION METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF THE FIRST KIND

Boussetila NADJIB
Department of Mathematics, U. Guelma, Algeria n.boussetila@gmail.com

Abstract: In this talk, we consider a variant of projected Tikhonov regularization method for solving Fredholm integral equations of the first kind. We give the theoretical analysis of this method in the Hilbert space L2(a, b) setting, and we establish some convergence rates under certain regularity on the exact solution and the kernel k(.,.). Some numerical results are also presented.

Keywords: ill-posed problems, integral equation of the first kind, projected Tikhonov regularization method.

References:

ON SOME INTEGRAL INEQUALITIES ON TIME SCALES
AND APPLICATIONS

Boukerrioua KHALED

Abstract: The goal of this paper is to derive some generalizations and refinements of certain inequalities of Pachpatte type and Bellman-Bihari type, on time scales, using elementary analytic methods. The given results unify continuous and discrete inequalities and extend some known results in the literature. To show the feasibility of the obtained inequalities, some illustrative examples are also introduced.

SINGULAR QUASILINEAR ELLIPTIC SYSTEMS WITH
(SUB-, SUPER-) HOMOGENEOUS CONDITION

Brahim KHODJA¹, Hana DIDI² and Abdelkrim MOUSSAOUI³
¹Mathematic Department, Badji-Mokhtar Annaba University, 23000 Annaba Algeria
brahim.khodja@univ-annaba.org
²Mathematic Department, Badji-Mokhtar Annaba University, 23000 Annaba Algeria
hana.dj@hotmail.fr
³Biology Department, A. Mira Bejaia University, TargaOuzemour 06000 Bejaia, Algeria
abdelkrim.moussaoui@univ-bejaia

Abstract: In this talk we establish existence, nonexistence and regularity of positive solutions for a class of singular quasilinear elliptic systems subject to (sub-, super-) homogeneous condition. The approach is based on sub-supersolution methods for systems of quasilinear singular equations combined with perturbation arguments involving singular terms.

Keywords: Singular system; p-Laplacian; Sub-supersolution; Schauder’s fixed point Theorem; regularity.

References:
A NOTE APOSTOL TYPE (P,Q)-FROBENIUS-EULER POLYNOMIALS

Burak KURT
Department of Mathematics, Akdeniz University, Antalya/TURKEY
burakkurt@akdeniz.edu.tr

Abstract: In this work, we define and introduce a new kind of the Apostol type Frobenius-Euler polynomials based on the (p,q)-calculus and investigate their some properties, recurrence relationships and so on. We give some identities at this polynomial. Moreover, we get (p,q)-extension of Carlitz's main result. In this work, we define and introduce a new kind of the Apostol type Frobenius-Euler polynomials based on the (p,q)-calculus and investigate their some properties, recurrence relationships and so on. We give some identities at this polynomial. Moreover, we get (p,q)-extension of Carlitz's main result.

Keywords: Bernoulli polynomials and numbers, Euler polynomials and numbers, Generating functions, Apostol type Frobenius-Euler polynomials, (p,q)-calculus, (p,q)-Frobenius-Euler polynomials, Generating function.

References:
ANALYSIS OF A SECOND ORDER AND UNCONDITIONALLY STABLE BDF2-AB2 METHOD FOR THE NAVIER-STOKES EQUATIONS

Osman Raşit IŞIK¹, Bülent DEMİR²

¹Department of Elementary Mathematics Education, Muğla Sıtkı Koçman University, Muğla/TURKEY
osmanrasit@mu.edu.tr
²Van Anadolu İman Hatip Lisesi, İpekolu Kaymakamlığı, Van/TURKEY
bulentddemir@hotmail.com

Abstract: In this study, we introduce a second order time stepping BDF2-AB2 method for the Navier-Stokes equations (NSE). It was proven that the method is unconditionally stable and O(Δt²) accurate. We applied the method to several numerical experiments. Numerical results are overlapped with the theoretical results.

Keywords: NSE, Finite Element Method, BDF2-AB2 time discretization.

Acknowledgments: This paper has been granted by the Mugla Sıtkı Kocman University Research Projects Coordination Office. Project Grant Number: 16/063 and title “Navier-Stokes Zaman Rahatlama Modeli ve Sonlu Elemanlar Çözümü Üzerine”

References:

STRONGLY SUMMABLE AND STATISTICALLY CONVERGENT BIVARIATE FUNCTIONS

Bünyamin AYDIN

Education faculty, Necmettin Erbakan University,
Konya/TURKEY
baydin@konya.edu.tr

Abstract: We extend the definitions and basic results on strong summability, statistical convergence and almost convergence from functions of one variable to real valued bivariate functions measurable in the Lebesgue sense on the \((1;1) \times (1;1)\).

References:

ASYMPTOTICALLY l_2-CESÀRO EQUIVALENCE OF DOUBLE SEQUENCES OF SETS

Uğur ULUSU1, Erdinç DÜNDAR1 and Bünyamin AYDIN2

1Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
ucusu@aku.edu.tr

1Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
edundar@aku.edu.tr

2Education faculty, Necmettin Erbakan University, Konya/TURKEY
baydin@konya.edu.tr

Abstract: In this paper, we defined concepts of asymptotically l_2-Cesaro equivalence and investigate the relationships between the concepts of asymptotically strongly l_2-Cesaro equivalence, asymptotically strongly l_2-lacunary equivalence, asymptotically p-strongly l_2-Cesaro equivalence and asymptotically l_2-statistical equivalence of double sequences of sets.

Keywords: Asymptotically equivalence, Cesaro summability, lacunary sequence, statistical convergence, I-convergence, double sequences of sets, Wijsman convergence.

References:

A NEW GENERALIZATION OF THE FIBONACCI
p –FUNCTIONS WITH PERIOD k

Yasin YAZLIK¹, Cahit KÖME²

¹Department of Mathematics, Nevşehir Hacı Bektaş Veli University,
Nevşehir/TURKEY
yyazlik@nevsehir.edu.tr, cahitkome@gmail.com

Abstract: In this presentation, we present the basic properties of the
m –extension of Fibonacci p –functions with period k. Specifying p and
m, we obtain the Fibonacci (p = 1, m = 1) and Pell (p = 1, m = 2)
functions. Furthermore, we define m –extension of odd Fibonacci
p –functions with period k. Moreover, we analyze some properties by
using notion of f – even and f –odd functions with period k. We also
demonstrate the products and quotients of these functions and provide
new results in the development of Fibonacci functions with period k.

Keywords: m –extension of Fibonacci p –functions with period k,
m –extension of odd Fibonacci p –functions with period k, f –even
function with period k, f –odd function with period k.

References:

[1] E. G. Kocer, N. Tuglu, A. Stakhov, On the m –extension of the
Fibonacci and Lucas p –numbers, Chaos, Solitons & Fractals, 40
(4) (2009), 1890-1906.

[2] B. Sroysang, On Fibonacci functions with period k, Discrete
Dynamics in Nature and Society 2013, Article ID 418123, 4 pages.

sequence, Computers & Mathematics with Applications, 63 (1)
(2012), 36-41.

[4] A. Stakhov, B. Rozin, Theory of binet formulas for Fibonacci and
1162-1177.
ASSOCIATE SPACES OF GENERALIZED WEIGHTED WEAK-LORENTZ SPACES

Canay AYKOL YÜCE

Department of Mathematics, Ankara University,
Ankara/TURKEY
aykol@science.ankara.edu.tr

Abstract: In this presentation, we characterize associate spaces of generalized weighted weak-Lorentz spaces.

Keywords: Generalized weighted weak-Lorentz spaces, reverse Hardy inequalities, associate spaces.

References:

SOME REFINEMENTS OF CERTAIN GAMIDOV INTEGRAL INEQUALITIES ON TIME SCALES AND APPLICATIONS

Chiheb TARIK

Abstract: The goal of this paper is to derive some generalizations and refinements of certain Gamidov type integral inequalities on time scales, which provide explicit bounds on unknown functions. To show the feasibility of the obtained inequalities, some illustrative examples are also introduced.

THE RIESZ CAPACITY IN VARIABLE EXPONENT LEBESGUE SPACES

Cihan ÜNAL¹, İsmail AYDIN²

¹Department of Mathematics, Sinop University, Sinop/TURKEY
cunal@sinop.edu.tr
²Department of Mathematics, Sinop University, Sinop/TURKEY
jaydin@sinop.edu.tr

Abstract: In this paper, we study a capacity theory based on a definition of a Riesz potential in the Euclidean space. Also, we define \(\text{Riesz}(\alpha, p(\cdot)) \)-capacity and discuss properties of the capacity in the variable exponent Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n) \).

Keywords: The Riesz potential and capacity, the variable exponent Lebesgue spaces.

References:

ON EXISTING OF FIXED POINT FOR MULTIVALUED MAPPING VIA MEASURE OF NONCOMPACTNESS

Derya SEKMAN¹, Vatan KARAKAYA², Nour El Houda BOUZARA³

¹Department of Mathematics, Ahi Evran University, Kirşehir/TURKEY
deryasekman@gmail.com
²Department of Mathematical Engineering, Yildiz Technical University, İstanbul/TURKEY
vkkaya@yahoo.com
³Department of Mathematics, Yildiz Technical University, İstanbul/TURKEY
bzr.nour@gmail.com

Abstract: In this work, using measure of noncompactness some result on the existence of coupled and tripped fixed point for multivalued set contraction mapping are investigated. As application, the existence of solution, for a system of integral inclusion is studied.

Keywords: Fixed point, multivalued set contraction mapping, measure of noncompactness.

References:

DEFECT-DEFERRED CORRECTION METHOD FOR THE TWO-DOMAIN CONVECTION-DOMINATED CONVECTION-DIFFUSION PROBLEM

Dilek ERKMEN¹, Alexander E. LABOVSKY²

¹ Department of Mathematical Sciences, Michigan Technological University, USA, Department of Mathematical Sciences, Agri Ibrahim Cecen University, Agri, TURKEY.
² Department of Mathematical Sciences, Michigan Technological University, USA.

Abstract: We present a method for solving a fluid-fluid interaction problem (two convection-dominated convection-diffusion problems adjoined by an interface), which is a simplified version of the atmosphere-ocean coupling problem. The method resolves some of the issues that can be crucial to the fluid-fluid interaction problems: it is a partitioned time stepping method, yet it is of high order accuracy in both space and time (the two-step algorithm considered in this report provides second order accuracy); it allows for the usage of the legacy codes (which is a common requirement when resolving flows in complex geometries), yet it can be applied to the problems with very small viscosity/diffusion coefficients. This is achieved by combining the defect correction technique for increased spatial accuracy (and for resolving the issue of high convection-to-diffusion ratio) with the deferred correction in time (which allows for the usage of the computationally attractive partitioned scheme, yet the time accuracy is increased beyond the usual result of partitioned methods being only first order accurate) into the defect-deferred correction method (DDC). The results are readily extendable to the higher order accuracy cases by adding more correction steps. Both the theoretical results and the numerical tests provided demonstrate that the computed solution is unconditionally stable and the accuracy in both space and time is improved after the correction step.

Keywords: Defect deferred correction, high accuracy, fluid-fluid interaction, ocean-atmosphere, implicit-explicit.

References:

NONLINEAR WAVELETS AND THEIR STATISTICAL APPLICATIONS

Djabrane YAHIA

Laboratory of Applied Mathematics, Biskra University, ALGERIA
yahia_dj@yahoo.fr

Abstract: Nonlinear wavelets and their applications in several areas of both pure and applied mathematics has provided statisticians with powerful new techniques for nonparametric curve estimation by combining recent advances in approximation theory with insights gained from applied signal analysis. Nonlinear wavelets are localized in both time and frequency and have remarkable approximation properties. In this presentation, we introduce a new nonlinear wavelet-based estimator of the regression function in the right censorship model. An asymptotic expression for the mean integrated squared error of the estimator is obtained to both continuous and discontinuous curves. The given wavelet estimator automatically adapt to a varying degrees of regularity (discontinuities, cusps, sharp spikes, etc.) of the underlying curves to be estimated when compared to other common estimation techniques, such as the kernel method, which may fail in unsmooth situations.

Keywords: censored data, mean integrated squared error, nonlinear wavelets, rate of convergence.

References:

SOLUTION OF FRACTIONAL HARRY DYM EQUATION WITH COLLOCATION USING RADIAL BASIS FUNCTION

Doğan KAYA¹, Asif YOKUŞ²

¹Department of Mathematics, İstanbul Commerce University, İstanbul/TURKEY
dkaya36@yahoo.com
²Department of Actuary, Firat University, Elazığ/TURKEY
asyokus@yahoo.com

Abstract: In this paper, collocation method using radial basis functions is applied to solution of fractional Harry Dym differential equation. In the solution process, we will use linearization technique for non-linear term existing in the equation. L_2 and L_{∞} error norms are calculated with mathematica program to compare the approximate solution with exact solution.

Keywords: Radial basis functions, Collocation method, Linearization technique.

References:

CHARACTERIZATION AND REVERSIBILITY OF 2D CELLULAR AUTOMATA WITH REFLECTIVE BOUNDARY

Ecem ACAR¹, Selman UĞUZ¹, Rahime KOÇ¹

¹Department of Mathematics, Harran University, 63120, Şanlıurfa/TURKEY
karakusecem@harran.edu.tr, selmanuguz@gmail.com, rahimekoc3@gmail.com

Abstract: In this presentation, it is concentrated on a family of two dimensional (2D) finite linear cellular automata with reflective boundary condition over the ternary field, i.e. \mathbb{Z}_3. It is established a relation between reversibility of cellular automata and characterization of 2D uniform cellular automata with this special boundary condition. We investigate the determination of the characterization problem of the specific cellular automata by using of the matrix algebra theory. Finally, we strongly believe that our uniform CA construction should be applied in real life applications of many scientific areas, such as image applications, cryptology, etc.

Keywords: Two dimensional cellular automata, Reflective boundary condition, Ternary field.

References:

ANALYSIS OF TRAINING PERFORMANCES OF INTERPOLATION METHODS FOR MODELLING HUMAN BODY MOTION

Egemen HALICI¹, Erkan BOSTANCI²

¹Computer Engineering Department, Ankara University
Ankara/TURKEY
ehalici@ankara.edu.tr

²Computer Engineering Department, Ankara University
Ankara/TURKEY
ebostanci@ankara.edu.tr

Abstract: In this paper, the movements of human are modelled with dynamic movement primitives and then trained by the computer using various interpolation methods including Lagrange, spline and cubic spline. The main aim of the study was to assess the performances of these interpolation data in the training stage and choose the most suitable method in order to decrease the training and testing error for real-time motion capture applications. Training was performed on the Carnegie Mellon University Motion Capture Database. Step and grouping variables are introduced here to minimize the training error for the dataset. Statistical analysis of the results suggests that there are significant differences between the training results of these interpolation methods. The model was created with group value 4 and step value 6 and calculated mean square error for spline, cubic spline and Lagrange interpolations. Mc Nemar’s Test, a non-parametric test to identify pairwise performance differences, was applied to the results to find the most suitable interpolation method. Spline and cubic interpolations yielded better results than Lagrange interpolation with z scores of 2.6 and 2.97, while the cubic spline outperformed spline interpolation with a z score of 3.71 with a 99.5% confidence for one and two tailed predictions.

Keywords: motion modelling; interpolation; dynamic movement primitives.

References:

A FRACTIONAL ORDER MODEL FOR OBESITY EPIDEMIC

Elif DEMİRCİ

1Department of Mathematics, Faculty of Sciences, Ankara University, Ankara/TURKEY
edemirci@ankara.edu.tr

Abstract: In this presentation, we propose a fractional order epidemic model for obesity contagion. The population size is assumed to be non-constant which is more realistic. The model considers vertical transmission of obesity and also obesity related death rate. We give local stability analysis of the model. Finally, some numerical examples are presented.

Keywords: Fractional differential equations, epidemic model, stability analysis, obesity.

References:

EXISTENCE AND CONVERGENCE THEOREMS FOR MULTIVALUED GENERALIZED HYBRID MAPPINGS IN CAT(κ)SPACES

Emirhan HACIOGLU¹, Vatan KARAKAYA²

¹Department of Mathematics, Yıldız Technical University, Davutpasa Campus, Esenler, 34220 Istanbul, Turkey, haciogluemirhan@gmail.com
²Department of Mathematical Engineering, Yıldız Technical University, Davutpasa Campus, Esenler, 34210 Istanbul, Turkey, vkkaya@yahoo.com

Abstract: In this study, we give definition of some multivalued hybrid mappings which are general than multivalued nonexpansive mappings and some others. Also we give existence and convergence results in CAT(κ) spaces.

Keywords: multivalued mappings, generalized hybrid mappings, fixed point, Δ-convergence

References:

IDEAL CAUCHY CONDITION FOR INFINITE PRODUCTS

Emrah Evren KARA¹, Metin BAŞARIR², Merve İLKHAM³

¹Department of Mathematics, Düzce University, Düzce/TURKEY
karaevren@gmail.com

²Department of Mathematics, Sakarya University, Sakarya/TURKEY
basarir@sakarya.edu.tr

³Department of Mathematics, Düzce University, Düzce/TURKEY
merveilkhan@gmail.com

Abstract: In this presentation, we give ℐ-Cauchy and ℐ∗-Cauchy conditions for infinite products and prove the relation between them.

Keywords: Ideal convergence, ideal Cauchy condition, P-ideal.

References:

SOME INEQUALITIES FOR q-GAMMA FUNCTION

İnci EGE\(^1\), Emrah YILDIRIM\(^2\)

\(^1\)Department of Mathematics, Adnan Menderes University, Aydın/TURKEY
iege@adu.edu.tr

\(^2\)Department of Mathematics, Adnan Menderes University, Aydın/TURKEY
emrahvildirim@adu.edu.tr

Abstract: In this presentation, we obtain some monotonicity results for q-gamma function and by aid of these, we find some inequalities.

Keywords: Gamma function, q-gamma function, monotonicity, inequality.

References:

SOLVING INVERSE NODAL PROBLEM WITH JUMP CONDITIONS BY USING CHEBISYHEV POLYNOMIALS AND SOME RESULTS ON STABILITY

Emrah YILMAZ¹, Hikmet KOYUNBAKAN² and Shahrbanoo KBARPOOR³

¹,²Department of Mathematics, Firat University, Elazığ/TURKEY
³Department of Mathematics, Mazandaran University, Babolsar/IRAN

emrah231983@gmail.com-hkoyunbakan@gmail.com
akbarpoor.kiasary@yahoo.com

Abstract: In this study, we deal with an inverse nodal problem for Sturm-Liouville (SL) equation with eigen parameter-dependent boundary and jump conditions. We give some reconstruction formulas for potential function q under a condition and boundary data as a limit by using nodal points. Furthermore, we show that inverse nodal problem for SL equation is stable. Then, we use Chebisyhev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem for SL equation with jump conditions. And, finally we present the numerical results by using some examples.

Keywords: Inverse Nodal Problem, Stability, Sturm-Liouville Equation, Chebisyhev Polynomials

References:

SPECTRAL THEORY OF DIRAC SYSTEM ON TIME SCALES

Tuba GÜLSEN¹, Emrah YILMAZ²

¹Department of Mathematics, Firat University, Elazığ/TURKEY
tubagulsen87@hotmail.com
²Department of Mathematics, Firat University, Elazığ/TURKEY
emrah231983@gmail.com

Abstract: In this study, we give some spectral properties of Dirac system on an arbitrary time scale. Furthermore, we have obtained eigenfunctions of first and second canonic forms of this system.

Keywords: Time Scales, Dirac system, Spectral Theory

References:

SUMMABILITY OF DOUBLE SEQUENCES OF 0'S AND 1'S

Emre TAŞ

Department of Mathematics, AhiEvran University,
Kirsehir/ TURKEY
emretas86@hotmail.com

Abstract: In 1909 Borel stated that "Almost all of the sequences consisting of 0's and 1's are Cesàro summable to (1/2)". Then Hill has generalized Borel's result to general matrices. In this study we investigate the Borel property of 4-dimensional matrices.

Keywords: Double sequences, Pringsheim convergence, the Borel Property, double sequences of 0's and 1's

This work was supported by the Ahi Evran University Scientific Research Projects Coordination Unit. Project Number: FEF.E2.16.017

References:

UNBOUNDED UPPER AND LOWER SOLUTION METHOD FOR FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS ON THE HALF-LINE

Erbil ÇETİN¹, Ravi P.AGARWAL²

¹Department of Mathematics, Ege University, İzmir/TURKEY
erbil.cetin@ege.edu.tr

²Department of Mathematics, Texas A&M University-Kingsville, Kingsville, Texas/USA
agarwal@tamuk.edu

Abstract: In this presentation, we introduce existence of solutions for fourth-order boundary value problems with delay terms on an infinite interval. First we present definitions of upper and lower solutions and Nagumo's condition of the problem. Also we establish the Green's function of the problem. Then we give sufficient conditions for the existence of a solution by using upper and lower solution method and the Schauder fixed point theorem. An example is given to illustrate the main result.

Keywords: Upper and lower solution method, delay differential equation, Schauder fixed point theorem.

References:

STABILITY AND SQUARE INTEGRABILITY OF SOLUTIONS OF NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATIONS WITH DELAY

Erdal KORKMAZ¹, Cemil TUNC²

¹Department of Mathematics, Mus Alparslan University, Mus/TURKEY
korkmazerdal36@hotmail.com
²Department of Mathematics, YuzuncuYıl University, Van/TURKEY
cemtunc@yahoo.com

Abstract: In this paper, we obtain sufficient conditions for the boundedness and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. In this work, we extend existing results on fourth order differential equations.

Keywords: Stability, boundedness, Lyapunov functional, delay differential equations, square integrable.

References:

JENSEN’S INEQUALITY WITH OPERATOR s-CONVEXITY
(or BRECKNER s-CONVEXITY) IN HILBERT SPACE AND
SOME ITS APPLICATIONS

Erdal UNLUYOL

Department of Mathematics, Ordu University,
Ordu/TURKEY
eunluyol@yahoo.com

Abstract: In this presentation, I introduce a new operator inequality class of Jensen. Furthermore, I obtain new theorems and definitions. Also, I generalized this class. Finally, It is given some applications about this inequality.

Keywords: Jensen inequality, operator convex functions, s-convex or Breckner s-convex,

References:

WIJSMAN STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF SETS

Fatih NURAY¹, Uğur ULUSU¹ and Erdinç DÜNDAR¹

¹Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar/TURKEY
fnuray@aku.edu.tr, ulusu@aku.edu.tr, edundar@aku.edu.tr

Abstract: In this paper, we study the concepts of Wijsman statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy double sequences of sets and investigate the relationships between them.

Keywords: Statistical convergence, double sequence of sets, Wijsman convergence, Hausdorff convergence.

ROTATIONAL HYPERSURFACE IN 4-SPACE

Erhan GÜLER¹, Martin MAGID², Yusuf YAYLI³

¹Department of Mathematics, Bartın University, 74100 Bartın/TURKEY
ergler@gmail.com, comeuler@bartin.edu.tr
²Department of Mathematics, Wellesley College, MA 02458 Wellesley/UNITED STATES
mmagid@wellesley.edu
³Department of Mathematics, Ankara University, 06100 Ankara/TURKEY
yayli@science.ankara.edu.tr

Abstract: We consider rotational hypersurface in the four dimensional Euclidean space. We calculate the mean and the Gaussian curvature, and some relations of the rotational hypersurface. Moreover, we give the Laplace-Beltrami operator of the rotational hypersurface.

Keywords: Laplace-Beltrami operator, Rotational hypersurface, Gaussian curvature, mean curvature.
ENNEPER TYPE SURFACES IN 4-SPACE

Erhan GÜLER¹, Ömer KİŞİ², Semra SARAÇOĞLU ÇELİK³
¹,²,³Bartin University, Faculty of Science, Department of Mathematics, 74100, Bartin, Turkey
eguler@bartin.edu.tr, okisi@bartin.edu.tr, ssaracoglu@bartin.edu.tr

Abstract: We study a two parameter family of Enneper-type minimal surfaces using the Weierstrass representation in the four dimensional Euclidean space. We obtain implicit algebraic equations of the surfaces.

Keywords: Enneper-type minimal surfaces, Weierstrass representation, algebraic equation.

ASYMPTOTICALLY 𝐼_σ^-EQUIVALENCE OF SEQUENCES OF SETS

Uğur ULUSU¹, Esra GÜLLE¹
¹Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar/TURKEY
ulusu@aku.edu.tr, egulle@aku.edu.tr

Abstract: In this paper, we introduce the concepts of Wijsmanp-strongly asymptotically invariant equivalence (\([W_{\sigma_p}]\)), Wijsman asymptotically \(I\)-invariant equivalence (\(W_{\sigma}^I\)) and Wijsman asymptotically \(I^\ast\)-invariant equivalence (\(W_{\sigma}^{I^\ast}\)). Also, we investigate the relationships among the concepts of Wijsman asymptotically invariant equivalence, Wijsman asymptotically invariant statistical equivalence, (\([W_{\sigma_p}]\)), (\(W_{\sigma}^I\)) and (\(W_{\sigma}^{I^\ast}\)).

Keywords: Asymptotically equivalence, \(I\)-convergence, invariant convergence, sequences of sets, Wijsman convergence.
GENERALIZED WEIGHTED STATISTICAL CONVERGENCE IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Selma ALTUNDAĞ¹, Esra KAMBER²

¹Department of Mathematics, Sakarya University, Sakarya/TURKEY
e.burdurlu87@gmail.com
²Department of Mathematics, Sakarya University, Sakarya/TURKEY
scaylan@sakarya.edu.tr

Abstract: In this paper, benefiting from a very recent investigation, we introduce a new statistical convergence type, named weighted \(\lambda \)-statistical convergence to generalize the concept of weighted statistical convergence with respect to the intuitionistic fuzzy norm \((\mu, \nu) \). Moreover, we establish its relation to weighted statistical convergence and a new summability method, named \((\overline{N}, p) \)-summability with respect to the intuitionistic fuzzy norm \((\mu, \nu) \).

Keywords: Statistical convergence, strong summability, intuitionistic fuzzy normed linear space.

References:

OPERATOR IDEAL OF S-TYPE OPERATORS USING WEIGHTED MEAN SEQUENCE SPACE

Ezgi ERDOĞAN¹, Vatan KARAKAYA²

¹Department of Mathematics, University of Marmara, Istanbul/TURKEY
ezgi.erdogan@marmara.edu.tr
²Department of Mathematical Engineering, Yıldız Technical University, Istanbul, Turkey
ykkaya@yahoo.com

Abstract: In this presentation, we give a different class of s-type operators by using the generalized weighted mean sequence space \(c_0(u,v) \), and then it is shown that this new class of operators is a quasi-Banach operator ideal. Moreover, their injectivity and surjectivity are investigated according to sort of s-number. Finally, we prove that it is a closed operator ideal.

Keywords: Operator ideals, s-numbers, quasi-norm, weighted mean sequence space.

Acknowledgement: The first author was supported by TÜBİTAK- The Scientific and Technological Research Council of Turkey.

References:

ON EIGENVALUES AND EIGENFUNCTIONS OF A BOUNDARY VALUE PROBLEM WITH RETARDED ARGUMENT

Khanlar R. MAMEDOV¹, F. Ayça ÇETİNKAYA²

¹,²Department of Mathematics, Mersin University, Mersin/TURKEY
hanlar@mersin.edu.tr, faycacetinkaya@mersin.edu.tr

Abstract: In this work, we investigate the asymptotic formulas for eigenvalues and eigenfunctions of the boundary value problem for the differential equation

\[u'' + q(x)u(x) + \lambda w(x)u(x) = 0, \quad x \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right] \]

with boundary conditions

\[u(0) = 0, \]
\[(\beta_1 + \beta_2)u'(\pi) + (\beta_1 + \beta_2)u(\pi) = 0 \]
\[u(x - \Delta(x)) = u(0) \phi(x - \Delta(x)) \]

and transmission conditions

\[\gamma_1 u\left(\frac{\pi}{2} + \delta_1 w\left(\frac{\pi}{2} + \delta_1\right) = 0, \]
\[\gamma_2 u\left(\frac{\pi}{2} - 0\right) - \delta_2 w\left(\frac{\pi}{2} + \delta_2\right) = 0, \]

where the real valued function \(q(x) \) and \(\Delta(x) \geq 0 \) is continuous on \(\left[0, \frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right] \), \(\lambda \) is a spectral parameter,

\[w(x) = \begin{cases} w_1, & x \in \left[0, \frac{\pi}{2}\right] \\ w_2, & x \in \left[\frac{\pi}{2}, \pi\right] \end{cases} \]

\(\gamma_1, \gamma_2, \delta_1, \delta_2 \) are arbitrary real numbers \(\{\|\beta_1\| + \|\beta_2\| \geq 0\} \) \(i = 1, 2 \), \(\phi(x) \) is a initial continuous function on the initial set \(E_0 = \{x - \Delta(x): x - \Delta(x) < 0, r > 0\} \) with \(\phi(0) = 0 \).

Keywords: asymptotics of eigenvalues and eigenfunctions, boundary value problems, differential equation with retarded argument; discontinuous coefficient.

References:

SOME MATRIX CHARACTERIZATIONS ON THE SERIES SPACE $|\mathcal{N}_p^\theta|\langle \mu \rangle$ AND APPLICATIONS

Fadime GÖKÇE¹, Mehmet Ali SARIGÖL²
¹,²Department of Mathematics, University of Pamukkale, Denizli/TURKEY
fgokce@pau.edu.tr, msarigol@pau.edu.tr

Abstract: In this study, we introduce the notion of generalized absolute summability method which includes almost well known summabilities, and define some related series space $|\mathcal{N}_p^\theta|\langle \mu \rangle$ and also characterize the matrix classes $\left(|\mathcal{N}_p^\theta|\langle \mu \rangle, |\mathcal{N}_q^\mu|\langle \lambda \rangle \right)$ and $\left(|\mathcal{N}_p^\theta|\langle \mu \rangle, |\mathcal{N}_q|\langle \lambda \rangle \right)$. So, we deduce some known results as special cases.

Keywords: Absolute weighted summability, matrix transformations, sequence spaces.

References:

ON THE ONE SUFFICIENT CONDITION FOR SHARP ESTIMATION OF ORTHONORMAL POLYNOMIALS OVER A CONTOUR OF THE COMPLEX PLANE

Fahreddin ABDULLAYEV1, Gülnare ABDULLAYEV2

1Department of Mathematics, Mersin University, Mersin/TURKEY
fabdul@mersin.edu.tr
2Higher School of Technical Science, Mersin University, Mersin/TURKEY
gabdullayev@yandex.ru

Abstract: In this work, we considered the orthogonal polynomials along a contour [1,2]. We investigated the order of the height of the modulus of orthogonal polynomials over a contour with respect to the weighted Lebesgue space, where the contour and the weight function have some singularities at the finite number points on the contour [3,4]. Some sufficiently condition was obtained, when such estimation will be is sharp. Analogous question for arbitrary algebraic polynomials will be considered.

Keywords: Orthogonal polynomials, Algebraic polynomials, Conformal mapping, Quasicircle, Smooth curve.

References:

WEAK w^2 --STABILITY AND DATA DEPENDENCY OF MANN ITERATIVE SCHEME OF STRONGLY DEMICONTRACTIVE OPERATORS

Faik GÜRSOY

Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
faikgursoy02@hotmail.com

Abstract: We continue to examine the stability theory for Mann iterative method of strongly demicontractive operators (SDCOs) in the context of a weaker and more natural notion of stability called weak w^2 --stability to get an insight in the corresponding result obtained in [L. Maruster, St. Maruster, On the error estimation and T --stability of the Mann iteration, J. Comput. Appl. Math., 276 (2015) 110-116]. We also study data dependency of fixed points of SDCOs. Some illustrative examples are also given to validate the theoretical results obtained herein.

Keywords: Mann iteration, weakstability, data dependency, demicontractive mappings.

References:

APPROXIMATING FIXED POINTS OF ALMOST CONTRCTIONS BY A SIMPLER AND FASTER ITERATIVE SCHEME

Faik GÜRSOY¹, Vatan KARAKAYA², Kadri DOĞAN³
Müzeyyen ERTÜRK⁴

¹, ⁴Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
¹faikgursoy02@hotmail.com
⁴merturk3263@gmail.com

²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
vkkaya@yahoo.com

Department of Mathematics Education, Artvin Coruh University, Artvin/ TURKEY
dogankadri@hotmail.com

Abstract: Our purpose in this exposition is to prove some convergence and data dependence result in the class of almost contraction operators using a simpler and faster iterative process in the framework of Banach spaces. Some numerical examples are provided to validate the results obtained. Our results improve several known results in the existing literature.

Keywords: Iterative schemes, convergence, data dependence, almost contractions.

References:

A GENERALIZATION OF SOME MIXED NORM SPACES

Faruk ÖZGER¹, Eberhard MALKOWSKY²

¹Department of Engineering Sciences, Izmir Katip Celebi University, Izmir/TURKEY
farukozger@gmail.com
²Državni Univerzitet u Novom Pazaru, Vuka Karadžića bb, 36300, Novi Pazar/SERBIA
ema@Bankerinter.net

Abstract: In this presentation, we generalize the definition of mixed norm spaces to that of mixed paranorm spaces. We also consider the spaces of sequences that are strongly summable to zero as special cases of mixed paranorm spaces.

Keywords: Mixed norm spaces, mixed paranorm spaces, dual spaces.

References:

MATRICIALLY DERIVED SOLID BANACH SEQUENCE SPACES

Faruk POLAT

Department of Mathematics, Çankiri Karatekin University, Çankiri/TURKEY
faruk.polat@gmail.com

Abstract: Let F^N denote the vector space of all scalar sequences. If A is an infinite matrix with non-negative entries and λ is a solid subspace of F^N, then $sol - A^{-1}(\lambda) = \{x \in F^N : A|x| \in \lambda\}$ is also a solid subspace of F^N which, under certain conditions on A and λ, inherits a solid topological vector space topology from any such topology on λ. Letting $A_0 = \lambda$ and $A_m = sol - A^{-1}(A_{m-1})$ for $m > 0$, we derive an infinite sequence $A_0, A_1, A_2, ...$ of solid subspaces of F^N from the inputs A and λ. For A and λ confined to certain classes, we ask many questions about this derived sequence, and answer a few.

Keywords: Solid sequence space, infinite matrix, projective limit, solid topology.

BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR ON GENERALIZED ORLICZ-MORREY SPACES

Fatih DERİNGÖZ

Department of Mathematics, Ahi Evran University, Kirsehir/TURKEY
fderingoz@ahievran.edu.tr

Abstract: We consider generalized Orlicz-Morrey spaces including their weak versions. In these spaces, we find the sufficient conditions for the boundedness of the fractional maximal operator from one generalized Orlicz-Morrey space to another one.

Keywords: generalized Orlicz-Morrey spaces, fractional maximal operator, Riesz potential.

This work was supported by the Ahi Evran University Scientific Research Projects Coordination Unit. Project Number: FEF.E2.16.016

References:

ON ONE KIND OF POSITIVE OPERATORS IN LEBESGUE SPACE OF HARMONIC FUNCTIONS

Fatih SIRIN¹, Yusuf ZEREN²

¹Department of Mathematics, Yıldız Technical University, İstanbul/TURKEY
fatih.sirin@std.yildiz.edu.tr

²Department of Mathematics, Yıldız Technical University, İstanbul/TURKEY
yzeren@yildiz.edu.tr

Abstract: In this work we consider some system of positive operators in Lebesgue Space of Harmonic functions and prove Korovkin type theorem in this space.

Keywords: Lebesgue Space of Harmonic functions, Korovkin type theorem, Poisson kernel.

References:

NUMERICAL RECKONING COINCIDENCE POINTS OF NONSELF MAPPINGS VIA A JUNGK-MODIFIED SP ITERATIVE METHOD

Fatma ÖZTÜRK ÇELİKER

Department of Mathematics, Yıldız Technical University, İstanbul/TURKEY
fatozmat@gmail.com

Abstract: Current literature on the iterative approximation of fixed points reveals that there have been substantial endeavors to introduce diverse iterative methods of self-operators and investigate their more qualitative properties such as convergence, data dependency and stability. Since the case of nonself-mappings is much more complicated than that of self-mappings, it is rarely considered in the literature. Inspired by the work of Khan et al. [1] and [2], here we handle this problem using a new iterative method of two nonself operators.

Keywords: Convergency, data dependency, Jungck-type iterative method.

References:

COMMON FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS, EMPLOYING AN IMPLICIT RELATION WITH COMPLEX COEFFICIENTS ON COMPLEX VALUED METRIC SPACE

Fayyaz ROUZKARD
Farhangian University, Tehran, IRAN
fayyazrouzkard@gmail.com

Abstract: A general common fixed point theorem for two pairs of weakly compatible mappings using an implicit function is proved without any continuity requirement which generalizes the result due to Popa [3, Theorem 3]. We establish common fixed point theorems involving two pairs of weakly compatible mapping satisfying certain rational expressions with complex coefficients are proved in complex valued metric space.

Some related results are also derived besides furnishing illustrative examples to highlight the realized improvements. The presented theorems generalize, extend and improve many existing results in the literature.

Keywords: implicit functions, weakly compatible mappings, complex coefficients, coincidence and Complex valued metric space.

References:
RESTORATION OF DEGRADED FACE IMAGE USING NON LINEAR DIFFERENTIAL EQUATION FOR RECOGNITION

Fella BERRIMI1, Khier BENMAHAMMED2

1Department of Technology, Ferhat ABBES University, Setif/ALGERIA
fellaber@yahoo.fr

2Department of Electronics, Ferhat ABBES University, Setif/ALGERIA
khierben@gmail.com

Abstract: In this paper, we search to find a good estimate of the degraded face image for recognizing the person presented in this face. First, the degraded face image is restored with an anisotropic diffusion method based on non linear differential equation (PDE). This approach is an efficient new method to remove noise from an image by performing isotropically smooth in the homogeneous region (low gradient) in preference to inhomogeneous region (height gradient) in order to prevent the destruction of discontinuities. After the restoration task, the recognition one is performed using the principal components analysis (PCA) method that decomposes the face image into small set of characteristics (eigenvectors) which catch the total variation in collection of training faces(classes) where each class contains a few images describing a person with different poses and looks (hair style, glasses,…). The training set created a new space called eigenface space where the restored image is projected, so it is redefined in this space using eigenvectors. Finally, we can recognize the person presented in the test face on selecting the face class that have the minimum distance with the projected image using the mean square distance and studying the different cases. Experiments on the Extended Yale B face database where the test face image is artificially degraded using the Gaussian blurshow that the proposed method substantially improves the recognition performance compared to other methods.

Keywords: anisotropic diffusion based on non linear differential equation, linear method based on principal components analysis, restoration of degraded face image, face recognition.

References:

CHARACTERIZATION OF THREE DIMENSIONAL CELLULAR AUTOMATA WITH PERIODIC BOUNDARY OVER \mathbb{Z}_m

Ferhat ŞAH1, Hasan AKIN2 Fatih TAŞÇI3

1Department of Mathematics, Adıyaman University, Adıyaman/TURKEY
fsah@adiyaman.edu.tr
2Department of Mathematics, Faculty of Education, Zirve University, akinhasan25@gmail.com
3Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
	tasci@yildiz.edu.tr

Abstract: A quick look at the literature reveals that there are just a few study regarding with three dimensional cellular automata. This situation motivate us to study the algebraic behavior of three dimensional linear cellular automata over \mathbb{Z}_m. We provide necessary and sufficient conditions for a three dimensional linear cellular automata over \mathbb{Z}_m to be reversible or irreversible. The obtained result characterizes three dimensional linear cellular automata under the periodic boundary conditions. Finally, we give an application to show validity of our result.

Keywords: 3D Cellular automata, Matrix Representation, Finite Fields, Periodic Boundary.

References:

NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS USING TAYLOR SERIES EXPANSION

Fernane KHAIREDDINE ¹, EllaggouneFATEH ²
¹,²Department of Mathematics, University of 8 May 1945, P.O.Box 401, 24000 Guelma-Algeria
¹kfernane@yahoo.fr ²fellaggoune@gmail.com

Abstract: In this paper, we apply Taylor series expansion for approximating and then transform the given nth-order weakly singular linear Volterra and Fredholm integro-differential equations to one ordinary linear differential equation. The solution of this last differential equation is the approximate solution of the integro-differential equation. Finally, some different examples are considered the results of these examples indicated that the procedure of transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.

Keywords: Taylor series expansion, General Abel Integral, Integro-differential Equations, Weakly singular Fredholm integral-equations, Weakly singular Volterra integral-equations.

References

EXTRAGradient Method for Solving Equilibrium Problem in Banach Spaces

Zeynab JOUYMANDI¹, Fridoun MORADLOU²

¹Department of Mathematics, Sahand University of Technology, Tabriz/IRAN
z_jouymandi@sut.ac.ir
²Department of Mathematics, Sahand University of Technology, Tabriz/IRAN
moradlou@sut.ac.ir

Abstract: In this presentation, using sunny generalized nonexpansive retraction, which is different from the metric projection, we propose a new extragradient algorithm for finding the solution set of an equilibrium problem (EP) in Banach spaces. The extragradient method is well known because of its efficiency in numerical test. In all papers, authors have used metric projection in Hilbert spaces and generalized metric projection in Banach spaces. To obtain strong convergence for the sequences which are generated by your algorithm, we assume that the equilibrium function f satisfies a φ-Lipschitz-type condition.

Keywords: Equilibrium problem, Extragradient method, Sunny generalized nonexpansive retraction.

References:

NUMERICAL INTEGRATION VIA SPARSE GRID QUASI-INTERPOLATION WITH GAUSSIANS

Fuat USTA1, Jeremy LEVESLEY2

1Department of Mathematics, Düzce University, Düzce/TURKEY
fuatusta@duzce.edu.tr

2Department of Mathematics, University of Leicester, Leicester/UK
jl1@leicester.ac.uk

Abstract: Sparse grid approximation is one of the most powerful methods for approximation of functions especially in high dimensions, 5-10, say. In this presentation we will define a quadrature formula via quasi interpolation by using sparse grid with Gaussian kernel. Then in order to overcome convergence problem we define multilevel version of this algorithm. Finally we present the results of numerical experimentation for numerical integration for high dimensions.

Keywords: Sparse grid, quasi interpolation, Gaussians, high dimensional interpolation, quadrature, multilevel algorithm.

References:

USING KERNEL BASED METHODS FOR NEW TYPE CONFORMABLE ODE PROBLEMS

Fuat USTA¹

¹Department of Mathematics, Düzce University,
Düzce/TURKEY
fuatusta@duzce.edu.tr

Abstract: In this presentation, we introduced a new scheme for solving the newly defined conformable ordinary differential equation [1] via the mesh-free numerical method. In order to solve these type differential equations, we use the radial basis functions with collocation technique. Then we present the results of numerical experimentation for numerical solution of newly defined conformable ordinary differential equations.

Keywords: Newly defined conformable derivatives, radial basis functions, collocation technique.

References:

AN EXISTENCE THEOREM OF MULTIPLE POSITIVE SOLUTIONS TO SEMIPOSITONE BOUNDARY VALUE PROBLEMS

Fulya YÖRÜK DEREN1, Nüket AYKUT HAMAL2, Tuğba ŞENLİK ÇERDİK3

1,2,3Department of Mathematics, Ege University, İzmir/TURKEY
fulya.yoruk@ege.edu.tr.nuket.aykut@ege.edu.tr.tubasenlik@gmail.com

Abstract: In this talk, we investigate the existence of multiple positive solutions for semipositone boundary value problems of three-point boundary conditions by means of the Leggett-Williams fixed point theorem.

Keywords: Positive solution, fixed point theorem, semipositone.

References:

GENERALIZED ABSOLUTE CESÀRO SUMMABILITY SPACES AND MATRIX OPERATORS

G. Canan HAZAR¹, M. Ali SARIGÖL²

¹Department of Mathematics, Pamukkale University, Denizli/TURKEY
gchazar@pau.edu.tr
²Department of Mathematics, Pamukkale University, Denizli/TURKEY
msarigol@pau.edu.tr

Abstract: In this presentation, we introduce a new space $\left| C_{\lambda,\mu} \right|_k$ as the set of series summable by absolute Cesàro summability $\left| C_{\lambda,\mu} \right|_k$ of Das [2], investigate its some algebraic and topological properties, and characterize some matrix operators defined on that space. Moreover, these characterizations correspond to problems of absolute summability factors and comparison of these summability methods for the special matrix transformations such as identity matrix I and the matrix $W = (w_{\nu})$, defined by $w_{\nu} = \varepsilon_{\nu}$ for $\nu = n$, zero otherwise. Hence we generalize some well known results of Bosanquet [1], Flett [3], Mehdi [6], Mazhar [5], Orhan and Sarigöl [10] and Sarıgöl [7,9].

Keywords: Sequence spaces, Absolute Cesàro summability, matrix transformations, dual spaces, BK spaces.

References:

A NEW ITERATIVE ALGORITHM FOR QUASI BREGMAN NOEXPANSINE MAPPINGS

G. ZAMANI ESKANDANI AND M. RAEISI

Faculty of Sciences, Department of Mathematics,
University of Tabriz, Tabriz, Iran
zamani@tabrizu.ac.ir
m.raeisi@tabrizu.ac.ir

Abstract. In this paper, we propose a new iterative algorithm for finding common fixed points of infinitely countable family of quasi Bregman nonexpansive operators and common solutions of finite family of equilibrium problems in reflexive Banach spaces.

Keywords: Bregman projection, Legendre function, quasi Bregman nonexpansive, Equilibrium problems.

References:

APPROXIMATE SOLUTIONS OF DELAY PSEUDO-PARABOLIC EQUATIONS

Gabil M. AMIRALIYEV¹, Ilhame AMIRALI²

¹Department of Mathematics, Erzincan University, Erzincan/TURKEY, gabilamirali@yahoo.com
²Department of Mathematics, Düzce University, Düzce/TURKEY, ailhame@gmail.com

Abstract: In this presentation, linear and nonlinear pseudo-parabolic equations with time delay are examined. For the solving numerically the considered initial-boundary value problems difference schemes are constructed and analysed. Based on the method of energy estimates the order of convergence is obtained. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.

Keywords: Pseudo-Parabolic, Initial-boundary value, Finite Difference, Delay Equations

References:

SOME IDENTITIES OF THE HUMBERT AND GENERALIZED CHEBYSHEV POLYNOMIALS

Gulsah OZDEMIR, Yılmaz SIMSEK

Department of Mathematics, Akdeniz University, Antalya/TURKEY
ozdemir.gulsah@hotmail.com, ysimsek@akdeniz.edu.tr

Abstract: In [1], we constructed some generating functions for two-variable polynomials related to a family of the Fibonacci type polynomials and numbers. By using these functions and their functional equations with PDE, we derived many identities and relations associated with some well-known polynomials and numbers such as the Fibonacci numbers, the Fibonacci polynomials, the Jacobsthal polynomials, the Chebyshev polynomials, the Vieta-Fibonacci polynomials, the Vieta-Lucas polynomials, the Humbert polynomials and the Geganbauer polynomials. In this paper, we modify generating functions for the two-variable polynomials of the Fibonacci type polynomials. By using these generating functions, we give many new identities and relations for the Humbert polynomials and the generalized Chebyshev polynomials. Finally, we give some remarks and observations on these generating functions and related infinite series.

Keywords: Generating function, Fibonacci numbers and polynomials, Chebyshev polynomials, Humbert polynomials, Geganbauer polynomials.

References:

A NEW SMOOTHING METHOD VIA BEZIER CURVE FOR NON-SMOOTH FUNCTIONS

Ahmet ŞAHİNER¹, Gülden KAPUSUZ¹, Nurullah YILMAZ¹

¹Department of Mathematics, SuleymanDemirelUniversity,
Isparta/TURKEY
guldenkapusz92@gmail.com, ahmetnur32@gmail.com, nurullahyilmaz@sdu.edu.tr

Abstract: In this study, we propose a new smoothing technique based on the Bezier curve for non-smooth functions. We use this smoothing approach in a global optimization method and construct an algorithm for this global optimization method. We apply the algorithm to the test problems in order to illustrate the efficiency of the method.

Keywords: Global Optimization, Non-Smooth, Non-Lipschitz, Smoothing

References:

VIABILITY PROBLEM FOR SECOND ORDER DIFFERENTIAL INCLUSIONS

Gülseren ÇİÇEK¹, Elimhan MAHMUDOV²

¹Department of Mathematics, Istanbul University, Istanbul/TURKEY
cicekgul@istanbul.edu.tr
²Department of Mathematical Engineering, Istanbul Technical University, Istanbul/TURKEY
elimhan22@yahoo.com

Abstract: In this presentation, we derive the optimality conditions for the viability problem for second order differential inclusions. Applying optimality conditions of problems with geometric constraints, optimality conditions for second order discrete inclusions are formulated. Using locally adjoint mapping we conceive necessary and sufficient conditions for the optimality of the discrete approximation problem. Then passing to the limit, sufficient optimality conditions to the optimal problem described by second order differential inclusions are established.

Keywords: second order discrete differential inclusion, transversality condition, Euler-Lagrange inclusion, locally adjoint mapping, dual cone.

References:

IDENTITIES ON THE $\varepsilon_{4n,1}$-INTEGRAL TRANSFORM

A. Neşe DERNEK1, Gülşen MENSİMLİ2,

1Department of Mathematics, University of Marmara, Istanbul/TURKEY
ndernek@marmara.edu.tr

2Department of Mathematics, University of Marmara, Istanbul/TURKEY
gulsen.mensimli@yahoo.com

Abstract: In this presentation the authors prove a Parseval- Goldstein type theorem involving the $\varepsilon_{(4n,1)}$-generalized exponential integral transform. The theorem is then shown to yield a number of new identities involving several well-known integral transforms. Using the theorem and its corollaries a number of interesting infinite integrals are presented.

Keywords: $\varepsilon_{4n,1}$-transform, L_{4n}-transform, P_{4n}-transform, Laplace transform, Parseval-Goldstein Type Theorems

References:

ON THE PARANORMED TAYLOR SEQUENCE SPACES

SerkanDEMİRİZ¹, Hacer Bilgin ELLİDOKUZOĞLU²

¹Department of Mathematics, Gaziosmanpaşa University, Tokat/TURKEY
serkandemiriz@gmail.com

²Department of Mathematics, RecepTayyipErdoğan University, Rize/TURKEY
hacer.bilgin@erdogan.edu.tr

Abstract: In this study, the sequence spaces \(t_0^c(p), t_0^c(p) \) and \(t^c(p) \) of non-absolute type which are the generalization of the Maddox’s sequence spaces have been introduced and it is proved that the spaces \(t_0^c(p), t_0^c(p) \) and \(t^c(p) \) are linearly isomorphic to the spaces \(c_0(p), c(p) \) and \(\ell \), respectively. Furthermore, the \(\alpha, \beta \) and \(\gamma \) duals of these spaces have been computed and their bases have been constructed and some topological properties of these spaces have been investigated. Besides this, some matrix classes have been characterized.

Keywords: Paranormed Taylor sequence spaces, matrix domain, matrix transformations

References:

[1] M. Kirişçi, On the Taylor sequence spaces of non-absolute type which Include the Spaces \(c_0 \) and \(\ell \), Journal of Mathematical Analysis, 6 (2) (2015), 22-35.

ON THE TAYLOR SEQUENCE SPACES OF NON-ABSOLUTE TYPE WHICH INCLUDE THE SPACES ℓ_p and ℓ_∞ ($1 \leq p < \infty$)

Hacer Bilgin ELLİDOKUZOĞLU\(^1\), Serkan DEMİRİZ\(^2\)

\(^1\)Department of Mathematics, Recep Tayyip Erdoğan University, Rize / TURKEY

hacer.bilgin@erdogan.edu.tr

\(^2\)Department of Mathematics, Gaziosmanpaşa University, Tokat / TURKEY

serkandemiriz@gmail.com

Abstract: In this presentation, we introduce Taylor sequence spaces τ_p and τ_∞, consisting of all sequences whose $T(r)$-transforms are in the spaces ℓ_p and ℓ_∞, respectively. We investigate some properties and compute α, β, and γ-duals of these spaces. Afterwards, we characterize some matrix classes of Taylor sequence spaces τ_p and τ_∞.

Keywords: Taylor sequence spaces, matrix domain, matrix transformations

References:

[1] M. Kirişçi, On the Taylor sequence spaces of non-absolute type which include the spaces τ and τ_0, Journal of Mathematical Analysis, 6 (2) (2015), 22-35.

LACUNARY STATISTICAL CONVERGENCE OF ORDER (α, β) AND STRONG $N_{\alpha}^{\beta}(\theta, p)$ – SUMMABILITY

Hacer ŞENGÜL

Department of Mathematics, Siirt University,
Siirt/TURKEY
hacer.sengul@hotmail.com

Abstract: In this presentation, we introduce the concepts of lacunary statistical convergence of order (α, β) and strong $N_{\alpha}^{\beta}(\theta, p)$ – summability of order(α, β) for sequences of complex (or real) numbers and give some inclusion relations between the sets of lacunary statistical convergence of order (α, β), strong $N_{\alpha}^{\beta}(\theta, p)$ – summability and statistical convergence of order (α, β).

Keywords: Statistical convergence, lacunary sequence, strong summability.

References:

LACUNARY STATISTICAL CONVERGENCE OF ORDER (α, β) IN TOPOLOGICAL GROUPS

Hacer ŞENGÜL, Mikail ET

1Department of Mathematics, Siirt University, Siirt/TURKEY
hacer.sengul@hotmail.com
2Department of Mathematics, Fırat University, Elazığ/TURKEY
mikailet68@gmail.com

Abstract: In this presentation, the concept of lacunary statistical convergence of order (α, β) is generalized to topological groups, and some inclusion relations between the set of all statistically convergent sequences of order (α, β) and the set of all lacunary statistically convergent sequences of order (α, β) are given.

Keywords: Topological groups, statistical convergence, lacunary sequence.

References:

AI–STATISTICAL CONVERGENCE OF ORDER $\alpha (0 < \alpha < 1)$

Hafize GÜMÜŞ

1Department of Mathematics Education, Necmettin Erbakan University
Ereğli/Konya/TURKEY
hgumus@konya.edu.tr

Abstract: Following a very recent approach, in this study we investigate AI-statistical convergence of order α with respect to a sequence of modulus functions where $A = \{A_\ell\}$ is an infinite matrix and $\lambda = \{\lambda_n\}$ is a non-decreasing sequence of positive numbers. We call this new convergence as $[S(A,F)]^{\text{I}}$–convergence. Furthermore, we define $[V^\lambda(I,F)]^{\text{I}}$ – convergence and $[S_{\alpha}(I,F)]^{\text{I}}$ – convergence and we mainly investigate their relationship.

Keywords: Statistical convergence, ideal, filter, AI-statistical convergence, $\lambda = \{\lambda_n\}$ sequence.

References:

A NUMERICAL ANALYSIS FOR SOLUTION OF DIFFERENTIAL EQUATIONS USING THE COMPLEMENTARY FUNCTIONS METHOD

Hakan PEKEL

Department of Mechanical Engineering, Nigde University, Nigde/TURKEY
hpekel@nigde.edu.tr

Abstract: In some problems the assumption yields a two-point boundary value problem with a governing ordinary differential equation of variable coefficients. Since general analytical solutions of such equations especially for higher order ones are not available a numerical analysis method is employed. One of them is known as Complementary Functions Method (CFM). The main idea of the method is to reduce the boundary value problem to an initial-value problem. The problem considered is written in canonical form to transform a set of n linear ordinary differential equations. The homogeneous and particular solutions are obtained using matrix calculations. This study gives the accurate numerical results for some special cases using the Fortran’s subroutines.

Keywords: Complementary functions method, canonical form, boundary value problems.

References:

PERFORMANCE ANALYSIS OF STOCHASTIC BEAM AND VARIABLE NEIGHBORHOOD SEARCH UNDER PARTIALLY SHADED PHOTOVOLTAIC SYSTEMS

Zehan KESILMIŞ¹, Halil EROL ¹, Mahmut UÇMAN¹
¹Department of Electrical and Electronics Engineering, OsmaniyeKorkut Ata University, Osmaniye/TURKEY
halilerol@osmaniye.edu.tr

Abstract: Solar photovoltaic (PV) array which is exposed to the uniform solar irradiance exhibits the non-linear Power-Volt characteristic. Maximum power point (MPP) tracking is challenging due to varying climatic conditions in solar photovoltaic (PV) system. Also, the tracking algorithm becomes more complicated due to the presence of multiple peaks in the power voltage characteristics under the condition of partial shading. This paper presents a Stochastic Beam Search (SBS) based algorithm and Variable neighborhood search (VNS) for maximum power point tracking (MPPT) at partial shading condition in PV system. A mast is placed in front of the modules so as to scatter the partial shading effect over the entire array. The rearrangement of modules is performed without varying the electrical connection of the modules in the array. It is validated that the power generation of array under a moving shadow condition is enhanced and the various partial shading losses are reduced by optimal parameter selection.

Keywords: Solar Photovoltaic; MPPT; Partial Shading, Stochastic beam search, Variable neighborhood search.

References:
A STUDY ON ABSOLUTE ALMOST CONVERGENCE

Hamdullah ŞEVİLİ¹, Büşra BALKAŞ²
1Department of Mathematics, İstanbul Commerce University, İstanbul/TURKEY
hsevli@ticaret.edu.tr
2Graduate School of Natural and Applied Sciences, İstanbul Commerce University, İstanbul/TURKEY
busra-balkas@hotmail.com

Abstract: Lorentz [1] provided an authentic characterization of almost convergent sequences. Using Lorentz’s definition a lot of papers appeared dealing with almost convergence. Among them Nanda and Nayak [2] defined the concept of almost bounded variation and later Das, Kuttner and Nanda[3] introduced the concept of absolute almost convergence. The aim of this presentation is to survey this two concepts and to describesome of the many resultswwhich have been proved for absolute almost convergence. Furthermore, some matrix transformations have been characterized.

Keywords: Almost convergence, absolute almost convergence, absolute summability.

References:
COMPOSITION OPERATORS ON WEIGHTED BESOV SPACES

Hamid VAEZI1, Ebrahim ZAMANI2

1Department of Mathematics, University of Tabriz, Tabriz, IRAN
hvaezi@tabrizu.ac.ir

2Department of Mathematics, University of Tabriz, Tabriz, IRAN
Ebrahim485@yahoo.

Abstract: Let D denote the open unit disc in the complex plane and A is normalized Lebesgue measure on D. The weighted Besov space \(B_p(\sigma) \); (\(p > 1 \)) is the space of analytic functions \(f \) on D such that

\[
\int_D \left| f'(z) \right|^p \sigma(z) dA(z) < \infty,
\]

where \(\sigma \) is a weight function on D. In this article we study composition operators on weighted Besov spaces with admissible Bekolle weights.

Keywords: Composition operator, Bekolle weight, Besov space.

References:

IMPROVING THE CONVERGENCE ORDER OF THE REGULARIZATION METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

Hamza GUEBBAI, Sami SEGNI

Abstract: We build a numerical approximation method, for Fredholm integral equation solution of the second type. This method is based on the regularization by convolution and Fourier series expansion. It provides a better convergence order.

Keywords: Integral equation; Weak singularity; Convolution; Fourier series

References:
EULER SUMMABILITY KIND VARIOUS CONVERGENCE OF SETS

Harun POLAT

MuşAlparslan University Art and Science Faculty, Department of Mathematics, Muş / Turkey.

h.polat@alparslan.edu.tr

Abstract. In this paper we present definitions of Kuratowski Euler convergence, Hausdorff Euler convergence, Wijsman Euler convergence, Fisher Euler convergence and Mosco Euler convergence of sequences of sets. Also we characterize the connection between of their.

Keywords. Euler convergence, Kuratowski, Hausdorff, Wijsman, Fisher and Mosco convergence.

References:

GIBBS MEASURES FOR THE POTTS-SOS MODEL WITH FOUR STATES ON CAYLEY TREE OF ORDER ARBITRARY

Halit SAYGILI¹, Hasan AKIN²

¹Department of Mathematics, Gaziantep University, 27310
Gaziantep / TURKEY
hsaygili@gantep.edu.tr
²Department of Mathematics, Faculty of Education, Zirve University, 27260
Gaziantep / Turkey
hasan.akin@zirve.edu.tr

Abstract: In this paper, we study a new model, the so-called Potts and solid-on-solid model (mixed P-SOS model), with spin values 0,1,2,3 on a Cayley tree of order arbitrary. We prove the existence Gibbs measures by analyzing fixed points of one-dimensional system of equations. We obtain all translation-invariant splitting Gibbs measures corresponding to the model. These measures are categorized by solutions to a nonlinear vector-valued functional equation.

Keywords: Cayley tree, Gibbs measure, Potts-Sos model, Configuration space.

References:

BOUNDLESSNESS OF THE CALDERON-ZYGMUND
SINGULAR INTEGRAL OPERATOR AND ITS
COMMUTATORS ON MODIFIED MORREY SPACES

Hatice ARMutcu1, Yusuf Zeren2 and Vagif S. GuliyeV3
1,2Department of Mathematics, Yildiz Technical University, Istanbul/TURKEY
3Department of Mathematics, Ahi Evran University, Kirşehir/TURKEY
Institute of Mathematics and Mechanics of NAS of Azerbaijan / Baku

Abstract:
Let 1 ≤ p < ∞, 0 ≤ λ ≤ n, [t]₁ = min{1, t}. We denote by \(L̃_{p,λ}(\mathbb{R}^n) \) the modified Morrey space, as the set of locally integrable functions \(f(x), x \in \mathbb{R}^n \), with the finite norms

\[
\|f\|_{L̃_{p,λ}} = \sup_{t>0} \left([t]_1^{-\lambda} \int_{B(x,t)} |f(y)|^p dy \right)^{1/p}
\]

We study the boundedness of the Calderon-Zygmund singular integral and its commutators on modified Morrey spaces.

Keywords: Calderon-Zygmund singular integral operator, commutator Calderon-Zygmund singular integral operator, modified Morrey space, BMO space.

References:

ON WEIGHTED IYENGAR TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS

M. Zeki SARIKAYA¹, Hatice YALDIZ²

¹Department of Mathematics, Duzce University, Duzce/TURKEY
sarikayamz@gmail.com
²Department of Mathematics, Duzce University, Duzce/TURKEY
yaldizhatice@gmail.com

Abstract: In this presentation, we establish integral inequalities of Iyengar’s inequality type involving conformable fractional integrals.

Keywords: Iyengar inequality, weighted quadrature rule, conformable fractional integral.

References:

ON TRIGONOMETRIC APPROXIMATION BY DEFERRED-NÖRLUND ($D.N_p$) MEANS IN LIP α CLASS

Hilal BAYINDIR1, Uğur DEĞER2

1Department of Mathematics, Mersin University, Mersin/TURKEY
hilalbayindir2@gmail.com

2Department of Mathematics, Mersin University, Mersin/TURKEY
udeger@mersin.edu.tr

Abstract: In [1], Lal studied the degree of approximation for the functions belonging to the Lip α ($0 < \alpha \leq 1$) class using Cesáro-Nörlund ($C^1.N_p$) means of their Fourier series where $p := \{p_n\}$ is a non-increasing sequence. Later Mishra et al. investigated the degree of approximation of conjugate functions belonging to the Lip α class by ($C^1.N_p$) means of conjugate series of its Fourier series in [2] where the condition of monotonicity on the sequence p was replaced by a weaker assumption. In [3], we know that the deferred Cesáro means which was considered by Rp Agnew has useful properties not possessed by the Cesáro means. Taking into deferred Cesáro means we will give Deferred-Nörlund ($D.N_p$) means and with this perspective we shall present results related to trigonometric approximation of functions belonging to Lipschitz class by the ($D.N_p$) means of its Fourier series. Moreover, we state results on degree of approximation to conjugates of functions belonging to Lipschitz class by the ($D.N_p$) means of its conjugate Fourier series.

Keywords: Lipschitz class, Deferred-Cesáro means, Deferred-Nörlund means, Trigonometric approximation

References:

EXPONENT OF CONVERGENCE OF SOLUTIONS OF CERTAIN LINEAR DIFFERENTIAL EQUATIONS IN THE DISC

Houari FETTOUCH

Department of Mathematics, Abdelhamid Ibn Badis University,
Mostaganem/ALGERIA
houari.fettouche@univ-mosta.dz

Abstract: In this paper we investigate the n-iterated exponent of convergence of $f^{(i)}\phi$ where $f \neq 0$ is a solution of linear differential equation with analytic or meromorphic coefficients in the unit disc and ϕ is a small function of f by making use the Nevanlinna theory of values distribution of a meromorphic function (see [1]). This work is an extension and counterpart of recent results in the complex plane by Xu et al.[2] and Tu et al. [3] to the unit disc.

Keywords: Linear differential equations, exponent of convergence of solutions, order of growth.

References:

COUPLED COINCIDENCE POINT THEOREMS FOR A GENERALIZED COMPATIBLE IN PARTIALLY METRIC SPACES

Hukmi KIZILTUNC1, Esra YOLACAN2

1Department of Mathematics, Ataturk University, Erzurum/TURKEY
hukms@atauni.edu.tr

2Republic of Turkey Ministry of National Education, Tokat/TURKEY
yolacanesra@gmail.com

Abstract: In this presentation, in the setting of partially ordered metric spaces, using the notion of generalized compatibility of a pair \{\textit{F}, \textit{G}\}, of mappings \textit{F}, \textit{G}: \textit{X} \times \textit{X} \rightarrow \textit{X}, we establish the existence and uniqueness of coupled coincidence point involving \((\varphi, \psi)-contractive\) condition without mixed \textit{G}-monotone property of \textit{F}. Hence the derived coupled fixed point results do not have the mixed monotone property of \textit{F}. Our results improve and generalize the results of Jain et al. (Journal of Inequality and Applications 2012 2012:285.) and Berinde (Nonlinear Anal. TMA 74, 983-992 (2011)).

Keywords: Coupled coincidence point, generalized compatibility, ordered set.

References:

A VARIATION ON HALF CAUCHY SEQUENCES

Huseyin CAKALLI
Graduate School of Science and Engineering, Maltepe University, İstanbul / TURKEY
huseyincakalli@maltepe.edu.tr; hcakalli@gmail.com

Abstract: In this presentation, we investigate the concepts of up continuity and down continuity. A real valued function f on a subset E of \mathbb{R}, the set of real numbers is up continuous if it preserves upward half Cauchy sequences, i.e. the sequence $(f(\alpha_n))$ is upward half Cauchy whenever (α_n) is an upward half Cauchy sequence of points in E; and is down continuous if it preserves downward half Cauchy sequences, i.e. the sequence $(f(\alpha_n))$ is downward half Cauchy whenever (α_n) is a downward half Cauchy sequence of points in E, where a sequence (α_k) of points in \mathbb{R} is called upward half Cauchy if for each $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that $\alpha_n - \alpha_m < \varepsilon$ for $m > n \geq n_0$, and called downward half Cauchy if for each $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that $\alpha_m - \alpha_n < \varepsilon$ for $m < n \geq n_0$. It turns out that not only the set of up continuous functions, but also the set of down continuous functions is a proper subset of the set of continuous functions.

Keywords: Sequences, series, summability, continuity.

References:

A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES

Huseyin ÇAKALLI¹, Huseyin KAPLAN²

¹Graduate School of Science and Engineering, Maltepe University, İstanbul/TURKEY
huseyincakalli@maltepe.edu.tr; hcakalli@gmail.com
²Department of Mathematics, Nigde University, Nigde/TURKEY
hkaplan@nigde.edu.tr

Abstract: In this presentation, the concept of a lacunary statistically δ-quasi-Cauchy sequence is investigated. In this investigation, we proved interesting theorems related to lacunary statistically δ-ward continuity, and some other kinds of continuities. A real valued function f defined on a subset A of \mathbb{R}, the set of real numbers, is called lacunary statistically δ-ward continuous on A if it preserves lacunary statistically δ-quasi-Cauchy sequences of points in A, i.e. $(f(\alpha_k))$ is a lacunary statistically δ-quasi-Cauchy sequence whenever (α_k) is a lacunary statistically δ-quasi-Cauchy sequence of points in A, where a sequence (α_k) is called lacunary statistically δ-quasi-Cauchy if $(\Delta \alpha_k)$ is a lacunary statistically quasi-Cauchy sequence. It turns out that the uniform limit process preserves this kind of continuity, and the set of lacunary statistically δ-ward continuous functions is a closed subset of the set of continuous functions.

Keywords: Sequences, series, summability, continuity.

References:

ONCOMPUTING THE AVERAGE LOWER DOMINATION NUMBERS OF SOME TREES

Hüseyin AKSAN¹, Tufan TURACI²

¹Department of Mathematics, Karabük University, Karabük/TURKEY
huseyin.aksan25@gmail.com
²Department of Mathematics, Karabük University, Karabük/TURKEY
tufanturaci@karabuk.edu.tr

Abstract: Let \(G = (V(G), E(G)) \) be an undirected simple connected graph and let \(D \subseteq V(G) \) be a set of vertices. The set \(D \) is a \(k \)-dominating set of \(G \) if \(|N_G(u) \cap D| \geq k \) for all \(u \in V(G) \setminus D \), where \(k \in \mathbb{N}^+ \). The \(k \)-domination number \(\gamma_k(G) \) of \(G \) is the minimum cardinality of a \(k \)-dominating set of \(G \). The 1-domination number is also called domination number \(\gamma(G) \) and 1-dominating set is called dominating set. The average lower domination number of \(G \), denoted by \(\gamma_{av}(G) \), is defined as

\[
\gamma_{av}(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} \gamma_v(G),
\]

where the lower domination number \(\gamma_v(G) \) is the minimum cardinality of a dominating set of the graph \(G \) that contains the vertex \(v \). In this presentation, exact values of the average lower domination number and average lower 2-domination number of some trees namely comet graph, double comet graph, \(k \)-ary tree and \(t_p \) graph are obtained.

Keywords: Connectivity; Domination number; Average lower domination numbers; Trees.

References:

THE AVERAGED MODULUS OF SMOOTHNESS AND ONE SIDED APPROXIMATION IN ORLICZ SPACES

Hüseyin KOÇ

1MEB, Department of Mathematics, Balıkesir University, Balıkesir/TURKEY
huseyinkoc79@yahoo.com

Abstract: In this presentation, firstly we give basic properties of averaged modulus of smoothness in Orlicz spaces L^φ. Then we prove some direct and converse one sided approximation problems in Orlicz spaces L^φ.

Keywords: Averaged modulus of smoothness, one sided approximation, direct theorem, converse theorem.

References:

ON THE PARAMETERIZED SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS

Ilhame AMIRALI¹, Gabil M. AMIRALIYEV²

¹Department of Mathematics, Düzce University, Düzce/TURKEY
ailhame@qmail.com

²Department of Mathematics, Erzincan University, Erzincan/TURKEY
gabilamirali@yahoo.com

Abstract: In this presentation, the boundary value problems for parameterized singularly perturbed second-order nonlinear ordinary differential equation are considered. The boundary layer behavior of the solution and its first and second derivatives have been established. Examples are presented which are in agreement with the theoretical analysis.

Keywords: Depending on a parameter, Asymptotic bounds, Singular perturbation, Boundary layer.

References:

OPERATIONS ON \mathbb{B}^{-1}-CONVEX SETS AND \mathbb{B}^{-1}-CONVEX FUNCTIONS

Gabil ADILOV1, İlknur YESILCE2

1Department of Mathematics, Akdeniz University, Antalya/TURKEY
gabialidilov@gmail.com

2Department of Mathematics, Mersin University, Mersin/TURKEY
ilknuryesilce@gmail.com

Abstract: \mathbb{B}^{-1}-convexity that is an important abstract convexity type for mathematical economy was introduced in [1,2]. Its applications to mathematical economy were given in [2]. Separation of \mathbb{B}^{-1}-convex sets by \mathbb{B}^{-1}-measurable maps was studied in [3]. \mathbb{B}^{-1}-convex functions were defined and examined in [4]. In this presentation, we introduce some new operations on \mathbb{B}^{-1}-convex sets and \mathbb{B}^{-1}-convex functions.

Keywords: Abstract convexity, \mathbb{B}^{-1}-convex sets, \mathbb{B}^{-1}-convex functions.

References:

SOME SPECIAL NUMBERS AND POLYNOMIALS RELATED TO K-ARY LYNDON WORDS

Irem KUCUKOGLU¹, Yılmaz SIMSEK²

¹,²Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya/TURKEY
¹ikucukoglu@akdeniz.edu.tr
²ysimsek@akdeniz.edu.tr

Abstract: The aim of this talk is to investigate k-ary Lyndon words of length prime and their generating functions. Firstly, we survey and investigate not only these numbers related arithmetical functions, Mobius inversion formula, Necklace polynomials, but also de Bruijn sequences and graphs. Finally, we give relations between the numbers of k-ary Lyndon words of length prime and many numbers such as the Bernoulli numbers, the Euler numbers and the Frobenius-Euler numbers.

Keywords: Lyndon words, Necklace polynomials, De Bruijn sequences, Generating functions, Special numbers, Special polynomials, Arithmetical functions, Mobius inversion formula.

References:

A NEW ITERATION SCHEME FOR A HYBRID PAIR OF NONEXPANSIVE MAPPINGS

Izhar UDDIN
Department of Mathematics, JamiaMilliaIslamia,
New Delhi/INDIA
izharuddin1@jmi.ac.in

Abstract: In this paper, we construct an iteration scheme involving a hybrid pair of nonexpansive mappings and utilize the same to prove some convergence theorems. In process, we remove a restricted condition (called end-point condition) in Sokhuma and Kaewkhao's results [Sokhuma and Kaewkhao, Fixed Point Theory Appl. 2010, Art. ID618767, 9 pp.].

Keywords: Banach space, convergence theorems, fixed point.

References:

TAUBERIAN THEOREMS FOR WEIGHTED MEANS OF DOUBLE SEQUENCES OF FUZZY NUMBERS

Ümit TOTUR¹, İbrahim ÇANAK²

¹Department of Mathematics, Adnan Menderes University, Aydın/TURKEY
utotur@adu.edu.tr
²Department of Mathematics, Ege University, İzmir/TURKEY
ibrahim.canak@ege.edu.tr

Abstract: In this paper, we give necessary and sufficient Tauberian conditions under which convergence in Pringsheim's sense of a double sequence of fuzzy numbers follows from convergence of weighted means \((N,p,q)\). These conditions are weaker than the two-dimensional analogues of Landau's condition and Schmidt's slow oscillation condition.

Keywords: Fuzzy numbers, double sequences, slow oscillation, \((N,p,q)\) summability, Tauberian theorems.

References:

SPECTRAL SINGULARITIES OF THE IMPULSIVE STURM LIOUVILLE OPERATORS ON THE SEMI AXIS

İbrahim ERDAL¹, Şeyhmus YARDIMCI²

¹Department of Mathematics, Ankara University,
Ankara/TURKEY
ierdal@ankara.edu.tr
²Department of Mathematics, Ankara University, Ankara/TURKEY
Seyhmus.Yardimci@ankara.edu.tr

Abstract: We consider the second order differential equation

(1) \(-y'' = \lambda^2 \rho(x)y, \ x \in [0, \infty)\setminus\{1\}\)

with boundary condition

(2) \(y(0) = 0\)

and impulsive condition

(3) \[
\begin{bmatrix}
y_+(1) \\
y'_+(1)
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} y_-(1) \\
y'_-(1)
\end{bmatrix}
\]

where \(a,b,c,d\) are complex numbers,

\[
\rho(x) = \begin{cases}
\gamma^2 & \text{if } 0 \leq x < 1, \\
1 & \text{if } 1 < x < \infty, \ \gamma > 1
\end{cases}
\]

and \(\lambda\) is a spectral parameter. Let \(L\) denote the operator generated by (1),(2) and (3) in \(L^2(0, \infty)\). In this study, we investigate eigenvalues and spectral singularities of \(L\) depending on the choice of coupling constants \(a,b,c,d\).

Keywords: Sturm Liouville operators, spectral singularity, impulsive condition.

References:

NORM INEQUALITIES FOR A PARTICULAR CLASS OF MATRICES

İbrahim Halil GÜMÜŞ, Omar HİRZALLAH, Fuad KİTTANEH

1Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University, Adıyaman/TURKEY
igumus@adiyaman.edu.tr
2Department of Mathematics, Hashemite University, Zarqa/JORDAN
o.hirzal@hu.edu.jo
3Department of Mathematics, The University of Jordan, Amman/JORDAN
fkitt@ju.edu.jo

Abstract: In this talk, we discuss some norm inequalities for accretive dissipative 2x2 block matrices. More precisely, we prove Schatten p-norm inequalities for this particular class of matrices. Our results generalize and improve some earlier results.

Keywords: Accretive-dissipative matrix, Schatten p-norm, Inequality.

References:

ZWEIER SUPER BANACH SPACES

İbrahim ŞANLIBABA

Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir/TURKEY
ibrahimsanlibaba@gmail.com

Abstract: This paper, we have given some definitions and theorems about super metric (or ultra metric) and super normed (or ultra normed) spaces which exists in the mathematical literature knowledge base. After, we have defined some new type super-Banach spaces which are super isomorphic to some super Banach spaces and given some interesting properties. Furthermore, some inclusions are proved about these new type super Banach.

Keywords: Ultra metric, ultra norm, super norm, non-Archimedean space, ultra convergent.

References:

AN OPTIMAL MULTIPLE SWITCHING PROBLEM UNDER WEAK ASSUMPTIONS

Imen HASSAIRI

1Department of Mathematics, University of Sfax, Tunisia
imen.hassairi@yahoo.fr

Abstract: This work studies the problem of optimal multiple switching in finite horizon, when the switching costs functions are continuous and belong the class D. This problem is solved by means of the Snell envelope of processes.

Keywords: Real options, Snell envelope, stopping time, optimal switching.

References:

ROBIN BOUNDARY VALUE PROBLEM FOR THE BELTRAMI EQUATION

İlker GENÇTÜRK¹, Kerim KOCA²

¹ Department of Mathematics, Kırıkkale University, Kırıkkale/TURKEY
ilkergencturk@gmail.com

² Department of Mathematics, Kırıkkale University, Kırıkkale/TURKEY
kerimkoca@gmail.com

Abstract: In this work, we present a solvability condition of the Robin boundary value problem for the Beltrami equation with constant coefficients given by

\[w_z + cw_{\bar{z}} = f, \quad f \in L_p(D, \mathbb{C}) \cap C(\overline{D}, \mathbb{C}); \ p > 2, \]

\[w(z) + \frac{\partial w}{\partial \nu}|_{\partial D} = \gamma, \gamma \in C(\overline{D}, \mathbb{C}) \]
on the unit disk \(D = \{ z \in \mathbb{C} : |z| < 1 \} \). We also present an elementary solution using singular operator.

Keywords: Beltrami equation, Robin boundary value problem, singular integral operator.

References:

A SIMPLE APPROACH TO THE SOLUTION OF SPECIAL STRUCTURED NONHOMOGENEOUS HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

İnayet DERİN¹, Yakup HAMEŞ²

¹Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun-Hatay/TURKEY
i.derin@hotmail.com

²Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun-Hatay/TURKEY
yakuphames@hotmail.com

Abstract: Due to such Differential Equations is linear with Constant Coefficient; it is solved by the consecutive integral method, the undetermined coefficients method and variation of parameters method. Nevertheless, for higher order of n, the undetermined coefficients method is required solutions of multi-variable undefined linear equations system. Variations of parameters method is also required both obtaining linear equations system with many-unknowns coefficients in the form of derivative functions and integration of such unknown coefficients in the form of derivative functions in these systems.

All of these methods are include difficulties. In the present work, a simple approach to the solution of special structured nonhomogeneous higher order linear differential equations with constant coefficients is presented. The proposed method can be used directly and briefly. This method is proved with sample solutions.

Keywords: Higher Order Linear Differential Equations, Constant coefficient, Nonhomogeneous solution, simple approach.

References:

ON SOME PROPERTIES OF VECTOR-VALUED WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES

İsmail AYDIN
Department of Mathematics, Sinop University, Sinop/TURKEY
iaydin@sinop.edu.tr

Abstract: In this presentation, we define vector-valued weighted variable exponent Sobolev spaces and mention some their basic properties, such as completeness, separable, reflexive and uniformly convex. Furthermore, we obtain several density theorems in this spaces. Finally, we give some results about embeddings theorems and its applications in vector-valued weighted variable exponent Sobolev spaces.

Keywords: Vector-valued variable exponent weighted Sobolev space, Embeddings, Density theorem.

References:

EDGE OPERATIONS IN GRAPHS AND ZAGREB INDICES

Ismail Naci CANGUL1, Aysun YURTTAS2, Muge TOGAN3, Ahmet Sinan CEVIK4

1,2Department of Mathematics, Uludag University,
Bursa/TURKEY
cangul@uludag.edu.tr

Abstract: Topologic indices, also called graph indices, are important mathematical tools which give information about the graph. The first and second Zagreb indices are two of them. They were calculated for many graph types and there are also general results on them. In this paper we study the change of these indices when an edge is deleted. Also the change of the first Zagreb index when a number of edges are deleted is calculated. These enables us to study the properties of larger graphs in terms of the properties of smaller graphs which can be calculated easily.

Keywords: Graph, topological index, Zagreb index, edge operations.

References:

INITIAL TIME DIFFERENCE GENERALIZED MONOTONE ITERATIVE TECHNIQUE UNIFIED BY THE UPPER AND LOWER SOLUTIONS

İsmet ARSLAN¹, Coşkun YAKAR², Muhammed ÇİÇEK³

¹Department of Mathematics, Gebze Technical University, Kocaeli/TURKEY
iarstlan@gtu.edu.tr

²Department of Mathematics, Gebze Technical University, Kocaeli/TURKEY
cyakar@gtu.edu.tr

³Department of Mathematics, Bursa Technical University, Bursa/TURKEY
muhammed.cicek@btu.edu.tr

Abstract: In this work, the monotone iterative methods for initial value problems have been investigated by choosing upper and lower solutions with initial time difference when the forcing function has sum of two different natural ones.

Keywords: Initial time difference, monotone iterative technique, existence theorems, comparison results.

References:

ON NONLINEAR BOUNDARY VALUE PROBLEM

Janpou NEE¹

¹General Education Center, ChiengKuo Technology University, Changhua/Taiwan
jpnee@ctu.edu.tw

Abstract: In this article, the existence and non-existence of a semi-linear elliptic equation with nonlinear boundary value problem is studied. Moreover, the uniqueness of the solution that corresponding to the boundary value and the local behavior of the solution are proved.

Keywords: Nonlinear boundary value problem, existence, uniqueness, local extrema, positive solution.

References:

UNIFIED RELATION-THEORETIC METRICAL FIXED
POINT THEOREMS UNDER AN IMPLICIT CONTRACTIVE
CONDITION WITH AN APPLICATION

Md. AHMADULLAH, Javid ALI, M. IMDAD
Department of Mathematics, Aligarh Muslim University
Aligarh 202002, India
javid@amu.ac.in

Abstract: The main purpose of this article is to establish metrical relation-theoretic fixed point theorems via an implicit contractive condition which is general enough to yield a multitude of corollaries corresponding to several well known contraction conditions (e.g. Banach (Fund. Math. 3, 133-181 (1922)), Kannan (Am. Math. Mon. 76, 405-408 (1969)), Reich (Can. Math. Bull. 14, 121-124 (1971)), Bianchini (Boll. Unione Mat. Ital. 5, 103-108 (1972)), Chatterjea (C. R. Acad. Bulg. Sci. 25, 727-730 (1972)), Hardy and Rogers (Can. Math. Bull. 16, 201-206 (1973)), Ćirić (Proc. Am. Math. Soc. 45, 267-273 (1974)) and several others) wherein even such corollaries are new results on their own. As simple we utilize our main results, to prove a theorem on the existence and uniqueness of the solution of an integral equation besides furnishing an illustrative example.

Keywords: Complete metric space, binary relations, implicit relations, fixed point.

References:

PARAMETRIC ORDERED GENERALIZED VARIATIONAL INCLUSIONS INVOLVING NODSM MAPPINGS

Javid IQBAL¹, Rais AHMAD²
¹Department of Mathematical Sciences, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India.
¹javid2iqbal@yahoo.co.in
²Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
²raisain_123@rediffmail.com

Abstract: In this paper, we consider \((\beta, \lambda, \omega)\)-NODSM set-valued mappings and we define a resolvent operator as

\[J_{\omega, M, \lambda, \omega} = \left[I + \frac{\lambda}{\omega} (\omega M) \right]^{-1}. \]

We discussed some properties of the resolvent operator \(J_{\omega, M, \lambda, \omega} \) and then applied it to solve a parametric ordered generalized variational inclusion problem in real ordered Banach spaces.

Keywords: Central factorial numbers, Stirling numbers, Shifting operator, Averaging operator, Combinatorial sum, Generating function.

ON SOME RESULT OF NEW THREE-STEP ITERATION PROCESS ON THE CONVEX METRIC SPACES

Kadri DOĞAN¹, Yılmaz ALTUN²
¹Department of Elementary Education, Artvin Coruh University, Artvin/TURKEY
dogankadri@hotmail.com
²Department of Mathematics, Yıldız Technical University, İstanbul/TURKEY
altuny4787@gmail.com

Abstract: In this presentation, we introduce a new three step iteration process and show that the iteration process converges to the unique fixed point of contraction mappings on the convex metric spaces. Furthermore, we obtain this iteration process is equivalent to Mann iteration method and T-stable.

Keywords: Fixed point iteration, strong convergence, convex metric spaces
ON THE CONVERGENCE RESULT OF NEW THREE-STEP ITERATION PROCESS ON THE GENERALIZED BANACH SPACES

Kadri DOĞAN¹, Vatan KARAKAYA², Faik GÜRSOY³
¹Department of Elementary Education, Artvin Coruh University, Artvin/TURKEY
dogankadri@hotmail.com
²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
vkkaya@yahoo.com
³Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
faikgursoy02@hotmail.com

Abstract: In this presentation, we introduce a new three step iteration process and show that the iteration process strongly converges to the unique fixed point of contraction mappings on the G-Banach spaces. Furthermore, we obtain this iteration process is equivalent to Mann iteration method.

Keywords: Fixed point iteration, strong convergence, G-Banach spaces

BACKWARD SOBOLEV TYPE FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES

Kerboua MOURAD

Abstract: In this paper, we examine the approximate controllability of class of semilinear fractional backward stochastic evolution equations of Sobolev type in Hilbert spaces. We use Hölder’s inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional backward control system to be approximately controllable. An example is given to illustrate the abstract results.

Keywords: Approximate controllability, backward fractional Sobolev type equation, stochastic system, fixed point technique, semigroups.
q- GREEN’S FORMULA ON THE COMPLEX PLANE IN THE SENSE OF HARMAN

Kerim KOCA¹, İlker GENÇTÜRK², Mustafa AYDIN³

¹Department of Mathematics, Kırıkkale University, Kırıkkale/TURKEY
kerimkoca@gmail.com
²Department of Mathematics, Kırıkkale University, Kırıkkale/TURKEY
ilkergencturk@gmail.com
³Department of Mathematics, Kırıkkale University, Kırıkkale/TURKEY
mustafa.aydin868@gmail.com

Abstract: Consider the square discrete set

\[D = \{ z_{mn} = a q^m + i a q^n : 0 \leq m, n \leq \infty ; m, n \in \mathbb{N} \} \]

on the complex domain \(\mathbb{C} \) where \(0 < q < 1, a \in \mathbb{R}^+ = (0, \infty) \). The discrete* boundary of \(D \) is \(\partial D = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \) where

\[\gamma_1 = \{ a q^n : 0 \leq n < \infty; n \in \mathbb{N} \}, \gamma_2 = \{ a + i a q^n : 0 \leq n < \infty; n \in \mathbb{N} \} \]

\[\gamma_3 = \{ a q^n + i a : 0 \leq n < \infty; n \in \mathbb{N} \}, \gamma_4 = \{ i a q^n : 0 \leq n < \infty; n \in \mathbb{N} \} \].

In this work, we proved the following Green’s Identity in the sense of Harman

\[\int_{\gamma} (f \ast g)(\zeta) d_\gamma \zeta = \frac{1 - q}{q} a \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} [f(z_{mn})Bg(qz_{mn}) - q g(qz_{mn})Lf(z_{mn})] \]

for the discrete functions \(f(z), g(z) \) defined on \(D \). We also presented some corollaries of this result. Here,

\[Bg(z) = \mathbb{Z}g(x)g(x, q^{-1}y) + iyg(q^{-1}x, y); \]

\[Lf(z) = \mathbb{Z}f(x)g(x, qy) + iyg(qx, y) \]

for \(z = x + iy \)

Keywords: q-derivative, line q-integrals, q-Green’s Formula, q-analogue of Cauchy Integral Formula.

References:

BERNOULLI MATRIX-COLLOCATION METHOD FOR SOLVING GENERAL FUNCTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH HYBRID DELAYS

Kübra ERDEM BİÇER¹, Mehmet SEZER²

¹, ²Department of Mathematics, Celal Bayar University, Manisa/TURKEY
kubra.erdem@cbu.edu.tr, mehmet.sezer@cbu.edu.tr

Abstract: In this presentation, we apply a matrix method based on Bernoulli polynomials and collocation points to solve integro-functional equations with hybrid delays. The main problem is reduced to a system of algebraic equations by using this method. After solving this system, we have the coefficients of the approximate solution of the given problem. The accuracy and applicability of this method is illustrated by examples by using developed error-estimation technique related to residual function.

Keywords: Bernoulli polynomials, Functional-differential equations, Pantograph equations, Collocation-Matrix method.

References:

A NEW UNIDIMENSIONAL BISECTION METHOD FOR GLOBAL OPTIMIZATION

Lakhdar CHITER¹, Abdelmalek KOUADRI²

¹Department of Mathematics, Setif University, 19000 Setif/Algeria
chiterl@yahoo.fr
²Systems and signals laboratory, University of Boumerdes, Av. de l’indépendance, 35000, Boumerdes, Algeria
ab_kouadri@hotmail.com

Abstract: In this talk, the global optimization problem of a univariate function satisfying the Lipschitz condition over an interval with an unknown Lipschitz constant is considered. In the proposed algorithm, the objective function is evaluated at two equidistant points for each generated interval. The optimization operates at both local and global levels, where bisection is used instead of trisection, consequently, more complete information about the objective function is considered than using the central-sampling strategy as used in most DIRECT-type algorithms. The performance of the new method is analyzed in terms of the most popular and widely used criteria; the number of iterations, the number of function evaluations, and the computer (CPU) time in comparison with the well known DIRECT algorithm. We show that it is possible to extend univariate algorithms for high dimension problems, this can be done in the framework of diagonal methods, but this investigation is still under way.

Keywords: Global optimization, Lipschitz optimization, bisection, diagonal partitions.

References:

COMPACTNESS OF MAXIMAL OPERATOR IN WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT

Lutfi AKIN, Yusuf ZEREN

1 Mardin Artuklu University, Faculty of Economics and Administrative Sciences
Department of Business Administration
Email: lutfiakin@artuklu.edu.tr

2 Yildiz Technical University, Science Faculty, Department of Mathematic
Email: yzeren@yildiz.edu.tr

Abstract: \(\rho : (0,1) \rightarrow (1, \infty) \) measurable function, \(L^{p(x)}(0,1) \); \(f : (0,1) \rightarrow \mathbb{R} \) measurable functions class. \(f \) is positive functions \(I = (a,b) \), \(L^p(a,b,w) = L^p(w) \) weighted Lebesgue space norm is

\[
\left\| f \right\|_{p,w} = \left(\int_a^b |f(x)|^p w(x) dx \right)^{1/p} < \infty, \quad 0 < p < \infty, \quad f : (0,1) \rightarrow \mathbb{R}
\]

measurable functions, so that \(\lim_{x \to 0} f(x) - f(0) \ln \frac{1}{W(x)} < \infty \).

Theorem: Let \(p,q \in \Lambda_0 \cap \pi \) and \(f(x) \geq 0 \) measurable functions with \(p^+ > 1 \), \(q(0) \geq p(0) > 1 \). If there are conditions

\[
\limsup_{t \to 0} V(t)^{V'(0)} W(t)^{V'(0)} = 0 \quad \text{and} \quad \sup_{t \in (0,\infty)} V(t)^{V'(0)} W(t)^{V'(0)} < \infty .
\]

Then from \(L^{p(\cdot)}(0,1) \) to \(L^{q(\cdot)}(0,1) \),

\[
Mf(x) = \sup_{r > 0} \frac{1}{B(x,r)} \int_{B(x,r)} f(y) dy \text{ maximal operator is compact.}
\]

Keywords: Maximal operator, variable exponent, weighted functions, Lebesgue space.

References:

FIXED POINT THEOREMS FOR INTEGRAL TYPE MAPPINGS IN BANACH SPACE

M. Abdussamed MALDAR¹, Vatan KARAKAYA²

¹Department of Mathematics, Aksaray University, Aksaray/TURKEY
 mmaldar@aksaray.com

²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
 vkkaya@yahoo.com

Abstract: In this presentation, we introduce a new mapping called Reich integral type. We prove existence of fixed points for mapping defined on Banach spaces satisfying the Reich integral type condition. Also, we prove that Picard-Mann hybrid iteration process converges to unique fixed point of this mappings. Furthermore, we show that Picard-Mann hybrid iteration process is equivalent to Mann iteration method. Finally, we give a stability result for Reich integral type mapping by using Picard-Mann hybrid iteration process.

Keywords: Strong convergence, integral type mappings, stability

References:

STATISTICALLY CONVERGENCE OF SEQUENCES OF FUZZY NUMBERS BY A MODULUS FUNCTION

Mahmut IŞIK

Faculty of Education, Harran University, Şanlıurfa/TURKEY

misik63@yahoo.com

Abstract: In this study, we generalize the concept of Δ-statistical convergence defined by a modulus function of sequences of fuzzy numbers using the sequence $\theta = (k_r)$ and give some inclusion relations.

Keywords: Statistical Convergence, Lacunary Sequence, Fuzzy Numbers.

References:

ON SOME INVARIANT SEQUENCE SPACES

Mahmut KARAKUŞ

1Department of Mathematics, YüzüncüYıl University, Van/TURKEY
matfonks@gmail.com, mkarakus@yyu.edu.tr

Abstract: Invariant sequence spaces are much important in topological sequence spaces theory. Especially, it is very helpful for investigations of the duality of sequence spaces. For instance, if the sequence space X satisfies the condition $l_{\infty}X = X$ then its α, β- and γ- duals are same [4]. Garling [2] investigated B- and B_0-invariant sequence spaces and Buntinas [3] introduced and investigated q^σ- and $q^{0\sigma}$- invariant sequence spaces and recently, Grosse-Erdmann [1] studied on l_1 invariant sequence spaces. In this study, we introduce and investigate q_0^σ-invariant sequence spaces, that is, sequence spaces X with $q_0^\sigma X = X$.

Keywords: FK-sequence spaces, Köthe-Toeplitz duals, AK-, AB-, σB- and σK- properties of a sequence.

References:

ON SOLIDNESS OF SEQUENCE SPACES

Mahmut KARAKUŞ

Department of Mathematics, Yüzüncü Yıl University,
Vanl/TURKEY
matfonks@gmail.com, mkarakus@yyu.edu.tr

Abstract: An FK- sequence space X is said to be solid if the condition $l_\infty, X = X$ holds. This property plays a prominent role within the theory of sequence spaces. Goes proved that if X is a solid FK- space then it has FAK- property [1]. Sember defined UAB- and UFAK- properties which are same in a K- space X, and he showed that every sequence in a solid FK-space has UFAK- property [2]. In this study, we investigate solidness of FK- sequence spaces.

Keywords: FK- spaces, solid spaces, Köthe-Toeplitz duals, UFAK- and UAB- properties of a sequence.

References:

THREE-STEP ITERATIVE SCHEME FOR APPROXIMATING FIXEDPOINTS OF MULTIVALUED NONEXPANSIVE MAPPINGS

Makbule KAPLAN

Faculty of Education, Sinop University,
SINOPTURKEY
mkaplan@sinop.edu.tr

Abstract: In this presentation, we introduce a new three-step iterative scheme to approximate a common fixed point of multivalued nonexpansive mappings in a uniformly convex real Banach space and establish strong and weak convergence theorems for the proposed process. Our results extend important results.

Keywords: Three step iterative scheme, multivalued mappings, strong and weak convergence.

References:

INVERSE SPECTRAL AND INVERSE NODAL PROBLEMS FOR STRUM-LIOUVILLE EQUATIONS WITH POINT δ'-INTERACTION

Manaf MANAFOV

Department of Mathematics, Adıyaman University,
Adıyaman/TURKEY
mmanafov@adiyaman.edu.tr

Abstract: We study inverse spectral and inverse nodal problems for Strum-Liouville equations with point δ'-interaction on a finite interval. Inverse spectral problems consist in recovering operators from their spectral characteristics. Such problems play an important role in mathematics and have many applications in natural sciences (see, for example, monographs [1,3,5]). Inverse nodal problems consist in constructing operators from the given nodes (zeros) of eigenfunctions (see [2,4,6]). In this study, uniqueness results are proved, and using the nodal set of eigenfunctions the given problem reconstructed.

Keywords: Strum-Liouville Equations, Inverse spectral and Inverse Nodal Problems, Point δ'-Interaction.

References:

LOG-CONVEXITY OF WEIGHTED AREA INTEGRAL MEANS OF MONOMIALS ON THE UNIT DISK

Martin At. STANEV

Department of Mathematics and Physics, University of Forestry,
Sofia/BULGARIA
martin_stanev@yahoo.com

Abstract: An open problem (see [1], p.12) about finding necessary and sufficient conditions on parameters a and p for which the weighted area integral mean of monomials is log-convex with respect to the log(r) is solved. Here, a modification of the method developed in a series of papers [2], [3], [4], [5] is applied. Furthermore, an example of a generalized weight function is considered and it is demonstrated that in the case p=2 log-convexity in log(r) of this type of integral means does not depend on the asymptotic behavior of the weight function.

Keywords: logarithmic convexity, holomorphic functions, Hardy spaces, area integral means

References:

POROSITY LIMIT AND CLUSTER POINTS OF REAL VALUED SEQUENCES

Maya ALTINOK¹, Mehmet KÜÇÜKASLAN²

¹Department of Mathematics, Mersin University, Mersin/TURKEY
mayaaltinok@mersin.edu.tr
²Department of Mathematics, Mersin University, Mersin/TURKEY
mkkaslan@gmail.com

Abstract: In this talk, we shall define notions of porosity-limit and porosity-cluster point of real valued sequences. These two notions, are not equivalent and they are compared with the usual limit point of sequences. Then, we give some theorems about the sets of porosity limit and porosity cluster points of real valued sequences. Also we will show that, if the set \(\mathbb{N} \setminus M \) is porous, where \(M = \{ k \in \mathbb{N} : x_k \leq x_{k+1} \} \), and \(x \) is bounded on \(M \), then \(x \) is a porosity convergent sequence.

Keywords: Local upper porosity, porosity of subsets of natural numbers, porosity convergence, porosity limit points, porosity cluster points.

References:

RELATION-THEORETIC METRICAL FIXED POINT THEOREMS UNDER NONLINEAR CONTRACTIONS

Md AHMADULLAH, Mohammad IMDAD, Rqeeb GUBRAN

Department of Mathematics, Aliragh Muslim University, Aligarh/INDIA
ahmadullah2201@gmail.com
mhimdad@gmail.com
rqeeeb@gmail.com

Abstract: We establish fixed point theorems for nonlinear contractions on a metric space (not essentially complete) endowed with an arbitrary binary relation. Our results extend, generalize, modify and unify several familiar results especially those contained in Samet and Turinici [Commun. Math.Anal. 13, 82-97 (2012)] and Alam and Imdad [J. Fixed Point Theory Appl. 17(4), 693-702 (2015)]. Interestingly a corollary to one of our main results proved under symmetric relation which remains a sharpened version of a theorem due to Samet and Turinici. Finally, we use examples to highlight the realized improvements in the present paper.

Keywords: Complete metric spaces; binary relations; contraction mappings; fixed point.

References:

STEADY-STATE SKELETON OF THE 3D POINT CLOUDS VIA QUANTUM GRAPHS

Mehmet Ali BALCI, Ömer AKGÜLLER
Department of Mathematics, MuğlaSıtkıKoçman University, Muğla/TURKEY
mehmetalibalci@mu.edu.tr
oakguller@mu.edu.tr

Abstract: Point Clouds are mathematical concepts that can be sourced by shape acquisition devices, such as laser range scanners, with applications in geoscience, archival arts, prosthetics medicine, manufacturing, and security. These 3D scanners provide in general raw data in the form of unorganized point clouds. With the increasing popularity and very broad applications of this source of data, it is computationally less complex and has less error possibilities to work directly with this representation, without having to go to the intermediate step of fitting a surface to it. In our study, we aim to solve one of the skeleton construction problems of geometry processing by using the so called Quantum Graphs whose edges are the solution of the initial-boundary problem of the Sobolev functions. We first obtain the vertices of the Quantum Graph by using the local Rips-Vietoris complex representation of the point cloud, and then solve the second order ODE called steady-state equation by using the Homotopy Perturbation Method respect to the initial-boundary conditions at the vertices.

Keywords: Quantum Graphs, Point Cloud Processing, Homotopy Perturbation Method, Rips-Vietoris Complex

References:

NUMERICAL SOLUTION OF A SINGULARLY PERTURBED PROBLEM BY USING HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD

Mehmet Fatih KARAASLAN

Department of Statistics, Yildiz Technical University, Istanbul/TURKEY
mfatih@yildiz.edu.tr

Abstract: In this work, a current numerical method called as hybridizable discontinuous Galerkin (HDG) method is presented for solving a type of singularly perturbed problem (SPP) with boundary conditions (BCs). The main feature of the HDG method is that it can be implemented in an efficient way through a hybridization procedure which reduces the globally coupled unknowns to approximations at the element boundaries. For stability of the global linear system which is constructed for SPP, it is a crucial point to choose stability parameter. It has to be suitably defined to guarantee the existence and uniqueness of the numerical solution. However, the associated matrix in the system is tridiagonal, symmetric and positive definite. Thus, HDG method is accomplishedly implemented ordinary or partial differential equations. From this point of view, HDG approximation of the SPP with boundary layer is examined on some examples for L^2-norm.

Keywords: Hybridizable discontinuous Galerkin method, singularly perturbed problem, hybridization, stability parameter

References:

THE DYNAMICS OF POSITIVE SOLUTIONS OF A HIGHER ORDER DIFFERENCE EQUATION WITH ARBITRARY POWERS AND DELAYS

Mehmet GÜMÜŞ¹, Yüksel SOYKAN²

¹Department of Mathematics, Bülent Ecevit University, Zonguldak/TURKEY
m.gumus@beun.edu.tr

²Department of Mathematics, Bülent Ecevit University, Zonguldak/TURKEY
yuksel_soykan@hotmail.com

Abstract: The purpose of this talk is to investigate the local asymptotic stability of equilibria, the periodic nature of solutions, the existence of unbounded solutions and the global behavior of solutions of the nonlinear difference equation

\[x_{n+1} = \frac{\alpha x_{n-(k+1)}}{\beta + \gamma x^p_{n-k} x^q_{n-(k+2)}}, n = 0,1, \ldots \]

where the parameters \(\alpha, \beta, \gamma, p, q \) are non-negative numbers and the initial values \(x_{-(k+2)}, x_{-(k+1)}, \ldots, x_0 \) are arbitrary positive numbers.

Keywords: Equilibria, global stability, periodicity, oscillation, solution.

References:

NUMERICAL SOLUTION OF NONLINEAR FRACTIONAL-INTEGRO DIFFERENTIAL EQUATIONS AND SYSTEMS

Mehmet ŞENOL

Department of Mathematics, NevşehirHacıBektaşVeli University, Nevşehir/TURKEY
msenol@nevsehir.edu.tr

Abstract: In this presentation, a numerical method, namely perturbation-iteration algorithm (shortly PIA), have been employed to give approximate solutions of some nonlinear fractional-integro differential equations (FIDEs) and systems. Comparing with the exact solutions and some other method solutions, we prove that the PIA produces reliable and accurate results for FIDEs. We also give some tables and figures to illustrate our results.

Keywords: Fractional-integro differential equations, Caputo fractional derivative, Initial value problems, Perturbation-Iteration Algorithm.

References:

FIXED POINTS FOR SOME MULTIVALUED MAPPING IN G_P – METRIC SPACES

Melek Kübra AYHAN¹, Cafer AYDIN²

¹Sütçü İmam University, Institute of Science and Technology, Department of Mathematics, Kahramanmaraş / TURKEY
E-mail: melekkubra.ayhan@gmail.com
²Sütçü İmam University, Faculty of Science and Arts, Department of Mathematics, Kahramanmaraş / TURKEY
E-mail: caydin61@gmail.com

Abstract: In [4], Banach defined a theorem about existence and uniqueness of fixed point. Also, in [3], W. Takahashi studied fixed point on multivalued mapping in metric space. In this work, we carried this contractions to G_P metric spaces which are new generalized metric spaces, by means of multivalued mappings. Firstly, we implement Banach contraction such that for all $x, y, z \in X, H_{G_P}(Tx, Ty, Tz) \leq \alpha G_P(x, y, z)$ where $\alpha \in (0, 1)$. Other one, we apply for Takahashi contractive, such that for all $x, y, z \in X, H_{G_P}(Tx, Ty, Tz) \leq k(G_P(x, y, z))G_P(x, y, z)$ where k is a function of $(0, \infty)$ to $(0, 1)$ such that $\lim_{r \to t} k(r) < 1$ for every $t \in [0, \infty)$. Thus, we proved that existence of fixed point in G_P metric spaces with multivalued mapping using these contractions.

Keywords: Fixed point, Multivalued mapping, G_P metric space

References:

FIXED POINT THEOREMS FOR EXPANSIVE MAPPINGS IN G_p-METRIC SPACES

Meltem KAYA¹, Hasan FURKAN²

¹Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş TURKEY
meltmkaya55@hotmail.com
²Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş TURKEY
hasanfurkan@hotmail.com

Abstract: In the present paper, we define the concept of expansive mapping in the context of G_p-metric spaces in a similar manner expansive mapping in metric spaces. Furthermore, we obtain some results on fixed points of expansive type mappings. Also, we prove some common fixed point results for expansive mappings by using the notion of weak compatibility in G_p-metric space. Our results generalize some comparable results in metric spaces and partial metric spaces to G_p-metric spaces. Moreover, some examples are introduced in order to support our new results.

Keywords: Fixed point theorems, G_p-metric space, expansive mappings, weakly compatible mappings.

Acknowledgements: M. Kaya has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK Programme, 2211-A).

References:

SOME PROPERTIES OF GENERALIZED METRIC SPACES

Merve İLKHan1, Emrah Evren KARA2

1Department of Mathematics, Düzce University, Düzce/TURKEY
merveilkhan@gmail.com
2Department of Mathematics, Düzce University, Düzce/TURKEY
karaeevren@gmail.com

Abstract: In this presentation, we give some results in G-metric spaces and introduce the notions of G-uniformly continuity and G-Cauchy continuity. We investigate the relations between the classes of G-uniformly continuous, G-Cauchy continuous and G-continuous functions. Also we characterize G-totally bounded sets in generalized metric spaces via G-Cauchy sequences.

Keywords: G-metric spaces, G-convergence, G-Cauchy sequences, G-continuity.

References:

ON RIESZ SECTIONS IN SEQUENCE SPACES

Merve TEMİZER ERSOY¹, Hasan FURKAN², Bilal ALTAY³

¹Department of Mathematics, Kahramanmaras Sutcu Imam University, Kahramanmaras/TURKEY
mervetemizer@hotmail.com

²Department of Mathematics, Kahramanmaras Sutcu Imam University, Kahramanmaras/TURKEY
hasanfurkan@hotmail.com

³Department of Primary Education, Inonu University, Malatya/TURKEY
bilal.altay@inonu.edu.tr

Abstract: The theory of FK-spaces was introduced by Zeller in [1] and some properties of sectional subspaces in FK-spaces were investigated by Zeller in [2]. The notion of Cesaro sections in FK-spaces was studied in [3]. In [4], Buntinas examined Toeplitz sections in sequence spaces and characterized some properties. In this presentation, we introduce Riesz sections in sequence spaces and examine some properties of them.

Keywords: FK-spaces, K-spaces, Sequence spaces, AK-spaces, semi-conservative space.

Acknowledgements: M. TEMİZER ERSOY has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK Programme, 2228-B).

References:

STABILITY AND CONVERGENCE ANALYSIS OF THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER-STOKESTIME-FILTERING REGULARIZATION

Osman Raşit IŞIK¹, Meryem ÖZBUNAR²

¹Department of Elementary Mathematics Education, Muğla Sitki Koçman University, Muğla / TURKEY
osmanrasit@mu.edu.tr

Abstract: In order to regularize the flow problems, one approach is the time relaxation method. In this study, considers a time relaxation model which consists of adding a term "κ(u-ubar)" to the NSE, NSE-TLES model, to damp fluctuations exponentially in time, which is explored by Layton, Pruett and Rebholz. First, an implicit time discretization of the model is given. After then, we analyzed its stability and convergence of the algorithm. Numerical experiments for the model are presented.

Keywords: Time relaxation; Finite element method; Navier-Stokes equations; Time-filtering regularization.

Acknowledgments: This paper has been granted by the MuglaSitkiKocman University Research Projects Coordination Office. Project Grant Number: 16/062 and title “Navier-Stokes Zaman Rahatlama Modelinin Euler Zaman AyriklaştırmasılıeleDeEdilenSonluElemanlarÇözümüÜzerine”

References:

INVERSE NODAL PROBLEM FOR p-LAPLACIAN BESSEL EQUATION

Mesut COŞKUN¹, Hikmet KEMALOĞLU²

¹Tunceli Vocational School, Tunceli/TURKEY
mesutcoskun62@gmail.com
²Department of Mathematics, Firat University, Elazığ/TURKEY
hkoyunbakan@gmail.com

Abstract: In this note, we solve inverse nodal problem for Bessel type p-Laplacian problem

\[-(y^{(p-1)})' = (p - 1)(\lambda - \omega(x))y^{(p-1)}, 1 \leq x \leq a\]

\[y(1) = y(a) = 0\]

on a special interval. We obtain some nodal parameters like nodal points and nodal length. In addition, we reconstructed the potential function by nodal points. Results obtained in this paper are similar to Classical Sturm-Liouville problem. However these type equations are considered with a condition defined at the origin. We solve the problem on an interval [1,a] that problem is not singular.

Keywords: Inverse Nodal Problem, PrüferSubstitution, Bessel Equation

References:

ON WIJSMAN ASYMPTOTICALLY DEFERRED STATISTICAL EQUIVALENT OF SEQUENCES

Mikail ET

Department of Mathematics, Fırat University 23119, Elazığ/Turkey
mikailet68@gmail.com

Abstract: [3] introduced definitions for asymptotically equivalent sequences and asymptotic regular matrices. Patterson [4] extended these concepts by presenting an asymptotically statistically equivalent analogy of these definitions and natural regularity conditions for nonnegative summability matrices. In this study we introduce the concepts of Wijsman asymptotically deferred statistical equivalent and Wijsman strongly asymptotically deferred equivalent of sequences. Some relations between Wijsman asymptotically deferred statistical equivalent and Wijsman strongly asymptotically deferred equivalent of sequences are given.

Keywords: Wijsman Statistical Convergence, Asymptotically Statistical Equivalent, Deferred Statistical Convergence; Deferred Cesàro Summability.

References:

NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS FOR NONEXISTENCE RESULTS TO CERTAIN EVOLUTION EQUATION

Mohamed BERBICHE

Laboratory of Applied Mathematics, University Mohamed Khider, Po. Box 145
Biskra (07000) Algeria
berbichemed@yahoo.fr

Abstract: This work is concerned with establishing necessary or sufficient conditions for the existence of solutions for certain nonlinear evolution equations. We shall see that the existence of solutions depends on the behavior at infinity with both initial data and the coefficient functions. The non global existence is also discussed.

Keywords: Fujita critical exponent, non-existence, nonlinear evolution equation.

References:

ANALYTICAL SOLUTION OF A CLASS OF NONLINEAR VOLTERRA INTEGRAL EQUATIONS USING VARIATIONAL ITERATION METHOD

Mohammed S. MECHEE¹, RaadM. KADUM²

¹, ²Department of Mathematics, Faculty of Computer Science and Mathematics, KufaUniversity, Najaf/IRAQ
¹mohammeds.abed@uokufa.edu.iq
²raad.muhsen1978@yahoo.com

Abstract: In this paper, one type of volterra integralequations (VIEs) isclassified to be nth-order VIE of fourth-kind. This class of nth-order VIE usually occurs in many fields of physics andengineering. The nth-order VIE of fourth-kind is converted to nth-order ordinary differential equations (ODEs). This nth-order ODE is then, solved using variational iteration method (VIM). A new iteration technique is proposed to solve a class of nonlinear integralequations. It shows that the variational iteration method (VIM) is efficient and powerful tool for dealing with this class of nonlinear integral equations. Some examples are selected to illustrate the effectiveness and simplicity of the method. The comparison of the results of VIM with those obtained by classical method reveals that VIM is very effective, convenient and quite accurate to both linear and nonlinear problems. It is predicted that VIM can be widely applied in the mathematical model of different problems in physics and engineering.

Keywords: Integral equations; Volterra integral equation; VIE; nth-order; VIM; system of ODEs.

References:

A NOT ON PROPERTIES THAT IMPLY THE FIXED POINT PROPERTY

Mohammad KNEFATI¹ and Vatan KARAKAYA²

¹ Yildiz Technical University, Istanbul TURKEY
² Department of Mathematical Engineering, Yildiz Technical University, Istanbul/TURKEY

mknefati@gmail.com
vkkaya@yahoo.com

Abstract: We show that Banach c0 (Γ) with Day’s norm space satisfy the weak fixed point property, and prove the relationship between the weakly 2-rotund (W2R) and the fixed point property of Banach spaces under renorming. Moreover distinguish between this property and other geometrical properties that imply the fixed point property.

Keywords: Fixed point property; Day’s norm; Weakly 2-rotund.

References:

INTEGRAL TYPE ALMOST CONTRACTION MAPPINGS IN METRIC SPACES

M. Abdussamed MALDAR¹, Vatan KARAKAYA²

¹Department of Mathematics, Aksaray University,
Aksaray/TURKEY

²Department of Mathematical Engineering Yıldız Technical University,
İstanbul/TURKEY

mmaldar@aksaray.edu.tr
vkkaya@yahoo.com

Abstract: In this presentation, The concept of integral type almost contraction is introduced and then two fixed point theorems for this class of operators in complete metric spaces are proven. Our results extend some fixed point theorems due to Rhoades, Ciric and many others.

Keywords: strong convergence, contractive condition of integral type, metric space.

References:

MAXIMUM NORM ANALYSIS OF SCHWARZ METHOD FOR ELLIPTIC QUASI-VARIATIONAL INEQUALITIES

Mohammed BEGGAS¹, Mohamed HAIOUR²

¹Department of Mathematics, University of Eloued, Eloued 39000, Algeria
beggasmr@yahoo.fr

²Departement of Mathemtic, Faculty of Science, University of Annaba, B.P. 12
Annaba 23000, Algeria
haiourm@yahoo.fr

Abstract: Schwarz method has been used to solve the stationary or evolutionary boundary valued problems on domains which consists of two or more overlapping sub-domains. In this paper we provide a maximum norm analysis of an overlapping Schwarz method on non-matching grids for a quasi-variational inequalities generalized where the obstacle and the second member depends of the solution. We proved that the discretization on every sub-domain converges in uniform norm and we give a result of approximation for the method in uniform norm.

Keywords: Schwarz method, quasi-variational inequalities, \(L_\infty \)-error estimate.

References:

VARIATION DIMINISHING INTEGRAL OPERATORS OF THE CONVOLUTIONS TYPE ASSOCIATED WITH THE DUNKL OPERATOR ON \mathbb{R}

Moncef DZIRI

Faculty of Sciences of Tunis, Tunisia
moncef.dziri@iscae.mu.tn

Abstract: Using harmonic analysis associated with Dunkl operator on \mathbb{R} we give necessary and sufficient conditions such that the number of sign changes of a convolution transform $T(f)$ associated with Dunkl operator never exceeds the number of sign changes of the function f.

PERTURBED PARTIAL FRACTIONAL ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN FRECHET SPACES

Mouffak BENCHOHRA and Mohamed HELLAL

Laboratoire de Mathematiques, Universite de Sidi Bel-Abbes, B.P. 89, 22000, Sidi Bel-Abbes, Algeria
benchohra@univ-sba.dz
hellalmohamed@yahoo.fr

Abstract: In this paper we investigate the existence of solutions of perturbed partial hyperbolic differential equations of fractional order with finite delay and Caputo's fractional derivative by using a nonlinear alternative of Avramescu on Frechet spaces.

Key words: Partial functional differential equation, fractional order, left-sided mixed Riemann-Liouville integral, Caputo fractional-order derivative, finite delay, Frechet space.

References:

ON SHERMAN’S INEQUALITY

Muhammad Adil KHAN

1Department of Mathematics, University of Peshawar
İstanbul/TURKEY
adilswati@gmail.com

Abstract: Generalizations of Sherman’s inequality for a convex function of higher order are obtained by applying Hermite interpolating polynomials. The results for particular cases, namely, Lagrange, (m; n-m) and two-point Taylor interpolating polynomials are also considered. The Gruss and Ostrowski type inequalities related to these generalizations are given.

ON GENERALIZED DIFFERENCE SEQUENCES OF FUNCTIONS

Muhammed ÇINAR1, Mikail ET2

1Department of Mathematics, MusAlparslan University, Mus/TURKEY
muhammedcinar23@gmail.com
2Department of Mathematics, Fırat University, Elazığ/TURKEY
mikailet@yahoo.com

Abstract: In this presentation, we introduce the concepts of pointwise Δ_m^r convergence and uniform Δ_m^r convergence sequences of functions. Furthermore some relations between the spaces of sequences of functions $c(\Delta_m^r,F(p)),c_0(\Delta_m^r,F(p)),c(\Delta_m^r,F),c_0(\Delta_m^r,F(u))$ and $\ell_\infty(\Delta_m^r,F(u))$ are examined.

Keywords: Difference sequence, Sequences of functions.

References:

INVERSE SOURCE PROBLEM FOR TIME-FRACTIONAL HEAT EQUATION WITH A GENERALIZED IMPEDANCE BOUNDARY CONDITION

Muhammed ÇİÇEK¹, Mansur İSGENDERÖĞLU (ISMAILOV)²

¹Department of Mathematics, Bursa Technical University, Bursa/TURKEY
muhammed.cicek@btu.edu.tr
²Department of Mathematics, Gebze Technical University, Kocaeli/TURKEY
mismailov@gtu.edu.tr

Abstract: In this paper, an inverse problem of reconstruction of a time-dependent source term in a one-dimensional time-fractional diffusion equation from the energy measurement and generalized impedance boundary condition is studied. This problem is obtained from a classical diffusion problem by replacing the time derivative with a fractional derivative. The well-posedness of the inverse problem is shown by using the generalized Fourier method.

Keywords: Fractional diffusion equation, Generalized Impedance Boundary Condition, Inverse source problem, Generalized Fourier method.

References:

A HYBRIDIZABLE DISCONTINUOUS GALERKIN
METHOD FOR A CLASS OF FRACTIONAL BOUNDARY
VALUE PROBLEM

Mehmet Fatih KARAASLAN¹, Muhammet KURULAY²

¹Department of Statistics, Yıldız Technical University, İstanbul/TURKEY
mfath@yildiz.edu.tr

²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
mkurulay@yildiz.edu.tr

Abstract: In this work, we present a hybridizable discontinuous Galerkin (HDG) method for solving a class of fractional boundary value problem that involves Caputo derivative with order . One of the main properties of HDG methods is that they are efficiently implementable since it is possible to eliminate all internal degrees of freedom and obtain a global linear system that only involves unknowns at the element interfaces. Since the global matrix in the linear system is tridiagonal, symmetric and positive definite, the method gives effective and convergent results in the ordinary and partial differential equations. Also, an appropriate choice of the stability parameter has a very important effect on the convergence of the obtained system. Therefore, the HDG method is investigated for the mentioned fractional boundary value problems. We display the results of a series of numerical experiments to ascertain by using MATLAB programme.

Keywords: Hybridizable discontinuous Galerkin method, boundary value problem, fractional derivative, fractional calculus.

References:

OSTROWSKI TYPE INEQUALITIES FOR GENERALIZED
s-CONVEX FUNCTIONS IN THE SECOND SENSE

Muharrem TOMAR1,a and Erhan SET1,b
1Department of Mathematics, Ordu University,
Ordu/TURKEY
muharremtomar@gmail.coma,
erhanset@yahoo.comb

Abstract: In this paper, we first obtain a generalized integral identity for
twice locally differentiable functions. Then, using functions whose second
local derivatives in absolute value at certain powers are generalized s-
convex in the second sense, we obtain some new Ostrowski type
inequalities.

Keywords: Local fractional integral, Hermite-Hadamard inequality,
Generalized Convex Functions, Hölder's Inequality, Generalized
Ostrowski inequality.

References:

inequalities for local fractional integrals and its applications, Appl.
for generalized convex functions with applications”, Facta Univ. Ser.
ON І-CONVERGENCE OF SEQUENCES OF FUNCTIONS IN 2-NORMED SPACES

Mukaddes ARSLAN and Erdinç DÜNĐAR

Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
mukaddes_arslan@hotmail.com, edundar@aku.edu.tr

Abstract: In this paper, we study concepts of convergence and idealconvergence of sequence of functions and investigate relationships between them and some properties such as linearity in2-normed spaces. Also, we prove a decomposition theorem for ideal convergent sequences of functions in 2-normed spaces.

Keywords: Ideal, Ideal convergence, Sequence of functions, 2-normed spaces.

DEFECT-DEFERRED CORRECTION METHOD FOR A FLUID FLOW AT HIGH REYNOLDS NUMBERS

Mustafa AGGUL

Abstract: A method is presented, that combines the defect and deferred correction approaches to approximate solutions of Navier-Stokes equations at high Reynolds number. The method is of high accuracy in both space and time, and it allows for the usage of legacy codes—a frequent requirement in the simulation of turbulent flows in complex geometries. The two-step method is considered here; in order to obtain a regularization that is second order accurate in space and time, the method computes a low-order accurate, stable and computationally inexpensive approximation (Backward Euler with artificial viscosity) twice. The results are readily extendable to the higher order accuracy cases by adding more correction steps. Both the theoretical results and the numerical tests provided demonstrate that the computed solution is stable and the accuracy in both space and time is improved after the correction step. We also perform a qualitative test to demonstrate that the method is capable of capturing qualitative features of a turbulent ow, even on a very coarse mesh.
ALMOST CONVERGENCE METHOD WITH FRACTIONAL ORDER OPERATOR

Murat KıRİŞÇİ

Department of Mathematical Education, Istanbul University, Istanbul/TURKEY
mkirisci@hotmail.com, murat.kirisci@istanbul.edu.tr

Abstract: The purpose of this paper is twofold. First, basic concepts such as Gamma function, almost convergence, fractional order difference operator and sequence spaces are given as a survey character. Thus, the current knowledge about those concepts are presented. Second, we construct the almost convergent spaces with fractional order difference operator and compute dual spaces which are help us in the characterization of matrix mappings. After we characterize to the matrix transformations, we give some examples. In this paper, the notation $\Gamma(n)$ will be shown the Gamma function. For $n \notin \{0, -1, -2, \ldots\}$, Gamma function defined by an improper integral $\Gamma(n) = \int_{0}^{\infty} t^{n-1} e^{-t} dt$.

Keywords: Gamma Function, almost convergence, fractional order operator, matrix domain

References:

ON SOME FIXED POINT THEOREMS WITH GENERALIZED CONTRACTIONS IN COMPLETE CONE METRIC SPACE ENDOVED WITH A PARTIAL ORDER AND INVOLVING A GRAPH

Murat CANCAN

1Department of Mathematics, YuzuncuYil University, Van/TURKEY
mcancan@yyu.edu.tr

Abstract: The aim of this presentation is to present some fixed point theorems for generalized contractions by altering distance functions in a complete cone metric spaces endowed with a partial order and involving a graph.

Keywords: Complete cone metric space, fixed point theorem, generalized contraction, graph.

References:

DISCUSSION ON ADVECTION-DIFFUSION EQUATION THROUGH FINITE DIFFERENCE SCHEMES

Murat SARI, Lamia J.M. Al-MASHHADANI, Arshed A. AHMAD

Department of Mathematics, Yıldız Technical University, İstanbul, TURKEY
sarim@yildiz.edu.tr

Abstract: The aim of this presentation is to numerically discuss physical behavior of the advection diffusion equation. To achieve this, fundamental finite difference schemes are used both in time and in space. In order to realize properly the physical behavior of the model, the produced solutions have been discussed in terms of advection-diffusion relation. The current schemes seem to be trustworthy and moderate alternative to understand numerical thinking for these kinds of models.

Keywords: Advection diffusion equation, finite difference scheme, numerical modelling, physical behavior.

References:

THE GENERATING FUNCTIONS FOR THE FAMILY OF THE GENERALIZED BERNOULLI POLYNOMIALS

Mustafa ALKAN
Akdeniz University, Faculty of Science, Department of Mathematics, 07058 Antalya, Turkey
alkan@akdeniz.edu.tr

Abstract: We study the generalization Bernoulli numbers and polynomials attached to a periodic group homomorphism. By using a fixed periodic group homomorphism,, we obtain not only multiplication formulas, but also some new identities for the generalized Bernoulli polynomials.

TWO NEW PROOFS OF GENERALIZED BIPERIODIC FIBONACCI IDENTITY IN TERMS OF THE DETERMINANTS OF TRIDIAGONAL MATRIX

Yasin YAZLIK, Musa BAŞBÜK
1Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir / TURKEY
yyazlik@nevsehir.edu.tr, mbasbuk@gmail.com

Abstract: In this study, we present two new proofs of generalized Fibonacci identity

\[q_{m+n-1} = q_m q_n \xi^{m+n-m-1} b_{\xi^{m+n-m}} + q_m, \xi^{n-m} b_{\xi^{m+n-m}} \]

via the determinants of \(n \times n \) tridiagonal matrix evaluating by Laplace expansion method and constructing 2x2 square matrices, where \(m, n \) are any two positive integers, \(\{q_{i}\}_{i=0}^{\infty} \) is the generalized Fibonacci sequence and \(\xi(n) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases} \)

Keywords: Generalized Fibonacci sequence, Tridiagonal matrix, Laplace expansion method.

References:

SOME NOTES ON THE SEQUENCE SPACES $l^\lambda_p(G^m)$ AND $l^\lambda_\infty(G^m)$

Mustafa Cemil BİŞGİN¹, Abdulcabbar SÖNMEZ²

¹Department of Mathematics, Recep Tayyip Erdoğan University, Rize/TURKEY
mustafa.bisgin@erdogan.edu.tr

²Department of Mathematics, Erciyes University, Kayseri/TURKEY
sonmez@erciyes.edu.tr

Abstract: In this work, we introduce the sequence spaces $l^\lambda_p(G^m)$ and $l^\lambda_\infty(G^m)$ derived by the domain of the composition of m-th order generalized difference matrix and lambda matrix. Moreover, we determine some topological properties and examine inclusion relations related to those spaces. Furthermore, we give Schauder basis for the space $l^\lambda_p(G^m)$. Finally, we determine $\alpha-\beta-\gamma$-duals of the spaces $l^\lambda_p(G^m)$ and $l^\lambda_\infty(G^m)$.

Keywords: Sequence Space, Matrix Transformation, Matrix Domain, Schauder Basis, Duals, Topological Property.

References:

A PARAMETERIZED SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM

Mustafa KUDU¹, Gabil M. AMIRALIYEV ²

¹Department of Mathematics, Erzincan University, Erzincan/TURKEY
muskud28@yahoo.com
²Department of Mathematics, Erzincan University, Erzincan/TURKEY
gabilamirali@yahoo.com

Abstract: This article is concerned with the parameterized second order boundary value problem with layer behavior. Asymptotic estimates for the solution and its first and second derivatives have been established. The obtained results are important for construction and analysis of appropriate approximate methods. The illustrative examples are given.

Keywords: Depending on a parameter, Asymptotic bounds, Singular perturbation, Boundary layer.

References:

p-ADIC GIBBS MEASURES FOR THEISING-VANNIMENUS MODEL ON CAYLEY TREE OF ORDER THREE

Mutlay DOGAN¹, Hasan AKIN²

¹Department of Mathematics, Faculty of Education, Zirve University, 27260 Gaziantep/TURKEY
mutlay.dogan@zirve.edu.tr

²Department of Mathematics, Faculty of Education, Zirve University, 27260 Gaziantep, Turkey
hasan.akin@zirve.edu.tr

Abstract:

Keywords: Cayley tree, p-adic Gibbs measure, p-adic Ising-Vannimenus model, Dynamics Systems.

References:

AN EXISTENCE THEOREM FOR ANALYTIC SOLUTION OF A FRACTIONAL DIFFERENTIAL EQUATION WITH CAPUTO DERIVATIVE

Müfit ŞAN
Department of Mathematics, Çankırı Karatekin University, Çankırı/TURKEY
mufitsan@hotmail.com

Abstract: In this work, we investigate the existence of analytic solution of an initial value problem for the nonlinear fractional differential equation with Caputo derivative by using Schauder fixed point theorem and a new technique related to Schwarz Lemma for analytic functions of several variables.

Keywords: Fractional differential equation, existence and uniqueness, fixed point theorem, Schwarz's lemma.

References:

SOME CONVERGENCE AND DATA DEPENDENCE RESULTS IN A GENERAL CLASS OF CONTRACTIVE TYPE OPERATORS

Müzeyyen ERTÜRK¹, Vatan KARAKAYA²
Faik GÜRSOY³

¹,³Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
¹merturk3263@gmail.com
³faikgursoy02@hotmail.com
²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
vkkaya@yahoo.com

Abstract: In this presentation, we study convergence and data dependence results of the iteration method, which was introduced by Thianwan and Suantai in [1], for a general class of operators. Also, we support our results with examples. Our study generalizes some results in the literature.

Keywords: Iterative schemes, convergence, data dependence

References:

INTEGRABLE SOLUTIONS OF A NONLINEAR INTEGRAL EQUATION VIA SCHAEFER-KRASNOSELSKII FIXED POINT THEOREM

N. ABADA and L. AITKAKI

Laboratoire de Mathematiques Appliquees et Didactique, Ecole Normale Superieure, Constantine, Algerie

Abstract: We study the existence of solutions of nonlinear volterra equation in the space \(L^1([0, +\infty]) \). With the help of Schaefer-Krasnoselskii fixed point theorem and the theory of measure of weak noncompactness, we prove an existence result for a functional integral equation. An example is given to support our results.

Keywords: Krasnoselskii fixed point theorem, measure of noncompactness, nonlinear integral equation.
A FIXED POINT PROOF OF THE CONVERGENCE OF A NEWTON-LIKE METHOD OBTAINED BY THE NORMAL S-ITERATION PROCESS

Nazli KARACA¹, Isa YILDIRIM²

¹Department of Mathematics, Ataturk University, Erzurum/TURKEY
nazli.kadioglu@atauni.edu.tr
²Department of Mathematics, Ataturk University, Erzurum/TURKEY
isayildirim@atauni.edu.tr

Abstract: In this paper, we indicate a new Newton-type iterative method in . It is shown that this process converges to the unique solution of the scalar nonlinear equation \(f(x) = 0 \), under some conditions, involving only \(f \) and \(f' \). Finally, we present numerical examples to support the analytic result proved herein.

Keywords: Fixed point, Newton’s method, nonlinear operator.

References:

A REARRANGEMENT ESTIMATE FOR THE GENERALIZED MULTILINEAR ANISOTROPIC FRACTIONAL INTEGRALS

Nezrin GADIROVA

Institute of Mathematics and Mechanics, Baku, AZEBAIJAN
gadirovanezrin@gmail.com

Abstract: In this report, author studies \(L_{p_1} \times L_{p_2} \times \cdots \times L_{p_k} \)-boundedness of the generalized multilinear anisotropic fractional integral operators. O’Neil type inequality for the generalized multilinear fractional integral is proved. Was given a new proof of the Hardy-Littlewood-Sobolev multilinear anisotropic fractional integration theorem, based on a pointwise estimate of the rearrangement multilinear anisotropic fractional type integral.
CALSSES OF I-CONVERGENT DOUBLE SEQUENCES OVER N-NORMED SPACES

Nazneen KHAN

Department of Mathematics, Taibah University,
Madina/SAUDI ARABIA
nazneen4maths@gmail.com

Abstract: In this article, I introduce some new classes of I-convergent double sequence spaces over n-normed space using the concept of sequence of modulii and double lacunary sequence space. I have studied and proved their algebraic and topological properties and some inclusion relations. Some useful examples have been constructed to understand new terms defined in this article. By varying different parameters used in the definition of these spaces, a case study of changes in their behavior has been shown.

Keywords: I-convergence, lacunary sequence space, n-norm, double sequence.

References:

ON SOME GEOMETRICAL PROPERTIES

Necip ŞİMŞEK¹, Zhamile ASKEROVA²

¹Department of Mathematics, İstanbul Commerce University, İstanbul/TURKEY
necsimsek@yahoo.com

²Department of Mathematics, Institute of Science, İstanbul Commerce University, İstanbul/TURKEY
cemile05@mail.ru

Abstract: In this paper, we study some geometric properties in some Banach spaces. We construct tensor product of some Banach spaces and investigate some geometric properties.

Keywords: Tensor products, geometrical properties, Banach space.

References:

AVERAGE VECTOR FIELD METHOD AND CAPUTO FRACTIONAL DERIVATIVE DEFINITION FOR LINEAR FRACTIONAL SCHRÖDINGER EQUATION

Neslihan Fatma Er, Canan Akkoyunlu, Hikmet Çağlar

Istanbul Kültür University, Mathematics-Computer Department, 34156 İstanbul/TURKEY
nf.er@iku.edu.tr
c.kaya@iku.edu.tr
s.caglar@iku.edu.tr

Abstract: In this study, linear fractional Schrödinger equation with its initial and boundary conditions is studied by using Average Field Vector (AVF) method. Caputo fractional derivative definition is applied to the fractional part of the equation to express it with integer order of derivatives. In the solution of the problem, finite differences discretization along the spatial coordinate and AVF method along the time coordinate have been applied. Dispersion analysis is applied to ensure consistency and convergency of the method used. The result shows that the applied method in this study is an applicable technique.

Keywords: Linear fractional Schrödinger equation, Caputo fractional derivative definition, average vector field method, dispersion analysis.

References:

SOME CONTRACTIONS AND FIXED POINT THEOREMS IN MODULAR METRIC SPACES

Duran TÜRKOĞLU¹, Nesrin MANAV²

¹Department of Mathematics, Gazi University, Ankara/TURKEY
dturkoglu@gazi.edu.tr
²Department of Mathematics, Erzincan University, Erzincan/TURKEY
nesrinmanav2@gmail.com

Abstract: We introduce some properties in modular metric spaces, then show that some contractions and fixed point theorems in this modular metric spaces. Moreover, we show that type of modular metric spaces are useful. Finally, some given examples will be helpful to understand this construction.

Keywords: modular metric spaces, fixed point theorem, contractions.

References:

ALGORITHM FOR ZEROS OF MAXIMAL MONOTONE MAPPINGS IN CLASSICAL BANACH SPACES

A. H. ADOUM, O. DIOP, M. SENE AND N. DJITTE

Department of Mathematics, Gaston Berger University,
St Louis/Senegal
ngalla.djittle@ugb.edu.sn

Abstract: In this presentation, we introduce a new iteration process and show that this iteration process converges strongly to a zeros of a bounded maximal monotone operator defined in a 2-uniformly convex and q-uniformly smooth or p-uniformly convex and 2-uniformly smooth real Banach space. Using this result, we deal with the convex minimization problem. Our theorems improve and unify most of the results that have been proved in this direction for this important class of nonlinear mappings. Furthermore, our new technique of proof is of independent interest.

Keywords: monotone mappings, zeros, iteration process

References:

SPECTRAL ANALYSIS OF MATRIX STURM-LIOUVILLE OPERATORS

Nihal YOKUS¹, Nimet COSKUN²

¹Department of Mathematics, KaramanogluMehmetbey University, Karaman/TURKEY
nyokus@kmu.edu.tr

²Department of Mathematics, KaramanogluMehmetbey University, Karaman/TURKEY
cannimet@kmu.edu.tr

Abstract: In this presentation, we introduce a boundary value problem (BVP) consisting of a second order non-selfadjoint matrix Sturm-Liouville equation and boundary conditions that depend on quadratic eigenvalue parameter.

Keywords: Eigenvalues, spectral singularities, spectral analysis, Sturm-Liouville operator.

References:

NEW RESULTS ON GRAPH PRODUCT OF SPECIAL SEMIGROUPS

Nihat AKGÜNEŞ

Department of Mathematics-Computer Sciences, Necmettin Erbakan University, Meram, Konya/Turkey
nakgunes@konya.edu.tr

Abstract: In this presentation, we introduce a new results for a important graph product over special semigroups. In detail, we will investigate some graph parameters and some graph numbers for that product of any two monogenic semigroup graphs Γ₁(Sₘ) and Γ₂(Sₘ).

Keywords: Graphs, Graph product, Monogenic semigroup graph.

References:

[2] N. Akgunes, K. Ch. Das, A. S. Cevik, "Topological indices on a graph of monogenic semigroups", Topics in Chemical Graph Theory. Topics in Chemical Graph Theory, Mathematical Chemistry Monographs, University of Kragujevac, Faculty of Science Kragujevac, Kragujevac,(2014), No.16a, 1-21..
PRINCIPAL FUNCTIONS OF DISCRETE STURM-LIOUVILLE EQUATIONS WITH HYPERBOLIC EIGENPARAMETER

Nihal YOKUS1, Nimet COSKUN2

1Department of Mathematics, KaramanoğluMehmetbey University, Karaman/TURKEY
nyokus@kmu.edu.tr

2Department of Mathematics, KaramanoğluMehmetbey University, Karaman/TURKEY
cannimet@kmu.edu.tr

Abstract: In this study, we take under investigation principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) $a_n y_{n-1} + b_n y_n + a_{n+1} y_{n+1} = \lambda y_n, n \in \mathbb{N}$ and $(\gamma_0 + \gamma_1 \lambda)y_1 + (\beta_0 + \beta_1 \lambda)y_0 = 0$ where (a_n) and (b_n) are complex sequences, λ is a hyperbolic eigenparameter and $\gamma_i, \beta_i \in \mathbb{C}$, for $i = 0, 1$.

Keywords: Spectral analysis, spectral singularities, eigenvalues, discrete equations.

References:

WIJSMAN I-INVARIANT CONVERGENCE OF SEQUENCES OF SETS

Nimet PANCAROĞLU AKIN¹, Erdinç DÜNDAR¹ and Fatih NURAY¹

¹Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
npancaroglu@aku.edu.tr, edundar@aku.edu.tr, fnuray@aku.edu.tr

Abstract: In this paper, we study the concepts of Wijsman-I-invariant convergence (I^w), Wijsman I^*-invariant convergence (I^*_w), Wijsman p-strongly invariant convergence ($[WV_p]^*$) and investigate the relationships among Wijsman invariant convergence, ($[WV_p]^*$), (I^w) and (I^*_w). Also, we introduce the concepts of (I^w)-Cauchy sequence and (I^*_w)-Cauchy sequence of sets.

Keywords: Invariant, I-convergence, Wijsman convergence.

ON NEW FIXED POINTS THEOREMS FOR SET CONTRACTION MULTIVALUED MAPPINGS AND APPLICATIONS TO DIFFERENTIAL INCLUSIONS

Nour El Houda BOUZARA¹, Vatan KARAKAYA²

¹Department of Mathematics, Yıldız Technical University, İstanbul/TURKEY
bzr.nour@gmail.com
²Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
vkkaya@yahoo.com

Abstract: In this work, combining the concept of measure of noncompactness with fixed point theory for multivalued mappings, we present new existence theorems for different type of set contraction multivalued maps. We also introduce a new class of mappings which are general than Meir-Keeler mappings. Finally, we use these results are then used to investigate the existence of mild solutions for nonlocal evolution differential inclusion without the compactness assumption.

Keywords: Multivalued mappings; Measure of noncompactness; fixed points; evolution differential inclusion.

References:

APPLYING POWELL’S SYMMETRICAL TECHNIQUE TO CONJUGATE GRADIENT METHODS WITH THE GENERALIZED CONJUGACY CONDITION

Noureddine BENRABIA
noureddinebenrabia@yahoo.fr

Abstract: A new conjugate gradient method for unconstrained optimization, is proposed by applying the Powell symmetrical technique in a sense to be defined. Using the Wolfe line search conditions, the global convergence property of the method is also obtained, on the basis of the spectral analysis of the conjugate gradient iteration matrix and the Zoutendijk’s condition for steepest descent methods. Preliminary numerical results for a set of 86 unconstrained optimization test problems, verify the performance of the algorithm and show that the GDSHS1 algorithm is competitive with the FR and ™+ algorithms.

Keywords: Conjugate gradient method, symmetrical technique, Generalized conjugacy condition, spectral analysis, global convergence.

References:

CONVERGENCE OF SPLIT-STEP FOURIER COLLOCATION METHOD FOR BENJAMIN-BONA-MAHONY TYPE EQUATIONS

Nurcan GÜCÜYENEN
nurcangucuyen@gmail.com

Abstract: In this paper, we study stability, consistency and the convergence analysis of fully discretized Benjamin-Bona-Mahony (BBM) equations of the type

\[\frac{u_t}{2} - \frac{u_x}{2} = Au + \frac{1}{2} \partial_x (u^2), \]

where A is an unbounded linear differential operator. In paper [1], a third order local and a second order global error bounds for the same problem is obtained in time using Strang splitting. Here, we study on fully discretized solution with Strang splitting in time and Fourier collocation in space under suitable regularity assumptions on exact solution. First we prove stability and construct a local error bound via Fourier interpolation operator and time discretization error. Then with the help of Lady Windermere's fan argument, we obtained a fully discretized global error bound. Finally the results are tested on a numerical example.

Keywords: Operator splitting method, Fourier collocation method, Nonlinear Partial differential equation, KdV-BBM equation, error bound.

References:

HERMIT-HADAMARD TYPE INEQUALITIES FOR COORDINATES LOG-CONVEX STOCHASTIC PROCESSES

Nurgül OKUR BEKAR
Department of Statistics, Giresun University, Giresun/TURKEY
nrgokur@gmail.com

Abstract: The main aim of the present is to introduce co-ordinated log-convex stochastic processes. Moreover, we prove Hermit-Hadamard type inequalities for co-ordinated log-convex stochastic processes and obtain some important results for these processes.

Keywords: Hermit-Hadamard inequality, co-ordinated log-convex function, log-convex stochastic processes, co-ordinated log-convex stochastic processes

References:
A NEW SMOOTHING APPROXIMATION TO PIECEWISE SMOOTH FUNCTIONS AND APPLICATIONS

Nurullah YILMAZ¹, Ahmet ŞAHİNER¹

¹Department of Mathematics, SuleymanDemirel University, Isparta/TURKEY
nurullahyilmaz@sdu.edu.tr, ahmetnur32@gmail.com

Abstract: In this study, we introduce smoothing approximations for piecewise smooth functions. First, we give a new definition for piecewise smooth functions. Second, present a new local smoothing approximation for both one dimensional and n-dimensional piecewise functions. Third, we apply our smoothing approach three important area such as optimization, data modeling and geometric design. We give some numerical examples in order to illustrate the efficiency of our method.

Keywords: Piecewise smooth function, Smoothing approximation, Optimization,

References:

ON THE A FAMILY SAVING MODEL

Olgun CABRİ, Khanlar R. MAMEDOV

1Department of Business Administration, Artvin Çoruh University, Artvin/TURKEY
olguncabri@artvin.edu.tr

2Department of Mathematics, Mersin University, Mersin/TURKEY
hanlarm@yahoo.com

Abstract: In this study, we are interested in the family saving model for a family sets which is given by Kolmogorov equation

\[
\frac{\partial u}{\partial t} = -\frac{\partial}{\partial x} (Cu) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (bu) + f
\]

where \(u = u(x,t) \) is density distribution of family saving. Nonlocal boundary conditions which describes total family saving and number of families on the definite interval are considered for the model. By the Fourier method, solution of the problem is examined. In addition, Method of Lines method and Crank Nicolson method are applied to family saving model with integral boundary conditions. Errors of numerical methods are presented.

Keywords: Sturm-Liouville problem, nonlocal boundary conditions, family saving model, method of lines, Crank Nicolson method

References:

CONVERGENCE ANALYSIS OF DIFFERENCE METHOD FOR VOLterra Delay-INTEGRO-DIFFERENTIAL EQUATION

Gabil M. AMIRALIYEV 1, Ömer YAPMAN2

1Department of Mathematics, Faculty of Arts and Sciences, Erzincan University, Erzincan/TURKEY
gabilamirali@yahoo.com

2Department of Mathematics, Faculty of Arts and Sciences, Erzincan University, Erzincan/TURKEY
yapmanomer@gmail.com

Abstract: This study is concerned with the finite-difference solution of singularly perturbed initial value problem for a linear first order Volterra integro-differential equation with delay. The method is based on the method of integral identities with the use of exponential basis functions and interpolating quadrature rules with the weight and remainder terms in integral form. The emphasis is on the convergence of numerical method. It is shown that the method displays uniform convergence in respect to the perturbation parameter. Numerical results are also given.

Keywords: Delay-integro-differential, delay difference scheme, uniform convergence, singular perturbation.

References:

A GENERALIZATION OF THE EXPONENTIAL AND LINDLEY DISTRIBUTIONS VIA THE KUMARASWAMY-G FAMILY

OrhanMazlum YAZAR¹, Mustafa Ç. KORKMAZ²

¹Science InstituteMSc.,Recep Tayyip Erdoğan University, Rize/TURKEY
o.m.yazar@artvin.edu.tr
²Department of Educational Sciences, Artvin Çoruh University, Artvin/TURKEY
mcagatay@artvin.edu.tr

Abstract: In this study, we introduce a new generalization of the exponential and Lindley distribution via Kumaraswamy-G family of the distribution. The new distribution has the following cumulative distribution function,

\[F(x,a,b,\alpha,\beta) = 1 - \left[1 - \left(\left(\frac{\alpha + \beta + a\beta x}{\alpha + \beta} \right)^{\alpha} \right)^{b} \right], x > 0, \]

where \(a, b, \alpha, \beta > 0 \). Furthermore, we obtain several properties of this new distribution such as special cases and its density shapes, hazard rate function, moments, maximum likelihood estimations. Finally we end the paper with data analysis and conclusions.

Keywords: extended exponential distribution, Lindley distribution, Kumaraswamy-G family, generalized distribution.

References:

CONVERGENCE THEOREMS FOR A FAMILY OF MULTIVALUED NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

Osman ALAGÖZ¹, Birol GÜNDÜZ², Sezgin AKBULUT³

¹Department of Mathematics, Bilecik Şeyh Edebiyat University, Bilecik/TURKEY
osman.alagoz@bilecik.edu.tr
²Department of Mathematics, Erzincan University, Erzincan/TURKEY
birolgndz@gmail.com
³Department of Mathematics, Atatürk University, Erzurum/TURKEY
sezginakbulut@gmail.com

Abstract: In this article we introduce a new iteration process inspired by the iteration [1] to prove strong convergence and Δ-convergence for a finite family of nonexpansive multivalued mappings in hyperbolic spaces. The results presented here extend some existing results in the literature.

Keywords: Hyperbolic spaces, Δ-convergence, nonexpansive multivalued mapping.

References:

COMPLETE ABSTRACT DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE WITH ROBIN'S CONDITION IN A NON-COMMUTATIVE FRAMEWORK

Ould Melha KHELLAF\(^1\), Mustapha CHEGGAG\(^2\), Stéphane MAINGOT\(^3\) and Rabah LABBAS\(^3\).

\(^1\)Department of Mathematics, Chlef University. ould_melha_khel@yahoo.fr
\(^2\)Department of Mathematics and Computer Sciences, Polytechnic National School of Oran, Algeria mustapha.cheggag@enp-oran.dz
\(^3\)Laboratoire de Mathématiques Appliquées, Université du Havre, France. Stephane.maingot@univ-lehavre.fr, rabah.labbas@univ-lehavre.fr

Abstract: In this work we give some new results on Robin abstract problem of second order differential equations of elliptic type with coefficient-operator in a non-commutative framework. We study the case \(f \in L^p(0,1;X)\), \(1 < p < \infty\) with \(X\) is UMD Banach spaces, using the representation formula of the solution given in M. Cheggag et al. [4]. Necessary and sufficient conditions of compatibility are established to obtain a strict solution. This work completes the ones studied by M. Cheggag et al. [4] and [5].

Keywords: Abstract differential equations, Robin boundary conditions, fractional powers of operators, bounded imaginary powers, analytic semigroups theory, UMD space, non-commutativity.

References:

EXTREMAL FUNCTIONS FOR STARLIKE FUNCTIONS AND CONVEX FUNCTIONS

İsmet YILDIZ¹, Neslihan ZORLU², Oya MERT³

¹Department of Mathematics, Düzce University, Düzce/TURKEY
ismetyildiz@duzce.edu.tr

²Department of Mathematics, Düzce University, Düzce/TURKEY
neslihn.zrl@gmail.com

³Department of Mechanical Engineering, Kemerburgaz University, İstanbul/TURKEY
oya.mert@kemerburgaz.edu.tr

Abstract: In this paper, we obtain new extremal functions for starlike functions and convex functions on the range $0 \leq \alpha \leq \frac{1}{2r+1}$, defined on the unit disk using analytic and univalent functions.

Keywords: Starlike functions, convex functions, analytic functions, extremal function.

References:

DYNAMIC SEMI-DISCRETE SURFACES OF REVOLUTION

Sibel PAŞALI ATMACA¹, Ömer AKGÜLLER², Emel KARACA³
¹,²,³Department of Mathematics, Muğla Sıtık Koçman University, Muğla/TURKEY
sibela@mu.edu.tr, oakguller@mu.edu.tr, emelkkaraca@gmail.com

Abstract: Discrete Differential Geometry considers all kinds of discrete objects such as polygons, polyhedral surfaces etc. and has a long range of applications in many areas. One kind of manifolds arise from this subject are bivariate function of one discrete and one continuous variable, so called semi-discrete surfaces. Such mixed continuous-discrete objects can be seen as a limit case of purely discrete surfaces, or as a semi-discretization of smooth surfaces. Rather than the constant step discretization methods, Time Scales Calculus can also be effective to discretize smooth surfaces, since they directly converge to smooth part of the underlying manifold. Besides, with the chosen of discrete and continuous time scale, it is also possible to obtain local dynamic semi-discretization of smooth surface. In this study we briefly introduce such semi-discretization of smooth surfaces by using time scales calculus. Also semi-discrete surfaces are included and can be looked at in different ways- on the one hand as a discrete (or smooth) evolution of a curve from the point of view of transformations of curves, and on the other hand as approximation of a surface by a sequence of merged strips. The present study mainly investigates semi-discrete surfaces of revolution. We give some definitions of dynamic semi-discrete surface by using the Trigonometric functions on time scales. Also, we discuss basic theorems about the study.

Keywords: Semi-Discrete Surface, Discrete Differential Geometry, Time Scales Calculus, Mimetic Discretization

References:

ON SOME PROPERTIES OF POISSON AND CAUCHY
TYPE INTEGRALS IN WEIGHTED MORREY TYPE
SPACES

Şeyma ÇETİN, Yusuf ZEREN

1Department of Mathematics, Yıldız Technical University,
İstanbul/TURKEY
seyymacetin@gmail.com
yusufzeren@hotmail.com

Abstract: In this work, we consider weighted form of Morrey-type spaces
and some properties of shift operator in weighted Morrey-type spaces. We
established some analogues of classical results in this case.

Keywords: Morrey-type spaces, weighted Morrey-type spaces, Poisson
Integer, Caucy Integral

References:

pp.71-87
v.98, is.4, pp. 586 592
[3] Samko N. Weight Hardy and singular operators in Morrey spaces,
Journal of Mathematical Analysis and Application, 2009, 35(1),
pp.183-188
[4] Bilalov B.T., Quliyeva A.A. On basicity of exponential systems in
Morrey type spaces, International Journal of Mathematics, Vol. 25,
No. 6 (2014), pp.1-10
[5] Bilal Bilalov, TelmanGasymov, Aida Guliyeva On Solvability of
Riemann boundary value problem in Morrey-Hardy classes
[6] Israfilov D.M., Tozman N.P. Approxiamtion by polynomials in
269
ON I_2-ASYMPTOTICALLY λ^2-STATISTICAL EQUIVALENT DOUBLE SET SEQUENCES

Ömer KİŞİ, Semra SARAÇOĞLU ÇELİK, Erhan GÜLER

Faculty of Science, Department of Mathematics, Bartin, Turkey

okisi@bartin.edu.tr, ssaracoglu@bartin.edu.tr, ergler@gmail.com

Abstract: In this paper, we introduce the concept of I_2-asymptotically λ^2-statistically equivalence of multiple L for the double sequences $\{A_{[k,l]}\}$ and $\{B_{[k,l]}\}$ Also we give some inclusion relations.

Keywords: I_2-convergence, λ^2-convergence, asymptotically equivalence, double sequences, set sequences.

References:

ON THE ALMOST EVERYWHERE STATISTICAL CONVERGENCE OF SEQUENCES OF FUZZY NUMBERS

Özer TALO

Department of Mathematics, Celal Bayar University, Manisa/TURKEY

ozer.talo@cbu.edu.tr

Abstract: In this paper, we define the concept of almost everywhere statistical convergence of a sequence of fuzzy numbers and prove that a sequence of fuzzy numbers is almost everywhere statistically convergent if and only if its statistical limit inferior and limit superior are equal. To achieve this result, new representations for statistical limit inferior and limit superior of a sequence of fuzzy numbers are obtained and we show that some properties of statistical limit inferior and limit superior can be easily derived using these representations.

Keywords: Sequence of fuzzy numbers, almost everywhere statistical convergence, statistical limit inferior, statistical limit superior.
DYNAMICS OF A DISCRETE-TIME HOST PARASITOID

Özlem AK GÜMÜŞ

1Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
akgumus@adiyaman.edu.tr

Abstract: In this presentation, we investigate the stability of the coexistence fixed point of a host parasitoid model with certain parameters.

Keywords: Host parasitoid model, stability analysis, fixed point.

References:

STABILITY BEHAVIOR OF A MODIFIED NICHOLSON-BAILEY MODEL

Özlem AK GÜMÜŞ

1Department of Mathematics, Adiyaman University, Adiyaman/TURKEY
akgumus@adiyaman.edu.tr

Abstract: This study presents the dynamical results of the model by obtaining the fixed points existing in the host-parasitoid model. Also, the results are confirmed by the examples.

Keywords: Discrete-time system, Nicholson Bailey model, stability analysis, fixed point.

References:

ON p−adic Gamma Function

Özge ÇOLAKOĞLU HAVARE, Hamza MENKEN

Department of Mathematics, Mersin University, Mersin/TURKEY
ozgecolakoglum@mersin.edu.tr
hmenken@mersin.edu.tr

Abstract: In the present work, we consider p−adic gamma function. We obtain the derivative of the p−adic gamma function and Volkenborn integral of derivative of p−adic gamma function is obtained. Also, we compute value of the Volkenborn integral for Mahler base.

Keywords: Volkenborn integral, p−adic gamma function, Mahler coefficients.

References:

APPORXIMATION PROPERTIES OF KING TYPE\((p,q)\)-BERNSTEIN OPERATORS

Özge DALMANOĞLU, Mediha ÖRKCÜ

1Department of Mathematics Education, Baskent University, Ankara/TURKEY
ozgedalmanoglu@gmail.com
2Department of Mathematics, Gazi University, Ankara/TURKEY
medihaakcay@gazi.edu.tr

Abstract: In this presentation we deal with a King type modification of \((p,q)\)-Bernstein operators. We investigate the Korovkin type approximation of both \((p,q)\)-Bernstein and King type \((p,q)\)-Bernstein operators under different conditions from the previous works. We prove that the error estimation of King type of the operator is better than that of the classical one whenever \(0 ≤ x ≤ \frac{1}{3}\).

Keywords: Korovkin theorem, \((p,q)\) integers, \((p,q)\)-Bernstein operators, King type operators, rate of convergence.

References:

ON THE NUMERICAL SOLUTION OF THE KLEIN-GORDON EQUATION BY EXPONENTIAL B-SPLINE COLLOCATION METHOD

Özlem ERSOY HEPSON1, Alper KORKMAZ2, İdris DAĞ3

1Department of Mathematics-Computer, EskişehirOsmangaziUniversity, Eskişehir/TURKEY
ozersoy@ogu.edu.tr

2Department of Mathematics, ÇankırıKaratekin University, Çankırı/TURKEY
akorkmaz@karatekin.edu.tr

3Department of Computer Engineering, EskişehirOsmangaziUniversity, Eskişehir/TURKEY
idag@ogu.edu.tr

Abstract: A finite element collocation method based on exponential-type cubic B-spline functions is formulated for the numerical solutions some initial boundary value problems constructed on the Klein-Gordon equation. The time order of the equation is reduced to convert the equation to a coupled system of equations of order one in time. The time discretization of the resultant system is accomplished by the Crank-Nicolson method. Then, following the linearization of the nonlinear terms, the space discretization is completed using exponential cubic B-spline collocation method. Finally, balancing the initial state makes the iteration algorithm ready to run. Some problems are solved by using the proposed algorithm. The error between the exact and approximate solutions is measured by using various discrete norms in some distinct steps. The plots of the obtained numerical solutions are also depicted to examine the motion.

Keywords: Finite element method, collocation method, Klein-Gordon equation, Exponential cubic B-spline.

References:

SOLVING LINEAR FRACTIONAL EQUATIONS WITH CONSTANT COEFFICIENTS USING LAPLACE TRANSFORM METHOD UNDER CTIT TRANSFORMATION

Özlem ÖZTÜRK MIZRAK¹, Nuri ÖZALP²
¹Department of Mathematics, Ankara University, Ankara/TURKEY
oomizrak@ankara.edu.tr
²Department of Mathematics, Ankara University, Ankara/TURKEY
nozalp@science.ankara.edu.tr

Abstract: We propose an adapted Laplace transform method using cosmic time-individual time (CTIT) transformation which enables to reduce the problem of finding a solution for a linear fractional differential equation in fractional domain to a problem in ordinary domain and provide estimates for accuracy of the computations with comparative graphs showing the behaviour of the solutions.

Keywords: Laplace transform, CTIT transformation, linear fractional differential equation, fractional domain, ordinary domain.

References:

THE SPACE $W(L^{p(\cdot),q(\cdot),L^R_{\omega}})$ AND BOUNDEDNESS OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION ON $W(L^{p(\cdot),q(\cdot),L^R_{\omega}})$

Öznur KULAK¹, A. TuranGÜRKANLI²

¹Department of Banking and Finance, Giresun University, Giresun TURKEY
oznur.kulak@giresun.edu.tr

²Department of Mathematics and computer Sciences, İstanbul Arel University, İstanbul TURKEY
turangurkanli@arel.edu.tr

Abstract: In this paper, we define a new weighted variable exponent Wiener amalgam space $W(L^{p(\cdot),q(\cdot),L^R_{\omega}})$ whose local component is variable exponent Lorentz space and the global component is weighted Lebesgue space. We give some characterizations of this space. At the end of the paper we discuss boundedness and unboundedness of the Hardy-Littlewood maximal function on $W(L^{p(\cdot),q(\cdot),L^R_{\omega}})$.

Keywords: Variable exponent Lorentz space, Hardy-Littlewood maximal function, Wiener amalgam space.

References:

ON THE GROWTH RATE OF ALGEBRAIC POLYNOMIALS THROUGH THEIR NORM IN BERGMAN SPACE

Pelin ÖZKARTEPE¹, Fahreddin ABDULLAYEV²

¹Mersin/TURKEY
pelinozkartepe@gmail.com
²Department of Mathematics, Mersin University
Mersin/TURKEY
fabdul@mersin.edu.tr

Abstract: In many areas of research in mathematics (in approximation theory, embedding theory and etc.), one can be faced with two important problems given in the following: a) Determining how to undergo a change of (semi)norm of the holomorphic function when the given region expands; b) Determining the relationships between different (semi)norms of analytic functions in a given finite Jordan region on the complex plane in the various (semi)normed space [2]. We will consider this problems for algebraic polynomials of complex variables in the well known Bergman space. We will investigate the following problems: evaluating the increase of the modulus of polynomials in the exterior of the given region with respect to the norm of the polynomial in the this region [3,4]; determining a change of (semi)norm of polynomials for the given region.

Keywords: Algebraic polynomials, Quasionformal mapping, Quasicircle.

References:

DELAY DIFFERENTIAL OPERATORS AND SOME SOLVABLE MODELS IN LIFE SCIENCES

Pembe İPEK¹, Bülent YILMAZ²
ZameddinI. İSMAILOV¹

¹Institute of Natural Sciences, Karadeniz Technical University, Trabzon/TURKEY
ipekpembe@gmail.com
zameddin.ismailov@gmail.com

²Department of Mathematics, Marmara University, Istanbul/TURKEY
bulentyilmaz@marmara.edu.tr

Abstract: Using the methods of spectral theory of differential operators in Hilbert space L^2 -- solvability of some models arising in life sciences is investigated. Particularly, concrete solvable models are given.

Keywords: Hilbert space and direct sum of Hilbert spaces; delay differential operator; bounded and boundedly solvable operators; extension of an operator; Hutchinson’s, Houseflies, Drug-free and medical models.

References:

STATISTICALLY RELATIVELY A-SUMMABILITY OF
CONVERGENCE OF DOUBLE SEQUENCES OF POSITIVE
LINEAR OPERATORS

Pınar OKÇU¹, Fadime DİRİK²

¹Department of Mathematics, Sinop University,
Sinop/TURKEY
okcupinar@gmail.com
²Department of Mathematics, Sinop University,
Sinop/TURKEY
fdirik@sinop.edu.tr

Abstract: In this presentation, we introduce the concept of statistically relatively A-summability. Based upon this definition and A-statistically relatively uniform convergence for double sequences of functions, we prove a Korovkin-type approximation theorem. Also, we present a strong application.

Keywords: A-statistically relatively uniform convergence, statistically A-summability, positive linear operator, Korovkin theorem.

References:

SOME SPECTRAL PROPERTIES OF LINEAR OPERATORS ON EXOTIC BANACH SPACES

Rabah DEBBAR

1Department of Mathematics, University of Guelma,
Box 401, 24000 Guelma/Algeria
rabah.debbar@yahoo.fr

Abstract: In this work, we present some results concerning the operators defined on various classes of exotic Banach spaces, containing in particular those studied respectively by V. Ferenczi [7, 8] and T. Gowers with B. Maurey [14, 15]. We show that, on hereditarily indecomposable or quotient hereditarily indecomposable Banach space X, the set of bounded Fredholm operators is dense in L(X), this gives that the boundary of bounded Fredholm operators is nothing else but the ideal of strictly singular operators if X is hereditarily indecomposable Banach space (resp. the ideal of strictly cosingular operators if X is quotient hereditarily indecomposable Banach space). On the other hand, a comparison between sufficiently rich and exotic Banach spaces is given via some properties of the two maps spectra and Wolf essential spectra.

Keywords:
Fredholm perturbation, semi-Fredholm operator, Fredholm operator, hereditarily indecomposable Banach space, essential spectrum.

References:

SUPPORT VECTOR MACHINES SVM

Rachid BELGACEM1, Abdessamad AMIR2

1Department of Mathematics, Hassiba Ben Bouali University, Chief, Algeria
belgacemrachid02@yahoo.fr

2Department of Mathematical, Abdelhamid ibn Badis University, Mostaganem, Algeria
amirabadnessamad@yahoo.fr

Abstract: The support vector machines or wide margin separators SVM are a class of algorithms based on the search for the optimal hyperplane margin, where possible, classroom or properly separated data. The principle is to find from a training set a classifier, or a classificatory function, the generalization ability (quality forecast) is the largest possible. SVM were developed in the 1990s based on theoretical considerations of Vladimir Vapnik on the development of statistical learning theory. SVM were quickly adopted for their ability to work with large data, the small number of hyper parameters, their theoretical guarantees, and good results in practice. SVMs have been applied to numerous fields (bioinformatics, information retrieval, computer vision, finance …)

Keywords: Classification, Support vector machines.

References:

CHARACTERIZATION OF MIXED MODULUS OF SMOOTHNESS IN WEIGHTED Lp SPACES

Ramazan AKGÜN

Department of Mathematics, Faculty of Arts and Sciences, Balıkesir University, Balıkesir/TURKEY
rakgun@balikesir.edu.tr

Abstract: In this work we consider the mixed modulus of smoothness of fractional order in the Lebesgue spaces with Muckenhoupt weights on two dimensional torus. We obtain a characterization class for the mixed modulus of smoothness of fractional order. Also direct and inverse estimates of angular trigonometric approximation of functions in these spaces. An equivalence between the mixed modulus of smoothness and K-functional and realization functional are established.

Keywords: Mixed modulus of smoothness, Muckenhoupt weight, weighted Lebesgue space, characterization class for modulus of smoothness.

References:

SOME DIRECT APPROXIMATION THEOREMS IN WEIGHTED ORLICZ SPACES

Ramazan ÇETİNTAŞ¹, Yunus Emre YILDIRIR²

Balikesir University, Faculty of Art and Science, Department of Mathematics,
10145, Balikesir, Turkey

cetintas_ramazan@mynet.com

Balikesir University, Faculty of Education, Department of Mathematics,
10145, Balikesir, Turkey

yildirir@balikesir.edu.tr

Abstract: In 1963, Chen [10] generalized the definition of Orlicz spaces saving almost all known properties of them. In this definition, the generating Young function of Orlicz spaces is not necessary to be convex. The definition and applications to approximation theory Orlicz spaces with Muckenhoupt weights in the sense of Chen was given by AKGUN [11]. In this work, using this definition, we generalize the results obtained in the papers [2, 3, 4] to the weighted Orlicz spaces having generating Young functions not necessary to be convex. We obtained some direct theorems of approximation theorems in these spaces.

References:

UNCONDITIONALLY CAUCHY SERIES AND ZEWIER MATRIX METHOD

Ramazan KAMA\(^1\), Bilal ALTAY\(^2\)

\(^1\)Department of Mathematics, Siirt University, Siirt/TURKEY
ra.kama12@gmail.com
\(^2\)Faculty of Education, Inonu University, Malatya/TURKEY
bilal.altay@inonu.edu.tr

Abstract: In this paper, we give some results about completeness of the spaces by means of Zewier matrix method. Also, we characterize continuity of the operators \(T_x: S \rightarrow X\) by weakly unconditionally Cauchy series.

Keywords: Zweier matrix, completeness, unconditionally Cauchy series.

References:

TAUBERIAN CONDITIONS FOR DOUBLE SEQUENCES WHICH ARE STATISTICALLY SUMMABLE (C,1,1) IN FUZZY NUMBER SPACE

Reha YAPALI¹, Ozer TALO²

¹Department of Mathematics, Celal Bayar University, Manisa/TURKEY
rehayapali@gmail.com
²Department of Mathematics, Celal Bayar University, Manisa/TURKEY
ozer.talo@cbu.edu.tr

Abstract: In this presentation, we introduce the concept of statistically summability (C,1,1) for double sequences in fuzzy number space \(L^n \) and also we give some tauberian conditions for double sequences of fuzzy numbers that are statistically summable (C,1,1).

Keywords: Double sequences; statistical convergence; statistical summability (C,1,1); fuzzy number space
THE REALIZATION OF THE FEEDBACK AMPLIFIER DESIGN WITH USING ARTIFICIAL NEURAL NETWORK

Remzi TUNTAS
Faculty of business, Department of business administration, Yuzuncu Yil University, Van/TURKEY
rtuntas@hotmail.com

Abstract: Operational amplifiers (op-amps) are the most widely used type of linear integrated circuits. There are many advantages to using back in a system design as increase the bandwidth of the amplifier and improve stability. The design of a non-inverting feedback amplifier circuit using Artificial Neural Network (ANN) in this study was performed. The developed ANN model has been trained by Levenberg Marquardt algorithm for design feedback amplifier circuit. After the input and output parameters of proposed ANN model were determined, the most suitable ANN architecture and training parameters were selected. Finally, trained network was tested and it was used for design feedback amplifier circuit.

Keywords: Non-inverting feedback amplifier, Artificial Neural Network.

References:

PREDICTION OF HARDNESS VALUES OF COLD WORKED Al/\text{SiC}_p\ COMPOSITE AT DIFFERENT REDUCTION RATIO BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Remzi TUNTAS and Burak DİKICI

Department of Business Administration, Yuzuncu Yil University, Van/TURKEY
rtuntas@yyu.edu.tr
Department of Mechanical Engineering, Yuzuncu Yil University, Van/TURKEY
burakdikici@yyu.edu.tr

Abstract: Aluminum alloys are used widely in the aerospace and, more recently, in the automotive industry as well as in defense industry. The production and potential applications of metal matrix composites have been dramatically increased with technological developments. In this theoretical study, hardness values of the metal matrix composites (MMCs) reinforced with SiC particles have been predicted using by Adaptive Neuro-Fuzzy Inference System (ANFIS) after cold working process at different reduction ratio. To evaluate prediction capabilities of the proposed ANFIS model, the obtained results were compared with experimental data in terms of statistical values used in the literature. It was shown that there are very good correlation between the predicted and the experimental values. The other results have been discussed in details.

Keywords: Three step iteration, strong convergence, rate of convergence, data dependence integral equation.

References:

DIFFERENCE SEQUENCE SPACES AND MATRIX TRANSFORMATIONS OF SOME BILATERAL SEQUENCES

Rıdvan Cem DEMİRKOL¹, Harun POLAT²

¹Department of Mathematics, MuşAlparslan University, Muş/TURKEY
rc.demirkol@alparslan.edu.tr
²Department of Mathematics, MuşAlparslan University, Muş/TURKEY
h.polat@alparslan.edu.tr

Abstract: In this study, we introduce difference sequence spaces of some bilateral sequences \(X(\Delta, \mathbb{Z})\), where \(X\) denotes one of the sequence spaces of \(l_\infty, c,\) or \(c_0\). For instance \(l_\infty(\Delta, \mathbb{Z}) = \{x = (x_k)_{k \in \mathbb{Z}}: \Delta x \in l_\infty(\mathbb{Z})\}\). Besides we compute continuous \(\alpha, \beta,\) and \(\gamma\) duals of these spaces \(X(\Delta, \mathbb{Z})\). Finally we characterize some matrix transformations between these bilateral sequence spaces.

Keywords: Bilateral sequences, difference sequence spaces, duals, matrix transformations.

References:

TWO-WEIGHTED INEQUALITIES FOR MULTIDIMENSIONAL HARDY OPERATOR IN VARIABLE WEIGHTED LEBESGUE SPACES WITH MIXED NORM

R. A. BANDALIYEV1, S. G. HASANOV2

1Institute of Mathematics and Mechanics of NAS of Azerbaijan
Baku/AZERBAIJAN
bandaliyev.rovshan@math.ab.az

2Institute of Mathematics and Mechanics of NAS of Azerbaijan,
Baku/AZERBAIJAN
sabirhasanov@gmail.com

Abstract: In this report, a two-weight boundedness of multidimensional Hardy operator and its dual operator acting from weighted Lebesgue spaces with mixed norm into weighted variable Lebesgue spaces with mixed norm spaces is given. In particular, a new type two-weight criterion of multidimensional Hardy operator is obtained.

The research of R. Bandaliyev was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan, Grant EIF-2013-9(15)-46/10/1 and by the grant of Presidium of Azerbaijan National Academy of Science 2015.
GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS AROUND AN ISOLATED ESSENTIAL SINGULARITY

Saada HAMOUDA

Department of Mathematics, Abdelhamid Ibn Badis University, Mostaganem/ALGERIA
hamouda_saada@yahoo.fr

Abstract: In this paper we study the growth of solutions of certain class of linear differential equations around an isolated essential singularity point. For that we transform by making use a conformal mapping certain results from the complex plane to a neighborhood of a singular point. We will see that there are large similarities between the complex plane results and this investigation.

Keywords: Linear differential equations, local growth of solutions, essential isolated singularity.

References:

ALGEBRAIC PROPERTIES OF JOIN AND CORONA PRODUCT OF GRAPHS

Sadik DELEN, Ismail Naci CANGUL

Department of Mathematics, Uludag University,
Gorukle, Bursa, Turkey
matesadik@gmail.com, cangul@uludag.edu.tr

Abstract: Given any two graphs, it is possible to obtain a new graph from them using some certain operation. There are several operations on graphs. Two of them are join and Corona product. In this talk, we determine the abstract algebraic structure of the set of simple connected graphs according to join and Corona product of two given graphs. Also some new properties are obtained.

Keywords: Graph theory, graph operation, join, Corona product

References:

COMMON FIXEDPOINT THEOREMS FOR WEAKLY SUBSEQUENTIALLY CONTINUOUS MAPS IN MODIFIED INTUITIONISTIC METRIC SPACES

Said BELOUL

Department of Mathematics, EL-Oued University,
ALGERIA
beloulsaid@gmail.com

Abstract: The aim of this work is to prove common fixed point theorems for two weakly subsequentially continuous and compatible of type (E) pairs of self mappings which satisfying implicit relation in modified intuitionistic fuzzy metric spaces, an example is given to illustrate our results, our results improve and generalize some previous results.

Keywords: Common fixed point, weakly subsequentialy continuous, compatible of (E), implicit relation, modified intuitionistic fuzzy metric space.

References:

EXPONENTIAL STABILITY OF SOME NEURAL NETWORK SYSTEMS OF COHEN-GROSSBERG TYPE

Said MAZOUZI
Laboratory of Applied Mathematics, BadjiMokhtar-Annaba University, P.O.Box 12, 23000 Annaba, Algeria.
Co-author Nassereddine TATAR, Department of Mathematics, KFUPM, Dahran, Saudi Arabia.

Abstract: Our main concern in the expected oral talk is the study of some neural network systems of Cohen-Grossberg type which are extensively applied in various areas of science and technology such as in neurobiology, image processing and so one. Time delays are introduced in the system because of the finite switching speed of the signal transmission and amplification time. To the knowledge of the reader time delays could cause instability and even oscillation of a given model, and so appropriate assumptions are really needed to avoid chaos, divergence or bifurcation states. We will first establish the existence of a unique equilibrium point for such a system, and then, by using Halanay inequality, we prove that the obtained unique equilibrium is exponentially asymptotically stable.

Keywords: Cohen-Grossberg neural network systems; equilibrium point; Halanay inequality; exponential stability.

References:

EXACT SOLUTIONS AND CONSERVATION LAWS OF 3+1 DIMENSIONAL YTSF EQUATION

Sait SAN

1Department of Mathematics-Computer
Eskisehir Osmangazi University, Eskisehir/TURKEY
ssan@ogu.edu.tr

Abstract: In this study, we derive exact traveling wave solution of the (3+1) dimensional potential-YTSF equation by a generalized Kudryashov method. Moreover, conservation laws are derived for the underlying equation by employing the multiplier method with the first order multipliers.

Keywords: Exact solution, Conservation laws, Multiplier method.

References:

GENERALIZED RESULT OF GLOBAL SOLUTIONS TO A CLASS OF A REACTION-DIFFUSION SYSTEM

Salah BADRAOUI

University 8 mai 1945 Guelma, Department of Mathematics
BP.401, Guelma 24000, Algeria
salah.badraoui@gmail.com

Abstract: We prove in this work a generalized result of global classical solutions in time to a class of a reaction diffusion system defined on a bounded domain in \mathbb{R}^n.

Keywords: Reaction-diffusion equations, positivity of solutions, global existence, uniform boundedness, continuous semigroups, Lyapunov functional.

References:

A MODIFIED REGULARIZATION METHOD FOR A NON-LINEAR ABSTRACT PARABOLIC EQUATION

Salah DJEZZAR¹, Roumaissa BENMARAI²

¹Department of Mathematics, FreresMentouriUniversity, Constantine/ALGERIA
salah.djezzar@gmail.com
²Department of Mathematics,FreresMentouriUniversity, Constantine/ALGERIA
romiben6@gmail.com

Abstract: In this work, we study the abstract backward parabolic problem. This problem is known to be severely ill posed. We regularize this problem, using a new modified regularization method to obtain a family of approximate well posed problems. We also give the error estimate between the regularized solution and the exact solution (when it exists). Moreover, some other convergence results are also established.

Keywords: Ill-posed problem, nonlinear backward problem, quasi-reversibility value methods, quasi-boundary value-methods.

References:

ASYMPTOTIC BEHAVIOR OF WEAKLY COUPLED THERMOELASTIC WAVE MODEL

Salem NAFIRI

Abstract: This paper has two objectives. First, we propose a system of partial differential equations describing the behavior of a one-dimensional thermoelastic structure occupying a bounded interval of \(\mathbb{R} \). For an initial-boundary value problem associated with this system, we prove a global well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show that under particular classes of 'natural' boundary conditions, the energy associated to the system decays polynomially to zero. Secondly, we consider the case where the domain is unbounded and we study conditions under which stability estimates still hold.

Keywords: thermoelastic structure, contraction semigroups, polynomial decay.

ON THE CONVERGENCE FOR A SEQUENCE OF INTERVALS OF FUZZY NUMBERS

Salih AYTAR

Department of Mathematics, SüleymanDemirelUniversity, Isparta/TURKEY

salihaytar@sdu.edu.tr

Abstract: In this study, we show that if the \(n \) th term of a sequence \(X = \{[X_n, Y_n]\} \) of intervals of fuzzy numbers contains the \(n \) th term of such another sequence \(Z = \{[Z_n, W_n]\} \) for each positive integer \(n \), then the limit of \(X \) contains the limit of \(Z \), provided that these limits exist. Moreover, we show that this situation may not hold in the context of rough convergence. Furthermore, we demonstrate how to construct a convergent/rough convergent sequence of fuzzy numbers from a convergent/rough convergent sequence of intervals of fuzzy numbers.

Keywords: Rough convergence; Sequence of intervals of fuzzy numbers.

References:

SOME INEQUALITIES FOR DOUBLE INTEGRALS AND APPLICATIONS FOR CUBATURE FORMULA

Samet ERDEN¹, M. Zeki SARIKAYA²

¹Department of Mathematics, Bartın University, Bartın/TURKEY
erdensmt@gmail.com

²Department of Mathematics, Düzce University, Düzce/TURKEY
sarikayamz@gmail.com

Abstract: We establish an Ostrowski type inequality for double integrals of second order partial derivative functions which are bounded. Then, we deduce some inequalities of Hermite-Hadamard type for double integrals of functions whose partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane. Finally, some applications in Numerical Analysis in connection with cubature formula are given.

Keywords: Ostrowski inequality, Hermite-Hadamard inequality, co-ordinated convex mapping, cubature formula.

References:

SOME PERTURBED INEQUALITIES OF OSTROWSKI TYPE FOR TWICE DIFFERENTIABLE FUNCTIONS

Samet ERDEN¹, Hüseyin BUDAK², M. Zeki SARIKAYA²

¹Department of Mathematics, Bartın University, Bartın/TURKEY
ørdensmt@gmail.com
²Department of Mathematics, Düzce University, Düzce/TURKEY
hsyn.budak@gmail.com
sarikayamz@gmail.com

Abstract: We establish new perturbed Ostrowski type inequalities for functions whose second derivatives are of bounded variation. In addition, we obtain some integral inequalities for absolutely continuous mappings. Finally, some inequalities related to Lipschitzian derivatives are given.

Keywords: Function of bounded variation, Perturbed Ostrowski type inequalities.

References:

ON THE PALINDROMICS CONTINUED FRACTIONS IN THE FIELD $\mathbb{F}_q((X^{q-1}))$

Sana DRISS

Faculte des Sciences de Sfax, Tunisia
sana_driss@yahoo.fr

Abstract: In 2007 B. Adamczewski and Y. Bugeaud have proved that if the continued fractions expansion of a non quadratic real x begin with sufficiently large palindrome then x is transcendent. In this paper we study the same problem in the fields of formal power series over a finite fields. We recall that Schmidt's theorem is not valuable in this case.

CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND GENERALIZED HYBRID MAPPINGS

Sattar ALIZADEH¹, Fridoun MORADLOU²

¹Department of Mathematics, Marand Branch, Islamic Azad University, Marand/IRAN
salizadeh@marandiau.ac.ir

²Department of Mathematics, Sahand University of Technology, Tabriz/IRAN
moradlou@sut.ac.ir

Abstract: In this presentation, we introduce a new modified Ishikawa iteration process for finding a common element of the solutions set of an equilibrium problem and the set of fixed points of generalized hybrid mappings in a Hilbert space. Our results generalize and improve some existing results in the literature. A numerical example is given to illustrate the usability of our results.

Keywords: Equilibrium problem, Fixed point, Hybrid method, Hilbert space, Weak convergence, Strong convergence.

References:

HYERS-ULAM-RASSIAS STABILITY OF A VOLterra
INTEGRO-DIFFERENTIAL EQUATION

Sebaheddin ŞEVGIN

Department of Mathematics, YüzüncüYılUniversity,
Van/TURKEY
ssevgin@yahoo.com

Abstract: In this presentation, by applying the fixed point alternative
method, we give a necessary and sufficient condition in order that a
Volterra integro-differential equation has the Hyers-Ulam-Rassias stability
under some additional conditions.

Keywords: Fixed point method, integro-differential equation, Hyers-
Ulam-Rassias stability.

References:

[2] Alqifiary, QusuayHatim. "Note on the stability for linear systems of
differential equations." International Journal of Applied

Volterra integro-differential equation via a fixed point approach." Journal of Nonlinear Sciences and Applications 9.1 (2016): 200-
207.
 APPROXIMATION PROPERTIES OF ANALYTIC FUNCTIONS BY THE SEQUENCES OF k-POSITIVE LINEAR OPERATORS IN SOME SUBSPACE OF ANALYTIC FUNCTIONS

Tülin COŞKUN1, Seda KARATEKE2

1Department of Mathematics, Bülent Ecevit University, Zonguldak/TURKEY

2Department of Mathematics and Computer, İstanbul Arel University, İstanbul/TURKEY

Abstract: It is known that Korovkin type theorem is not valid in the space of analytic functions. In this presentation, we put in evidence that Korovkin type theorem is true for the space A_g, the space A_g consists of analytic functions whose coefficients satisfy the inequality $|f_k| \leq M_f g(k)$ such that $g(k) = 1 + k^2$. The theorem is proved by choosing the test functions as $g(\vartheta) = \sum_{k=0}^{\infty} k^\vartheta z^k$, $\vartheta = 0, 1, 2$ and finally, an example is given.

Keywords: Korovkin type theorem, k-positive linear operators, analytic functions

References:

HERMITE-HADAMARD AND SIMPSON-LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE p-QUASI-CONVEX FUNCTIONS

İmdat İŞCAN¹, Sercan TURHAN², Selahattin MADEN³

¹ Department of Mathematics, Giresun University, Giresun/TURKEY, imdati@yahoo.com
² Dereli Vocational High School, Giresun University, Giresun/TURKEY, sercanturhan28@gmail.com
³ Department of Mathematics Ordu University, Ordu/TURKEY, maden55@mynet.com

Abstract: In this paper, we give a new concept which is a generalization of the concepts quasi-convexity and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at certain power are p-quasi-convex. Some applications to special means of real numbers are also given.

Keywords: p-Quasi-convex functions, Hermite-Hadamard type inequality, Simpson inequality.

References:

ON SOME EQUALITIES OF ORDINARY LEAST SQUARES AND BEST LINEAR UNBIASED ESTIMATORS UNDER A GENERAL PARTITIONED LINEAR MODEL

Selahattin MADEN
Department of Mathematics, Ordu University, Ordu/TURKEY
maden55@mynet.com

Abstract: Estimations of partial coefficients in a general regression models involve some complicated operations of matrices and their generalized inverses. In this presentation, we consider a general partitioned linear model \(\mathcal{M} = \{y, X_1\beta_1 + X_2\beta_2, \sigma^2 \Sigma \} \) and its stochastically restricted model without any rank assumptions. We give necessary and sufficient conditions for the equalities of the ordinary least squares estimators (OLSEs) and best linear unbiased estimators (BLUEs) of \(X\beta \). Also, we give an example for the equality of BLUEs of \(X\beta \) under a general linear model and its stochastically restricted model.

Keywords: General linear model, stochastically restricted model, partitioned linear model, OLSE, BLUE.

References:

SOME RESULTS ON THE GENERALIZED MELLIN TRANSFORMS AND APPLICATIONS

Selcan KOCABAŞ¹, Ezgi ERDOĞAN², A. Neşe DERNEK³

¹Department of Mathematics, University of Marmara, Istanbul/TURKEY
selcan.kocabas@gmail.com
²Department of Mathematics, University of Marmara, Istanbul/TURKEY
ezgi.erdogan@marmara.edu.tr
³Department of Mathematics, University of Marmara, Istanbul/TURKEY
dernek@marmara.edu.tr

Abstract: This presentation discusses the generalized Mellin transform and its properties with examples and applications to integral and partial differential equations. Several simple lemmas and theorems dealing with general properties of the generalized Mellin transform are proved. The main focus of this study is to develop the method of the generalized Mellin transform to solve partial differential equations and integral equations in applied mathematics.

Keywords: Fourier transform, Mellin transform, generalized Mellin transform, integral and partial differential equations.

References:
APPORRXIMATE SOLUTION FOR SOLVING THE SINE-GORDON EQUATION BY REDUCED DIFFERENTIAL TRANSFORM METHOD WITH FIXED GRID SIZE

Sema SERVİ¹, Yıldiray KESKİN², Galip OTURANC²

¹Vocational School of Technical Sciences, Selcuk University, Konya/TURKEY
semaservi@selcuk.edu.tr

²Department of Mathematics, Science Faculty, Selcuk University, Konya/TURKEY
ykeskin@selcuk.edu.tr, goturanc@selcuk.edu.tr

Abstract: In this study, we applied relatively, a new algorithm to the reduced transformation method [3] for solving sine-Gordon equation and RDTM with fixed grid size was formed [1-2]. This method is an effective method for solving partial differentiable equations in literature. To present the RDTM with fixed grid size’s effectiveness an example is given [4-5]. In the application part, we compare numerical results with the exact solutions and solutions of the variational iteration method (VIM).

Keywords: Reduced differential transform method, Variational iteration method, sine-Gordon equations.

References:

EULER SPIRALS

Semra SARAÇOĞLU ÇELİK, Erhan GÜLER, Ömer KİŞİ

Bartın University, Faculty of Science, Department of Mathematics, 74100, Bartın, Turkey
ssaracoglu@bartin.edu.tr, eguler@bartin.edu.tr, okisi@bartin.edu.tr

Abstract: In this talk, we give some characterizations of Euler spirals. We show the relations between Euler spirals and Bertrand curves. Moreover, many different approaches about Euler spirals are presented in three dimensional Euclidean space and Minkowski space.

Keywords: Euler spirals, Bertrand curves, curvature.

SIMPLE EQUATION METHOD FOR TRAVELING WAVESOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Serbay DURAN¹, Ibrahim E. INAN², Yavuz UĞURLU³

¹Faculty of Education, Adıyaman University, Adıyaman/TURKEY
serbayduran@hotmail.com
²Faculty of Education, Fırat University, Elazığ/TURKEY
ieinan@yahoo.com
³Department of Mathematics, Fırat University, Elazığ/TURKEY
matematikci_23@yahoo.com.tr

Abstract: In this study, we study simple equation method for traveling wavesolutions of the Dodd-Bullough-Mikhailov (DBM) equation, the Liouville equation and fifth order KdV equation.

Keywords: Traveling wavesolutions, simple equation method, Dodd-Bullough-Mikhailov (DBM) equation, Liouville equation, fifth order KdV equation.

References:

ENTROPY CONVERGENCE FOR SEQUENCES OF FUZZY NUMBERS

Sevda ATPINAR¹, Mehmet ŞENGÖNÜL²

¹²Department of Mathematics, Nevşehir H. B. V University
Nevşehir/TURKEY
sevdaatpinar@nevsehir.edu.tr
²Department of Mathematics, Nevşehir H. B. V University
Nevşehir/TURKEY
msengonul@yahoo.com

Abstract: In this presentation, we have introduced entropy convergence (E-convergence) for sequence of fuzzy numbers and proved some theorems about entropy convergent sequences spaces.

Keywords: Entropy, fuzzy numbers, sequence of fuzzy numbers.

References:

ENTROPY VALUE OF QRS COMPLEX IN THE ELECTROCARDIOGRAPHY

Sevda ATPINAR, Mehmet ŞENOL

Department of Mathematics, Nevşehir H. B. V University,
Nevşehir/TURKEY
sevdaatpinar@nevsehir.edu.tr
msenol@nevsehir.edu.tr

Abstract: In this presentation, we introduce entropy concept in fuzzy sets to QRS complex in ECG. QRS complex is maybe the most prominent component of ECG and mostly related to myocardial infarction (MI) state. Negative and positive deflections in QRS complex employed as a fuzzy set and entropies of QRS complex belong patients with cardiac diseases compared with control group and some results acquired.

Keywords: Entropy, QRS complex, ECG, Fuzzy numbers, Fuzzy sets

References:

OPTIMIZATION OF HIGHER ORDER POLYHEDRAL DISCRETE AND DIFFERENTIAL INCLUSIONS

Sevilay DEMİR¹, Elimhan MAHMUDOV²

¹Department of Mathematics, İstanbul University, İstanbul/TURKEY
sevilay.demir@istanbul.edu.tr
²Department of Mathematical Engineering, Istanbul Technical University, İstanbul/TURKEY
elimhan22@yahoo.com

Abstract: In this presentation, we concern with one of the difficult and interesting fields-higher order polyhedral optimization described by ordinary discrete and differential inclusions. The optimality problem for higher order discrete inclusions are reduced to the problem with finite number of geometric constraints. By using higher order difference operators with problem for higher order differential inclusions, we associate the discrete-approximation problem, approximating it. The derivation of sufficient conditions for optimality of higher order differential inclusions is implemented by passing to the formal limit as the discrete steps tend to zero. Finally we prove the sufficient conditions of optimality for higher order polyhedral differential inclusions with boundary value constraint.

Keywords: Polyhedral, differential inclusions, Euler-Lagrange inclusion.

References:
WEIGHTED APPROXIMATION BY NONLINEAR DOUBLE SINGULAR INTEGRAL OPERATORS

Gumrah UYSAL¹, Sevilay KIRCI SERENBAY² and Ertan IBIKLI³

¹Department of Mathematics, Karabük University, Karabük/TURKEY
 guysal@karabuk.edu.tr
²Department of Mathematical Education, Başkent University, Ankara/TURKEY
 sevilaykirci@gmail.com
³Department of Mathematics, Ankara University, Ankara/TURKEY
 Ertan.Ibikli@ankara.edu.tr

Abstract: In this work, we present some theorems on pointwise convergence of nonlinear double singular integral operators depending on three parameters in weighted sense.

Keywords: Pointwise Convergence, degree of pointwise convergence, nonlinear double singular integral operator.

References:

ON STATISTICAL CONVERGENCE OF SEQUENCES OF FUNCTIONS IN 2-NORMED SPACES

Sevim YEGÜL and Erdinç DUNDAR

Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
sevimyegull@gmail.com, edundar@aku.edu.tr

Abstract: Statistical convergence and statistical Cauchy sequence in 2-normed space were studied by Gürdal and Pehlivan [M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, (33) (2009), 257-264]. In this paper, we get analogous results of statistical convergence and statistical Cauchy sequence of functions and investigate some properties and relationships between them in 2-normed spaces.

Keywords: Statistical convergence, Sequence of functions, Statistical Cauchy sequence, 2-normed spaces.

References:

SOME DOUBLE SEQUENCE SPACES OF INTERVAL NUMBERS

Sibel YASEMIN GÖLBOL¹, Uğur DEĞER², Ayhan ESI³

¹²Department of Mathematics, Mersin University, Mersin/TURKEY
sibelyasemin@mersin.edu.tr, degepar@hotmail.com
³Department of Mathematics, Adıyaman University, Adıyaman/TURKEY
aesi23@hotmail.com

Abstract: Interval arithmetic was first suggested by Dwyer in [3]. In [2], Chiao introduced the sequences of interval numbers and defined usual convergence of sequences of interval number. Esi and Yasemin in [1] defined the metric spaces \((c_0(f,p,s), c(f,p,s), l(f,p,s)) \) and \((\ell_\infty(f,p,s)) \) of sequences of interval numbers by a modulus function. In this study, we consider a generalization for double sequences of these metric spaces by taking a \(\psi \) function, satisfying the following conditions, instead of \(s \) parameter. For this aim, let \(\psi(k,l) \) be a positive function for all \(k, l \in \mathbb{N} \) such that \((i) \lim_{k,l \to \infty} \psi(k,l) = 0 \) and \((ii) \Delta_2 \psi(k,l) = \psi(k-1,l-1) - 2\psi(k,l) + \psi(k+1,l+1) \geq 0 \) or \(\psi(k,l) = 1 \).

Therefore, according to class of functions which satisfying the conditions \((i) \) and \((ii) \) we deal with the metric spaces \((c_0(f,p,\psi), c^2(f,p,\psi), \ell_\infty^2(f,p,\psi)) \) and \((\ell_\psi^2(f,p,\psi)) \) of double sequences of interval numbers defined by a modulus function and state some topological theorems and inclusions related to these spaces.

Keywords: Interval numbers, complete metric spaces, modulus function.

References:

APPROXIMATING SOLUTIONS OF NONLINEAR ABSTRACT MEASURE DIFFERENTIAL EQUATIONS

Sidheshwar BELLALE¹, Bapurao DHAGE²

¹Department of Mathematics, Dayanand Science College, Latur, Maharashtra, INDIA
sidhesh.bellale@gmail.com

²Kasubai, Gurukul Colony, Ahmedpur, Dist: Latur, Maharashtra, INDIA
bcdhage@gmail.com

Abstract: In this paper the existence theorem as well as approximations of the solutions of initial value problems of first order nonlinear abstract measure differential equations is proved under the mixed generalized Lipschitz and Caratheodory conditions. We rely our results on a hybrid fixed point theorem of Dhage in partially ordered normed linear spaces. The abstract measure differential equations in which ordinary derivative is replaced by the derivative of set functions, namely, the Radon-Nokodym derivative of a measure with respect to another measure.

\[
\frac{dp}{d\mu} = f(x, p(S_x)) + g(x, p(S_x)) \quad (1)
\]

̂
\[
P(E) = q(E), E \in M_\mu, \text{ a.e.}[\mu] \text{ on } x_0, z
\]

\[
\mu, f, g : S_z \times R \rightarrow R
\]

The existence of the solutions to (1) is proved by Dhage and Belale by using a new nonlinear alternative of Leray-Schauder type developed in this paper. Also we apply a approximation solution Dhage’s hybrid fixed point theory for nonlinear mapping in partially ordered metric spaces.

Key words: Approximating solution, Abstract Measure differential equation, Initial value Problems, Hybrid fixed point theorem

References:

ON λ-CONVERGENCE OF SECOND ORDER AND NEW BANACH SPACES

Sinan ERCAN1, Çiğdem A. BEKTAŞ2

1Department of Mathematics, Fırat University, Elazığ/TURKEY
sinanercan45@gmail.com

2Department of Mathematics, Fırat University, Elazığ/TURKEY
cbektas@firat.edu.tr

Abstract: The notion of λ-convergence and λ-boundedness were given by Mursaleen and Noman in [4]. In this presentation we introduce the λ-convergence and λ-boundedness of second order. We examine the relation between of the ordinary convergence and λ-convergence of second order. Then we define new BK-spaces of non-absolute type. We investigate some topological properties and establish some inclusion relations concerning with those spaces.

Keywords: BK-spaces, Difference sequence spaces.

References:

COMPARISON OF SOME SET OPEN AND UNIFORM TOPOLOGIES ON C(X,Y)

Smail KELAIAIA¹, Lamia HARKAT²

¹Department of Mathematics, Annaba University, Annaba/ALGERIA
kelaiiasm@gmail.com

²Department of Mathematical Engineering, Souk-Ahras University, Souk-Ahras/ALGERIA
Harkat_lamia@yahoo.fr

Abstract: Let X,Y be topological spaces and C(X,Y) be the set of all continuous functions from X to Y. The set C(X,Y) can be endowed with set open or uniform topologies on particular families of subsets of X. We give here a comparison between some of these topologies and give a criterion for their coincidence.

Keywords: Function spaces, set open topology, uniform topology, Y-compact sets.

References:

SOLUTION OF A LINEAR MULTIOBJECTIVE PROBLEM
BY THE ADAPTIVE METHOD

Zohra Sabrina DELHOUM1, Sonia RADJEF2 and Fatima BOUDAOU3

1,3Department of Mathematics, Faculty of Sciences, Mathematics et Applications Laboratory, University Oran 1 Ahmed Ben Bella, Oran, Algeria,
delhoum.zahra@yahoo.fr boudaoud@yahoo.fr
Department of Mathematics, Faculty of Mathematics and Computer Science, University USTOMB, Oran 31000, Algeria soniaradjef@yahoo.fr

Abstract: In this presentation, we introduce a new method to solve a linear multiobjective programming problem with bounded variables using the principle of the adaptive method.

We propose a procedure for finding an initial efficient point without having to calculate a feasible point, and we develop a method to find efficient points, weakly efficient points, and subefficient points.

Then we give a detailed algorithm for computing all efficient. A numerical example is utilized to illustrate the applicability of the proposed method.

Keywords: Linear program, multiobjective linear programming, bounded variables, suboptimality criterion, adaptive method, efficient points, subefficient points.

References:

GROUPS WHOSE PROPER SUBGROUPS ARE HYPERCENTRAL

SouadAZRA and Nadir TRABELSI

Abstract: Let X be a class of groups. A group is said to be minimal non-X if it is not an X-group, while all its proper subgroups belong to X. We will denote minimal non X-groups by MNX-groups. Many results have been obtained on MNX-groups, for various choices of X (see [1], [2], [3], [4]). In particular, in [2] a complete description infinitely generated MNN groups, where N denotes the class of nilpotent groups. Xu [3] has described the structure of infinitely generated MNFN-groups.

To ease the discussion we also introduce some abbreviations. A group G is said to be MNZA-group if all its proper subgroups are hypercentral, but G itself is not. Here we proved if G is a finitely generated MNZA-group is a perfect group which has no proper subgroup of finite index and such that G/Frat is an infinite simple group, where Frat(G) stands for Frattini subgroup of G. In section 2; we discuss infinitely generated MNZA-groups. The following results are obtained.

Keywords: Hypercentral groups, Minimal non-nilpotent groups.

References:

SOLUTION OF FRACTIONAL ORDER ORDINARY DIFFERENTIAL EQUATION: A NUMERICAL APPROACH

Soumen SHAW

Department of Mathematics,
Indian Institute of Engineering Science and Technology, Shibpur. India.

Abstract: In this article a fractional order ordinary differential equation (FDE) is attempt to solve applying a new geometrical approach. We establish some new criteria to obtain the solution of a fractional order differential equation with integer order initial condition. Based on the geometrical interpretation of the fractional derivatives, the solution curve is approximated numerically. Two special phenomena are employed for concave upward and downward curves.

Keywords: Fractional order ordinary differential equation; geometrical interpretation; numerical solution.
ERROR ANALYSIS FOR EXTENDED DISCONTINUOUS GALERKIN(XDG) METHODS

Suayip TOPRAKSEVEN
Department of Computer Engineering, ArtvinCoruh University, Artvin/TURKEY
topraksp@artvin.edu.tr

Abstract: In this presentation we introduce an extended discontinuous Galerkin (XDG) method. Our XDG scheme is based on the Babuska-Zlamal approach and we apply it to a class of prototype elliptic boundary value problems that have solutions consisting of smooth functions perturbed by a set of high frequency modes which occupy a narrow frequency band. The XDG scheme we study is enriched by trigonometric functions that cover the range of these perturbations. A theoretical error analysis is provided that shows the method converges and gives specifics on its accuracy. These error estimates are provided in terms of the degree of the polynomials used in the approximation and the largest high frequency.

Keywords: Discontinuous Galerkin (DG), Babushka-Zlamal DG scheme, High Frequency, Extended Discontinuous Galerkin.

References:

ON A C*-MODULE NORMED SPACE AND ITS TOPOLOGICAL PROPERTIES

SUPAMA, Atok ZULIJANTO, Imam SOLEKHUDIN, SUMARDI

Department of Mathematics, Gadjah Mada University,
Yogyakarta/INDONESIA
supama@ugm.ac.id
atokzulijanto@yahoo.com
imams@ugm.ac.id
mardimath@ugm.ac.id

Abstract: One knows that Hilbert spaces have important roles in many area, such as statistics, quantum mechanics, etc. In 1953, Irving Kaplansky generalized the notion of Hilbert spaces. He introduced C*-module Hilbert spaces by defining an inner product like function on a left module, which take values in a C*-algebra.

In this work, inspired by the Kaplansky's, we construct a notion of a C*-module normed space. Further, we observe some topological properties of the space as well.

Keywords: C*-algebra, left-module, positive element, lattice.

References:

NUMERICAL SOLUTIONS OF SINGULARLY PERTURBED TURNING POINT PROBLEMS EXHIBITING AN INTERIOR LAYER VIA MAGNUS SERIES EXPANSION METHOD

Sure KÖME, Aytekin ERYILMAZ
Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir/TURKEY
surekome@gmail.com, eryilmazaytekin@gmail.com

Abstract: In this presentation, we present the numerical solutions of singularly perturbed turning point problems exhibiting an interior layer, which is near the turning point, by means of the Magnus series expansion method. The method is applied to three different turning point problems with different orders and then numerical results are illustrated with figures in detail. Finally, we show that the higher order method is more powerful than the lower order one for solving singularly perturbed turning point problems exhibiting an interior layer by comparing the numerical results.

Keywords: Magnus Series Expansion Method, Singular Perturbation, Turning Point.

References:

ON GENERALIZATION ABSOLUTE RIESZ SUMMABILITY FACTORS OF FOURIER SERIES

Hikmet Seyhan ÖZARSLAN, Şebnem YILDIZ

1Department of Mathematics, Erciyes University, Kayseri/TURKEY
seyhan@erciyes.edu.tr
2Department of Mathematics, Ahi Evran University, Kirşehir/TURKEY
sebnemyildiz@ahievran.edu.tr

Abstract: In this presentation, we define two general theorem on \(A, p_n \) summability factors of Fourier series by using matrix transformation undersuitable conditions. By using this theorem, we obtain some new results concerning other important summability methods.

Keywords: Summability factors, Absolute matrix summability, Fourier series, Hölder inequality, Minkowski inequality.

References:

Acknowledges.
This work supported by the Ahi Evran University Scientific Research Projects Coordination Unit. Project Number: FEF.E2.16.025.
SPECTRAL SINGULARITIES OF IMPULSIVE DISCRETE
DIRAC OPERATORS

Şerifenur CEBESOY, Elgiz BAIRAMOV, Şeyda SOLMAZ
Department of Mathematics, Ankara University,
Ankara/TURKEY
s.cebesoy@hotmail.com, bairamov@science.ankara.edu.tr,
seydasolmaz@hotmail.com.tr.

Abstract: In this presentation, we consider the operator L generated in $L_2(Z, C^2)$ by the following Discrete Dirac equation for $\forall n \in Z \{-1,0,1\}$ için

$$y_{n+1}^{(2)} - y_{n}^{(2)} = \lambda y_{n}^{(1)}$$
$$-y_{n}^{(1)} + y_{n-1}^{(1)} = \lambda y_{n}^{(2)}$$

with impulsive condition

$$\begin{pmatrix} y_{1}^{(1)} \\ y_{1}^{(2)} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} y_{-1}^{(1)} \\ y_{-1}^{(2)} \end{pmatrix}$$

where a,b,c,d are complex numbers. We investigate eigenvalues and spectral singularities of L depending on the choice of the constants a,b,c,d and generalize the results obtained in [1-2] to the discrete Dirac operator L. Note that, the spectral theory of L without impulsive conditions was investigated in detail in [3-4].

Keywords: Discrete Dirac equation, Discrete Dirac operator, spectral singularities, eigenvalues, interaction point.

References:

FIXED POINT RESULTS FOR BERINDE-TYPE ALMOST CONTRactions ON G_p-METRIC SPACES

Şeyma ÇEVİK¹, Hasan FURKAN²

¹Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş TURKEY
seymacevik263@gmail.com
²Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş TURKEY
hasanfurkan@hotmail.com

Abstract: In this paper, we define the concepts of (δ, L)-almost contraction, (φ, L)-almost contraction and Ćirić-type almost contraction in the sense of Berinde in G_p-complete G_p-metric space. Furthermore, we prove the existence of fixed points and common fixed points of mappings satisfying Berinde type contractions stated above and also provide the conditions which are necessary for the uniqueness of fixed points and common fixed points. Consequently, we obtain the generalizations of comparable results in the literature. In addition, we introduce a few examples to ensure the existence of our results.

Keywords: Fixed point, common fixed point, G_p-metric space, Berinde-type almost contractions.

References:

WIJSMAN I_2-INVARIANT CONVERGENCE OF DOUBLE SEQUENCE OF SETS

Şükrü TORTOP1, Erdinç DÜNDAR2

1Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
stortop@aku.edu.tr
2Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
edundar@aku.edu.tr

Abstract: In this paper, we study the concepts of Wijsman invariant statistical convergence, Wijsman I_2-invariant convergence ($I_2 W_2$), Wijsman I^2_2-invariant convergence ($I^2_2 W_2$), Wijsman p-strongly invariant convergence ($[W_2 V_2]^p$) of double sequence of sets and investigate the relationships among Wijsman invariant convergence, $[W_2 V_2]^p$, $I_2 W_2$ and $I^2_2 W_2$. Also, we introduce the concepts of $I_2 W_2$-Cauchy double sequence and $I^2_2 W_2$-Cauchy double sequence of sets.

Keywords: Invariant, I-convergence, Wijsman convergence, double sequence.

A PRIORI ESTIMATES OF SOLUTIONS BOUNDARY VALUE PROBLEMS FOR THE HIGHER ORDER ELLIPTIC EQUATIONS IN GENERALIZED MORREY SPACES

Tahir GADJIEV, Shahla GALANDAROVA
Institute of Mathematics and Mechanics, Baku/AZERBAIJAN
tgadjiev@mail.az

Abstract:A priori estimates are derived for the solutions boundary value problems for the higher order elliptic equations generalized Morrey spaces. This problem on bounded smooth domains is considered. Also one obtains $L_{p,d} - L_{q,d}$ regularity estimates. On bases this estimates the solvability this problem in generalized Morrey spaces is proved.
TWO PARAMETRIC \((p; q)\)-STANCU-BETA OPERATORS AND THEIR APPROXIMATION PROPERTIES

Taqseer KHAN

Department of Mathematics, Aligarh Muslim University,
Aligarh/INDIA
taq.khan91@gmail.com

Abstract: The purpose of this paper is to introduce two parametric \((p; q)\)-analogue of the Stancu-Beta operators. We study approximating properties of these operators using the Korovkin's approximation theorem and also study a direct theorem. We also obtain the Voronovskaja type estimate for these operators. Furthermore, we study the weighted approximation results and pointwise estimate for these operators. Finally, we present statistical approximating results for these operators.

Keywords: Two parametric Stancu-Beta operators; Linear positive operators; Korovkin theorem; Lipschitz functions; Modulus of continuity; Voronovskaja estimate; Statistical convergence.

References:

A COMPARISON OF FINITE-DIFFERENCE METHOD BY FIRST ORDER AND SECOND ORDER CENTRAL DIFFERENTIATION FORMULAS FOR LINEAR ODES UP TO FOURTH DEGREE AND A GENERALIZED CODE

Tefaruk HAKTANIR, Hatice CİTAKOGLU, Murat COBANER

Department of Civil Engineering, Erciyes University, Kayseri/TURKEY
thaktan@erciyes.edu.tr, hcitakoglu@erciyes.edu.tr, mcobaner@erciyes.edu.tr

Abstract: The finite-difference method is applied to two second degree, a third degree, and a fourth degree linear ordinary differential equations (LODEs), whose analytical solutions are available, by using the first order and next the second order central differentiation formulae (FOCDF, SOCDF), with step sizes of Δx = 0.1, 0.05, 0.02, 0.01, separately. Usage of SOCDF is not observed to yield a convincing betterment while necessitating more laborious algebraic manipulations in transferring the LODEs to finite-difference equations. A computer program commonly applicable to any LODE up to the fourth degree is coded, which is to be linked to a sub-program comprising the coefficients of the resultant finite difference equations of the particular problem handled. Both programs use FOCDFs, and the results are improved by the extrapolation-to-the-limit formula, which is observed to yield more accurate results than the case using SOCDF with the same Δx.

Keywords: boundary-value-problem type of linear ordinary differential equations

References:

MATHEMATICAL ANALYSIS OF LENGYEL-EPSTEIN MODEL BY FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS SYSTEMS

Teslima DAŞBAŞI¹, BahatdinDAŞBAŞI²

¹Department of Chemical and Chemical Processing Technologies, Cumhuriyet University, Sivas/TURKEY
teslimadasbasi@hotmail.com
²Department of Computer Technologies, Cumhuriyet University, Sivas/TURKEY
dasbasi_bahatdin@hotmail.com

Abstract: The examined model in this study is fractional-order form of the dimensionless Lengyel-Epstein model being the oscillating chemical reactions. In this sense, it is obtained the following system of two fractional-order differential equation:

\[D^\alpha x(t) = F(x, y) = a - x - 4\frac{xy}{1 + x^2} \]
\[D^\alpha y(t) = G(x, y) = bx \left(1 - \frac{y}{1 + x^2}\right) \]

where \(\alpha \in (0,1] \). It is founded the positive equilibrium point. In addition that, the stability analysis of equilibrium point of model (1) is made. Results of this analysis are supported via numerical simulations drawn by datas obtained from literature.

Keywords: Fractional-order differential equation system, mathematical model, stability analysis, equilibrium points, oscillating chemical reactions.

References:

GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR A TYPE OF NONLINEAR INTEGRO DIFFERENTIAL EQUATIONS OF THIRD ORDER

Timur AYHAN
Department of Primary School-Mathematics
Faculty of Education Siirt University, Siirt/Turkey
tayhan002@gmail.com

Abstract: In this article, a kind of nonlinear integro-differential equations of third order is dealt. The global existence and boundedness of solutions are discussed. In the proof of main theorem is used Lyapunov's second (direct) method by constructing an appropriate Lyapunov function. The result obtained in this paper contains and enlarges some well known results on the third order nonlinear differential equations with delay in the literature. We also give an example to show the impressiveness of the method utilized.

Keywords: Lyapunov functional, integro-differential equation, global existence

References:

A NEW RESULT ON THE CONTINUABILITY AND BOUNDEDNESS OF SOLUTIONS TO A CLASS OF VECTOR DIFFERENTIAL EQUATIONS OF THIRD ORDER WITH DELAY

Timur AYHAN

Department of Primary School-Mathematics
Faculty of Education Siirt University, Siirt/Turkey
tayhan002@gmail.com

Abstract: In this paper, we use Lyapunov's second method, by constructing an appropriate Lyapunov functional, sufficient conditions which warrant the continuability and boundedness of all solutions to a kind of nonlinear vector differential equations of third order with constant retarded argument are established. Also, we give an example to illustrate the theoretical analysis in this study and to check the impressiveness of the method employed.

Keywords: Lyapunov functional, continuability, boundedness, third order.

References:

AN INVERSE NODAL PROBLEM TO CONSTRUCT COULOMB POTENTIAL FOR p-LAPLACIAN STURM-LIOUVILLE EQUATION WITH POLYNOMICALLY BOUNDARY CONDITIONS

Tuba GULSEN
Department of Mathematics, Firat University
Elazığ/TURKEY
tubagulsen87@hotmail.com

Abstract: In this study, we solve an inverse nodal problem for p-Laplacian Sturm-Liouville equation with coulomb potential when boundary condition polynomially dependent on spectral parameter. Then, we obtain asymptotic expansion of eigenvalues and nodal parameters by using modified Prüfer substitution. Finally, we construct coulomb potential by nodal lengths.

Keywords: Inverse Nodal Problem, Prüfer Substitution, Coulomb Potential

References:

SOME GENERAL RESULTS FOR THE AVERAGE LOWER 2-DOMINATION NUMBER OF GRAPHS

Tufan TURACI

Department of Mathematics, Karabük University, Karabük/TURKEY
tufanturaci@karabuk.edu.tr

Abstract: In a communication network, the vulnerability measures the resistance of the network to disruption of operation after the failure of certain stations or communication links. The average lower 2-domination number is newly defined for the graph vulnerability.

In this presentation, the abovementioned new parameter is defined and examined. Then, upper and lower bounds are determined and exact formulas are found for the average lower 2-domination number of any graph G. Finally, some results are obtained for the average lower 2-domination number of join graph.

Keywords: Graph vulnerability; Connectivity; Network design and communication; Domination number; Average lower 2-domination number.

References:

A NEW EFFECTIVE METHOD TO SOLVE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: THE UNIFIED METHOD

Şamil AKÇAĞIL¹, Tuğba AYDEMİR²
And Ömer Faruk GÖZÜKIZIL³

¹The Faculty of Economics and Administrative Sciences, BilecikŞeyhEdebali University, Bilecik/TURKEY
samilakcagil@hotmail.com
²Institute of Natural Sciences, Sakarya University, Sakarya/TURKEY
tgb.aydemir@gmail.com
³Department of Mathematics, Sakarya University, Sakarya /TURKEY
farukg@sakarya.edu.tr

Abstract: In this paper, we construct and present a new effective method called the unified method for solving nonlinear partial differential equations (NPDEs). Compared to other methods, the significant contribution of the unified method is firstly to unify the family of tanh function methods and the family of \((G'/G)\) expansion methods. Secondly, it gives many more solutions for NPDEs direct, concise and simple manner than the total of these two families. Also, the unified method gives these abundant solutions without using tedious and complex algorithm on computer programs. Afterwards, we demonstrate the effectiveness of the unified tanh method by seeking more exact solutions of the Lonngren wave equation.

Keywords: The tanh function method; The extended tanh function method; The modified extended tanh function method; The complex tanh function method; \((G'/G)\) expansion method; The new approach of generalized \((G'/G)\) expansion method; \((G'/G, 1/G)\) expansion method; Nonlinear partial differential equations; Travelling wave solution; The unified method; The Lonngren Wave Equation.

References:

THE MULTIDIMENSIONAL REVERSE HARDY-TYPE INEQUALITIES FOR SUPREMAL OPERATOR

Rza MUSTAFAYEV¹, Tuğçe ÜNVER²

¹Department of Mathematics, Kirikkale University, Kirikkale/TURKEY
rzamustafayev@gmail.com
²Department of Mathematics, Kirikkale University, Kirikkale/TURKEY
tugceunver@gmail.com

Abstract: In this presentation, we give the characterization of the inequalities

\[\|g w\|_{p, \mathbb{R}^n} \leq C \|v(t)\|_{\infty, B(0,t)} \|q, (0,\infty) \]

and

\[\|g w\|_{p, \mathbb{R}^n} \leq C \|v(t)\|_{\infty, B(0,t)} \|q, (0,\infty) \]

for all non-negative measurable functions on \(\mathbb{R}^n \) when \(0 < p, q \leq \infty \). Here \(w \) and \(v \) are weight function on \(\mathbb{R}^n \) and \((0, \infty) \), respectively, \(B(0, t) \) is the ball in \(\mathbb{R}^n \) centered at the origin of radius \(t \) and \(\Delta B(0, t) := \mathbb{R}^n \setminus B(0, t) \).

Keywords: Hardy Inequality, supremal operator, discretization.

References:

ON STATISTICAL CONVERGENCE WITH RESPECT TO THE GEOMETRIC MEAN AND ITS APPLICATIONS TO APPROXIMATION THEOREMS

Uğur KADAK1, Feyzi BAŞAR2

1Department of Mathematics, Bozok University, Yozgat/TURKEY
ugurkadak@gmail.com

2Department of Mathematics, Fatih University, İstanbul/TURKEY
feyzibasar@gmail.com

Abstract: In the present paper, we extend the notions of statistical convergence and statistical summability in the sense of Geometric calculus. In first, we introduce geometric statistically convergence and statistically geometric summability with respect to the geometric density. Later, we define weighted versions of both above notions. Based on the definition of geometric linearity, we prove a Korovkin type approximation theorem and give an example via Bernstein positive linear operator. Furthermore, we estimate the rate of convergence in terms of modulus of continuity in geometric sense. Finally, we examine some Voronovskaja type results connected with geometric Taylor expansion.

Keywords: Geometric statistically convergence, statistically geometric summability, Korovkin and Voronovskaja type approximation theorems, geometric modulus of continuity, rates of convergence.
NECESSARY AND SUFFICIENT CONDITIONS FOR FIRST ORDER DIFFERENTIAL OPERATORS TO BE ASSOCIATED WITH A GENERALIZED CAUCHY-RIEMANN OPERATOR IN CLIFFORD ANALYSIS

Uğur YÜKSEL

Department of Mathematics, Atilim University,
Ankara/TURKEY
ugur.yuksel@atilim.edu.tr

Abstract: In this paper we consider initial value problems of type

\[\partial_t u = F(t, x, u, \partial_x u) = \sum_{i=0}^{n} A^{(i)}(t, x) \partial_x^i u + B(t, x) u + C(t, x) \]

\[u(0, x) = u_0(x) \]

in the space of generalized monogenic functions \(u(t, x) \) in the sense of Clifford Analysis satisfying the differential equation

\[D_{\lambda} u := Du + \lambda u = 0, \]

where \(t \in [0, T] \) is the time variable \(x = (x_0, x_1, \ldots) \) runs in a bounded and simply connected domain in \(\mathbb{R} \), \(\lambda \) is a real number, and \(D \) is the Cauchy-Riemann operator of Clifford analysis. We prove necessary and sufficient conditions on the coefficients of the operator \(F \) under which \(F \) is associated with the generalized Cauchy-Riemann operator \(D_{\lambda} \), i.e. \(F \) transforms the set of all solutions of the differential equation \(D_{\lambda} u = 0 \) into solutions of the same equation for fixedly chosen \(\lambda \). This criterion makes it possible to construct operators \(F \) for which the initial value problem is uniquely solvable for an arbitrary initial generalized monogenic function \(u_0 \) by the method of associated spaces constructed by W. Tutschke [5] and the solution is also generalized monogenic for each \(\lambda \).

References:

INVERSE NUMERICAL RADIUS INEQUALITY FOR REPRODUCING KERNEL HILBERT SPACE OPERATORS

Ulaş YAMANÇI¹, Mehmet GÜRDAL²
¹,²Department of Mathematics, Süleyman Demirel University, Isparta/TURKEY
ulasymanci@sdu.edu.tr, gurdalmehmet@sdu.edu.tr

Abstract: A basic inequality for numerical radius is the power inequality stating that \(w(A^n) \leq w_n(A), (n = 1, 2, \ldots) \). This inequality is well known in the literature. But, the inverse inequality \(w_n(A) \leq Cw(A^n) \) for any \(n > 0 \) with some constant \(C \) are not well studied in the literature. Also, the analog inequality for the Berezin number of operators on the Reproducing Kernel Hilbert Space is not investigated in general. So, in this paper, we give new some inverse inequalities for numerical radius and Berezin number of some operators.

Keywords: Numerical radius, Hilbert-type inequality, Berezin number, positive operator.

Acknowledgement: This work is supported by TÜBA through Young Scientist Award Program (TÜBA-GEBİP/2015)

References:

SECOND-ORDER BOUNDARY VALUE PROBLEM ON A HALF-LINE

Ummahan AKCAN1, Erbil ÇETİN2

1Department of Mathematics, Faculty of Science, Anadolu University, 26470, Eskişehir/TURKEY
ummahanakcan@anadolu.edu.tr

2Department of Mathematics, Ege University, Bornova, İzmir/TURKEY
erbil.cetin@ege.edu.tr

\textbf{Abstract:} In this presentation, we deal with second-order three-point boundary value problem with integral boundary condition on a half-line. By using fixed point theorems, we give sufficient conditions for the existence solutions of the problem. Also, an example which supports our result is indicated.

\textbf{Keywords}: Infinite interval problems, Schauder’s fixed point theorem, Integral boundary conditions.

\textbf{References}:

PARABOLIC OBLIQUE DERIVATIVE PROBLEM WITH DISCONTINUOUS COEFFICIENTS IN GENERALIZED WEIGHTED MORREY SPACES

Vagif S. GULIYEV1,2, M. N. OMAROVA3

1Department of Mathematics, Ahi Evran University, Kirsehir/TURKEY
2Institute of Mathematics and Mechanics, Baku/AZERBAIJAN
3Baku State University, Baku/AZERBAIJAN

corresponding email addresses:
vagif@guliyev.com
mehribanomarova@yahoo.com

Abstract: In this report it is proved that global weighted Morrey-type regularity of the solution of the regular oblique derivative problem for linear uniformly parabolic operators with VMO coefficients. Also authors show that if the right-hand side of the parabolic equation belongs to certain generalized weighted Morrey space $M^{p,p}(Q,\omega)$, than the strong solution belongs to the generalized weighted Sobolev-Morrey space $W^{2,1}_{p,p}(Q,\omega)$ (see [1,2]).

The research of V. Guliyev and M. Omarova was partially supported by the grant of Presidium of Azerbaijan National Academy of Science 2015.

References:

FIXED POINT THEOREMS FOR MAPPINGS (E.A)-PROPERTY IN PARTIAL METRIC SPACE

Vildan ÖZTÜRK, Duran TÜRKOĞLU

1. Faculty of Education, Artvin Çoruh University, Artvin, Turkey / Istanbul / TURKEY
vildan_ozturk@hotmail.com
2. Faculty of Science, Gazi University, Ankara, Turkey.
dturkoglu@gazi.edu.tr

Abstract: In consideration of the concept of integral type (Branciari type) contractive condition and (E.A)-property, we proved fixed point theorems for two pairs of mappings satisfying (E.A)-property under (psi,fi)-contractions of integral type in partial metric spaces.

RIESZ POTENTIAL IN GENERALIZED MORREY SPACES ON THE HEISENBERG GROUP

Y. PELİN MAMMADOV, A. EROGLU

1. Nakhchivan Teacher-Training Institute, Nakhchivan AZ 7003, Azerbaijan
yagubmammadov@yahoo.com
2. Department of Mathematics, Nigde University, Nigde / TURKEY
aeroglu@nigde.edu.tr

Abstract: In this report, it is proved that Riesz potential operator on the Heisenberg group \(\mathbb{H} \) is bounded on generalized Morrey spaces \(M_{p,p}(\mathbb{H}) \) (see [1]). The boundedness conditions are formulated in terms of Zygmund type integral inequalities. Based on the properties of the fundamental solution of the sub-Laplacian on \(\mathbb{H} \), were proved two Sobolev-Stein embedding theorems for generalized Morrey and Besov-Morrey spaces.

References:
ON EXISTENCE AND CONVERGENCE THEOREMS FOR A NEW GENERAL NONLINEAR MAPPING ON CAT(0) SPACES

Vatan KARAKAYA¹, Emirhan HACIOGLU², Yunus ATALAN²

¹Department of Mathematical Engineering, Yıldız Technical University, İstanbul/TURKEY
vkayya@yahoo.com

²Department of Mathematics, Yıldız Technical University, İstanbul/TURKEY
haciogluemirhan@gmail.com, yunus_atalan@hotmail.com

Abstract: In this presentation, we introduce a new nonlinear hybrid mapping which is more general than 2-generalized hybrid mappings on CAT(0) spaces. Then we prove existence and convergence theorems for this class. Our results is generalization of corresponding results in literature.

Keywords: Three step iteration, strong convergence, rate of convergence, data dependence integral equation.

References:

SOME THEOREMS ABOUT STATISTICAL CONVERGENCE ON TIME SCALES

Yavuz ALTIN

Department of Mathematics, Firat University, Elazığ/TURKEY
yaltin23@yahoo.com

Abstract: In this study we introduce statistical convergent sequence spaces on an arbitrary time scale and examine some inclusion relations among them.

Keywords: Statistical Convergence, Time scales.

References:

AUTO-BÄCKLUND TRANSFORMATION FOR SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATION

Ibrahim E. İNAN¹, Yavuz UĞURLU², Hasan BULUT²

¹Firat University, Faculty of Education, Department of Mathematics 23119 Elazig, Turkey
ieinan@yahoo.com

²Firat University, Science Faculty, Department of Mathematics, 23119 Elazig, Turkey
matematikci_23@yahoo.com.tr, hbulut@firat.edu.tr

Abstract: In this paper, we apply auto-Bäcklund transformation for Sharma-Tasso-Olver (STO) equation and fourth order equation of the Burgers hierarchy. We obtain solitary wave solutions of these equations. Auto-Bäcklund transformation was developed as a direct and simple method to obtain solutions of nonlinear partial differential equations by Fan.

Keywords: Auto-Bäcklund transformation, STO equation, fourth order equation of the Burgers hierarchy, solitary wave solution

References:

A NEW APPROACH TO FRACTIONAL q-DIFFERENCE EQUATIONS AND THE q-LAPLACE TRANSFORM

Yavuz YAZICI1, Umut Mutlu ÖZKAN2

1Department of Mathematics, Cankiri Karatekin University, Cankiri/TURKEY
yavuzyazici@karatekin.edu.tr

2Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar/TURKEY
umut_ozkan@aku.edu.tr

Abstract: In this presentation, we introduce a new form of fractional q-difference equations derived the fractional q, ρ-derivative. We also introduce the q, ρ-Laplace transform and the q, ρ-convolution to solve new type the fractional q-difference equations.

Keywords: The q, ρ-Laplace transform, the q, ρ-convolution, the fractional q, ρ-integral, the fractional q, ρ-derivative.

References:

ON THE CONSTRUCTION OF GENERAL SOLUTION OF THE EQUATION \[\frac{\partial w(z)}{\partial \phi(z)} - \frac{1}{2} \phi(z) - 1 \bar{\lambda} w(z) = 0 \]

Yeşim SAĞLAM ÖZKAN1, Sezayi HIZLIYEL2

1\textit{Department of Mathematics, Uludag University, Bursa/TURKEY}
ysaglam@uludag.edu.tr

2\textit{Department of Mathematics, Uludag University, Bursa/TURKEY}
hizliyel@uludag.edu.tr

Abstract: This essay is an attempt to construct the general solution of a type equation which has special choosing of coefficients. Where the unknown \(w(z) = (w_{ij}(z)) \) is a matrix valued function, \(\phi(z) \) is a generating solution for \(Q \)-holomorphic function and \(A = \{a_{ij}(z)\} \) and \(B = \{b_{ij}(z)\} \) are commuting with \(Q \).

Keywords: \(Q \)-holomorphic functions, singular coefficients, generalized analytic functions.

References:

CENTRAL FACTORIAL TYPE NUMBERS ASSOCIATED WITH AVERAGING OPERATOR

Yılmaz ŞİMŞEK

Department of Mathematics, Akdeniz University,
Antalya/TURKEY

ysimsek@akdeniz.edu.tr

Abstract: The aim of this paper is to give and investigate the properties of the numbers \(y_1(n,k;\lambda) \) via their generating functions. These numbers are related to the Stirling numbers of the second kind and the other numbers like as combinatorial sums. We use some operators which are related to the translation or shifting operator and averaging operator. We give relationships between these numbers and these operators. Finally, we completed our results by given further comments and remarks.

Keywords: Central factorial numbers, Stirling numbers, Shifting operator, Averaging operator, Combinatorial sum, Generating function.

References:

STABILITY OF NONLINEAR VOLterra-Fredholm
integro differential equation: a fixed point
approach

Yunus ATALAN¹, Vatan KARAKAYA²

¹Department of Mathematics, Yıldız Technical University,
İstanbul/TURKEY
yunus_atalan@hotmail.com
²Department of Mathematical Engineering, Yıldız Technical University,
İstanbul/TURKEY
vkkaya@yahoo.com

Abstract: The aim of this presentation is to establish the Hyers-Ulam
stability and the Hyers-Ulam-Rassias stability of the class of nonlinear
Volterra Fredholm integro-differential equations via fixed point method in
Banach spaces.

Keywords: Volterra-Fredholm integro differential equation Hyers-Ulam
stability, fixed point method.

References:

and Schauder bases to approximate the solution of the first order
nonlinear mixed Fredholm–Volterra integro-differential equation”.

equation”. International Journal of Nonlinear Analysis and

integral equations via a fixed point approach”. Acta Universitatis
Apulensis, 26(2011), 257-266.
ON STATISTICAL E-CONVERGENCE OF DOUBLE SEQUENCES

Yurdal SEVER¹, Özer TALO²

¹Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
yurdalsever@hotmail.com

²Department of Mathematics, Celal Bayar University, Manisa/TURKEY
ozertalo@hotmail.com

Abstract: In this paper we have introduced the concepts of statistical e-limit superior and e-limit inferior for real double sequences and proved some fundamental properties of st_e-limit superior and inferior. Using the concept of statistical e-convergence for double real sequences, we obtain a Korovkin-type approximation theorem for double sequences of positive linear operators defined on the space of all 2π-periodic and real valued continuous functions on the real two-dimensional space. Furthermore, we display an application which show that our new result is stronger than its classical version.

Keywords: Double sequence space, e-convergence, statistical e-convergence, Positive linear operator, Korovkin-type approximation theorem.
THE VARIATIONAL FORMULATION OF AN INVERSE PROBLEM FOR A PARABOLIC EQUATION

Yusuf KOÇAK
1Department of Mathematics, Ağrı İbrahim Çeçen University, İstanbul/TURKEY
ykocak27@hotmail.com

Abstract: In this presentation, the variational formulation of an inverse problem for a parabolic equation is considered. The existence and uniqueness of solution of variational problem is proved. The necessary condition for this solution is given.

Keywords: Variational problem, Inverse Problem,Parabolic equation

References:

COMPACTNESS OF FRACTIONAL MAXIMAL OPERATOR
IN WEIGHTED $L^{p(x)}(0, l)$ SPACE

Yusuf ZEREN¹, Lutfi AKIN²

¹Yildiz Technical University, Science Faculty, Department of Mathematics
Email: yzeren@yildiz.edu.tr
²Mardin Artuklu University, Faculty of Economics and Administrative Sciences
Department of Business Administration
Email: lutfiakin@artuklu.edu.tr

Abstract: $B(x, r) = \left\{ y \in \mathbb{R}^n : |x-y| < r \right\}$ and $B(x, r) = B(x, r) \cap \Omega$, Ω is a non-empty open set in \mathbb{R}^n, d_Ω denotes the diameter of Ω

$$\rho_{p(.)}(f) = \int_0^1 |f(x)|^{p(t)} \, dx < \infty \text{ modul function (finite)}, \text{if there is}$$

$$\text{ess sup}_{x \in (0, l)} p(x) < \infty \text{ then } f \text{ modul is}$$

$$\|f\|_{L^{p(.)}(0, l)} = \inf \left\{ \lambda > 0 : \rho_{p(.)}\left(\frac{f}{\lambda} \right) < \infty \right\}$$

$w(x)^{p(.)} \in L^l(B(0,a))$, $v(x)^{q(.)} \in L^l(a,l)$; $V(x) = \int_x^1 v(y)^{q(.)} \, dy$.

$$W(x) = \int_0^x w(y)^{p(.)} \, dy$$

Theorem: Let $f(x) \geq 0$ measurable functions with $p^- > 1$, $q(0) \geq p(0) > 1$.

If there are conditions $\limsup_{r \to 0} V(t)^{1/q(0)} W(t)^{1/p(0)} = 0$ and

$$\sup_{r \in (0, \infty)} V(t)^{1/q(0)} W(t)^{1/p(0)} < \infty.$$ Then from $L^{p(.)}(0,l)$ to $L^{q(.)}(0,l)$

$$M^{p(.)} f(x) = \sup_{r>0} \frac{1}{\left| B(x, r) \right|^{\frac{p(.)}{n}}} \int_{B(x,r)} f(y) \, dy$$

fractional maximal operator is compact.
NEW SOLUTIONS OF THE SPACE-TIME FRACTIONAL SHARMA-TASSO-OLVER EQUATION WITH CONFORMABLE DERIVATIVE

Yücel ÇENESİZ¹, Orkun TAŞBOZAN², Ali KURT³, Olaniyi Samuel IYIOLA⁴

¹Department of Mathematics, Selçuk University, Konya/TURKEY
ycenesiz@selcuk.edu.tr

²Department of Mathematics, Mustafa Kemal University, Hatay/TURKEY
otasbozan@mku.edu.tr

³Department of Mathematics, Mustafa Kemal University, Hatay/TURKEY
alikurt@mku.edu.tr

⁴Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Wisconsin, USA
osiyiola@uwm.edu

Abstract: The main purpose of this article is to find the exact and approximate solutions of conformable space-time fractional Sharma-Tasso-Olver equation using first integral method (FIM) and q-homotopy analysis method (q-HAM) respectively. The obtained exact and numerical solutions are compared with each other. Also, the numerical results obtained by q-HAM are compatible with the exact solutions obtained by FIM; hence, it is clearly seen that these techniques are powerful and efficient in finding approximate and exact solutions for nonlinear conformable fractional PDEs.

Keywords: First Integral Method; Sharma-Tasso-Olver Equation; q-Homotopy Analysis Method; Conformable Fractional Derivative.

References:

NONCOMMUTATIVE SPACE AND 2D SCHRÖDINGER EQUATION WITH CENTRAL POTENTIAL

Slimane ZAIM, Hakim GUELMA MENE

1Department of physics, Batna1 University, Batna/TURKEY
zaim69slimane@yahoo.com

Abstract: We obtain exact solutions of the 2D Schrödinger equation with the Singular Even-Power Potential in non-commutative space, using the Power-series expansion method. Hence we can say that the Schrödinger equation in non-commutative space describes to the particles with spin (1/2) in an external uniform magnetic field. Where the noncommutativity play the role of magnetic field with created the total magnetic moment of particle with spin 1/2, who in turn shifted the spectrum of energy. Such effects are similar to the Zeeman splitting in a commutative space.

Keywords: Central potential, Noncommutative Geometry.

References:

[1] Shi.- Hai Dong and all, Exact solutions of the Schrödinger equation with Singular Even-Power potential in two dimensions
DETERMINING THE CENTER OF GRAVITY AND SIMILARITY MEASURES OF SEQUENCE SPACES OF TRIANGULAR FUZZY NUMBERS

Zarife ZARARSIZ

Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir/TURKEY
zarifezararsiz@nevsehir.edu.tr

Abstract: In this presentation, firstly, we mention \((t_1, t_2)\)-type fuzzy numbers and their algebraic operations, shortly. After, we calculate the COG (center of gravity) points of a sequence of \((t_1, t_2)\)-type triangular fuzzy numbers. Furthermore, we present the methods to measure the degree of similarity between sequences of \((t_1, t_2)\)-type fuzzy numbers. By this way, we contribute to the fuzzy risk analysis.

Keywords: Fuzzy number, COG, similarity measure, fuzzy risk analysis, sequence space.

References:

OBTAINING MATHEMATICAL MODELS OF THE PIEZOELECTRIC SYNTHETIC JET

Zeynep EKİÇİOĞLU KÜZECİ¹, Celal Sami TÜFEKÇİ²

¹Department of Mechanical Engineering, Ahi Evran University, Kirşehir/TURKEY
zeynepekicioglu@gmail.com
²Undersecretariat for Defence Industries, Ankara/TURKEY
celal.tufekci@gmail.com

Abstract: In this study mathematical models of a piezoelectric driven synthetic jet was obtained via bond graphs technique. Synthetic jets are known as a mechanism that can blow and absorb the fluid through an orifice by movement of the diaphragm. Mathematical expressions, transfer function, state space representation and port-Hamiltonian model of the system were found by the bond graphs representation which is a graphical method and based on the energy flow between the system elements. Different representations of the system were simulated with MATLAB and the results similarity with each other were determined.

Keywords: Bond graphs, modeling, synthetic jet, port-Hamiltonian representation.

References:

LACUNARY I_{α}-CONVERGENCE

Uğur ULUSU, Fatih NURAY

1Department of Mathematics, AfyonKocatepe University, Afyonkarahisar/TURKEY
ulusu@aku.edu.tr, fnuray@aku.edu.tr

Abstract: In this study, the concept of lacunary invariant uniform density of any subset A of the set of positive integers is defined. Associate with this, the concept of lacunary I_{α}-invariant convergence for real number sequences is given. Also, we examine relationships between this new type convergence concept and the concepts of lacunary invariant summability, strongly lacunary q-invariant convergence and lacunary invariant statistical convergence which are studied in this area before. Finally, introducing lacunary I_{α}^{*}-invariant convergence concept and lacunary I_{α}-invariant Cauchy sequence concepts, we give the relationships among these concepts and relationships with lacunary I_{α}-invariant convergence concept.

Keywords: Statistical convergence, lacunary sequence, invariant convergence, I_{α}-convergence, I_{α}-Cauchy sequence.

EXISTENCE AND NONEXISTENCE FOR NONLINEAR PROBLEM

B. ABDELLAOUI, K. BIROUD, J. DAVILA, AND F. MAHMOUDI

1Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen 13000, Algeria.
boumediene.abdellaoui@uam.es, khibroud@yahoo.fr
2Departamento de Ingeniería Matemática, CMM, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, CHILE.
jdavila@dim.uchile.cl, fmahmoudi@dim.uchile.cl

Abstract: Let $\Omega \subset \mathbb{R}^n$ be a bounded regular domain of \mathbb{R}^n. We consider the following class of elliptic problem

$$
-\Delta u = \frac{u^q}{t^2} \quad \text{in } \Omega \\
u > 0 \quad \text{in } \Omega \\
u = 0 \quad \text{on } \partial \Omega
$$

where $0 < q \leq 2^* - 1$. We investigate the question of existence and nonexistence of positive solutions depending on the range of the exponent q.

Keywords: Hardy inequality, Nonlinear elliptic problems, singular weight.
MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL
PROBLEM OF FORWARD BACKWARD WITH A JUMP IN
THE MEAN-FIELD MODEL

N. CHAOUCHEKHOUANE, B. LABED and L. TAMER

University of Biskra, PO box 145, Biskra, Algeria
tamerlazhar@yahoo.fr

Abstract: We prove a necessary and sufficient condition for optimal control of controlled forward-backward stochastic differential equation with random jumps in the mean-field type. The coefficients of our system depend on the law of the solution, the control variable is allowed to enter both diffusion and jumps coefficients.

ON A SOLUTIONS IN PC(0, b; X) OF SOME INTEGRAL
EQUATION WITH APPLICATION TO AN IMPULSIVE
SEMILINEAR DIFFERENTIAL EQUATION

Leila AITKAKI¹, Nadjet ABADA²

¹Department of Mathematic and informatics, ENSC, Constantine/Algeria
leilaitkaki@yahoo.fr
²Department of Mathematic and informatics, ENSC, Constantine/Algeria
b65abada@yahoo.fr

Abstract: This paper is devoted to establishing the existence of solutions of some integral equation with Krasnosel'skii's theorem in the space PC(0; b; X). The Hausdorff measure of noncompactness and the Monch's theorem are used. An application to solving a first order semilinear impulsive differential equation with nonlocal conditions is given.

Keywords: impulsive differential equations, fixed point theorem, mild solution, measure of noncompactness.

References:

PERSISTENCE AND GLOBAL STABILITY IN A BEDIINGTON-DEANGELIS TYPE THREE SPECIES FOOD CHAIN

W. KHELLAF

Department of Mathematics, SeddikBenyahia University,
Jijel/Algeria
wahiba_khellaf@yahoo.fr

Abstract: Our investigation concerns the three-dimensional continuous time dynamical system which models a predator-prey food chain. This model is based on the Beddington-DeAngelis-type functional response. Primarily, we study from the viewpoint of permanence (uniform persistence). The Beddington-DeAngelis functional response is similar to the Holling type-II functional response but contains a term describing mutual interference by predators. Also, we establish criteria under which we have boundedness of solutions, existence of an attracting set. Finally, by constructing a proper Lyapunov function, we obtain a sufficient condition for global stability of the positive equilibrium.

Keywords: Boundedness, Uniform persistence, Global stability, Lyapunov functional.

References:

POSTER SESSION

ON THE PARABOLIC EQUATION WITH NONLOCAL CONDITIONS
Abdelhak Berkane and Abdelkrim Zekri
University Frères Mentouri-Constantine, Faculty of Sciences Exact, Deparment of Mathematics
Corresponding author: berkane@usa.com

Abstract: In this work, we consider a boundary value problem for parabolic equation with integral conditions as boundary conditions and instead of the initial value condition we imposed the nonlocal condition of integral type. We obtain sufficient conditions for the unique solvability of the considered problem in $L_{p}(1 \leq p < \infty)$ space.

Keywords. Parabolic Equation, Abstract Differential Equation, Semigroup with singularity, Integral condition.

References:

A NONLOCAL SPECTRAL PROBLEM

Abdelkrim Zekri and Abdelhak Berkane
University Frères Mentouri-Constantine, Faculty of Sciences Exact, Department of Mathematics
Corresponding author: zekni6080@gmail.com

Abstract: We consider a second-order ordinary differential operator with a spectral parameter and homogeneous integral conditions containing the unknown function and its derivative. We obtain an a priori estimate of the solution for sufficiently large values of the parameter. Also we prove the Fredholm solvability of the problem.

Keywords. Differential equation, integral condition, Fredholm property, priori estimate.

References:

FIXED POINT THEOREM AND EM ALGORITHM
Abstract: When we are confronted with solving nonlinear equations which do not admit explicit solutions, we must use approximate methods based on iterative processes or algorithms. One of the best known iterative methods is the fixed point theorem, often applied in analysis or algebra. In our case, we will apply this method in a stochastic context. By means of this application, we show the relationship between this method and the EM algorithm, which is an iterative process, often applied in statistics.

Keywords: Fixed point, EM algorithm, linear model, nonlinear equation.

References:

A NEW MODIFIED SCHEME FOR LINEAR SHALLOW-WATER EQUATIONS

Aicha BOUSSAHA
Department of Mathematics, National Superior School of Mines and Metallurgy, Annaba, Algeria
boussahaaic@yahoo.fr

Abstract: In this presentation, we propose a modified scheme [1] for simulating irregular wave trains (IWTs) propagation dispersive of tsunami with suitable initial and boundary conditions by applying the alternating direction implicit (ADI) method. The convergence, stability and consistency criteria of the scheme have been studied. We introduce a weakly dissipative terms into improved linear Boussinesq equations (ILBqs) that permits the mathematical tool to simulating a transoceanic propagation dispersive of tsunami in both ocean and laboratory experimental. The new numerical dispersion of the proposed model is manipulated to replace the physical dispersion of (ILBqs) by controlling dispersion-correction parameters. The new model developed in this study is applied to propagation of Heraklion tsunami scenario1 (HTS1) of the 365 AD earthquake. The resulting scheme is efficient and practical to implement. Furthermore, a comparison between the present results with another existing numerical method has been reported and we found that they are in a good agreement.

Keywords: Improved Linear Boussinesq equations; Numerical dispersion-correction parameter; ADI scheme; Dissipation effects; Tsunamis.

References:

ELECTRO-VISCOELASTIC ANTIPLAN CONTACT PROBLEM WITH POWER FRICTION LAW

Allaoua BOUDJEDOUR and Mohamed DALAH

Department of Mathematics,
Faculty of Sciences
University Mentouri Constantine, Algeria
haboudjedour@yahoo.fr

Abstract: In this paper we present an antiplane contact problem where the material is considered electro-viscoelastic and the friction is modeling by the power friction law. First, we derive the mathematical model, and we try to construct the variational formulation. Then we establish the existence of a unique weak solution to the model.

Keywords: Contact problem, electro-viscoelastic material, variational formulation, power friction law.

References:

HIGH ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE ON AN UNBOUNDED INTERVAL

Assia FRIQUI

Abstract: The aim of this paper is the solvability of a class of higher order differential equations with initial conditions and an integral boundary condition on the half line. Using coincidence degree theory by Mawhin and constructing suitable operators, we prove the existence of solutions for the posed resonance boundary value problems.
THE FRACTIONAL-ORDER MATHEMATICAL MODELING OF BACTERIAL RESISTANCE AGAINST MULTIPLE ANTIBIOTICS IN CASE OF LOCAL BACTERIAL INFECTION

Bahatdin DAŞBAŞI¹, Emre Hayri BARAZ²

¹Department of Computer Technologies, Cumhuriyet University, Sivas/TURKEY
dasbasi_bahatdin@hotmail.com
²Department of Banking and Insurance, Cumhuriyet University, Sivas/TURKEY
emrebaraz@gmail.com

Abstract: The proposed local bacterial infection model in this study is fractional-order form of model suggested in [1]. In this respect, the population sizes of sensitive and resistant bacteria to multiple antibiotics at time t is denoted by S and R, respectively. In addition that, the concentration of the i-th antibiotic, $i = 1, 2, ..., n$ is showed by $C_i(t)$. Therefore, it is obtained the following system of $(n + 2)$ fractional-order differential equation:

$$D^\alpha S(t) = \beta_S S \left(1 - \frac{S + R}{K}\right) - S \sum_{i=1}^{n} (\bar{q}_i + \bar{\alpha}_i) C_i - \mu_S S$$

$$D^\alpha R(t) = \beta_R R \left(1 - \frac{S + R}{K}\right) - S \sum_{i=1}^{n} q_i C_i - \mu_R R$$

$$D^\alpha C_i(t) = \Lambda_i - \mu_i C_i, \quad i = 1, 2, ..., n$$

where $\alpha \in (0, 1]$. The parameters used in the model (1) are as follows: it is presumed that bacteria follow a logistic growth with carrying capacity K. The parameter β_S and β_R are the birth rate of susceptible and resistant bacteria, respectively. The sensitive and resistant bacteria to multiple antibiotics have per capita natural death rates μ_S and μ_R, respectively. During the administration of the i-th antibiotic, a number of resistant bacteria to it can be showed up due to mutations of exposed sensitive bacteria to such antibiotic, it is modeled this situation by the term $\bar{q}_i C_i S$ where \bar{q}_i is the mutation rate of sensitive bacteria due to exposure to i-th antibiotic. Sensitive bacteria also die due to the action of the antibiotics, and it is assumed that this situation in model is by the term $\bar{\alpha}_i C_i S$, where $\bar{\alpha}_i$ is the death rate of sensitive bacteria due to exposure to i-th antibiotic...
CHELYSHKOV COLLOCATION APPROACH FOR A MODEL DESCRIBING BIOLOGICAL SPECIES LIVING TOGETHER

Cem OĞUZ¹,², Mehmet SEZER²

¹Department of Mathematics, Ahi Evran University, Kirşehir/TURKEY
cem.oguz@ahievran.edu.tr
²Department of Mathematics, Celal Bayar University, Manisa/TURKEY
mehmet.sezer@cbu.edu.tr

Abstract: In this presentation, a numerical technique called Chelyshkov collocation method has been developed to solve a system of two nonlinear integro-differential equations which arises in biological model problems. This technique is essentially based on the truncated Chelyshkov series and its matrix representations together with collocation points. Also, to demonstrate the validity and applicability of technique, several test problems are given and the results are compared with the results of some existing methods in literature.

Keywords: System of nonlinear integro-differential equations, Chelyshkov polynomials and series, Biological species, Collocation points.

References:
EXISTENCE OF SOLUTIONS FOR P(X)-SOLITONS TYPE EQUATIONS IN SEVERAL SPACE DIMENSIONS

Dellal ABDELKADER¹, Henderson JOHNNY², Ouahab ABDELGHANI³

¹Department of Mathematics / Ecole Normale Supérieure–Kouba, Alger / Algeria
dellal@yahoo.fr
²Department of Mathematics / Baylor University USA
Baylor / USA
Johnny_Henderson@baylor.edu
³Laboratory of Mathematics / Univ Sidi Bel Abbes, Algeria
Sidi Bel Abbes / Algeria
Agh_ouahab@yahoo.fr

Abstract: In this presentation, we study a class of Lorentz invariant nonlinear field equations in several space dimensions. The main purpose is to obtain soliton-like solutions with variable exponent. The fields are characterized by a topological invariant, we call the charge. We prove the existence of a static solution which minimizes the energy among the configurations with nontrivial charge.

Keywords: Soliton, variational calculus, variable exponents and splitting lemma.

References:

THE EXISTENCE OF SOLUTIONS FOR A FRACTIONAL-ORDER BOUNDARY VALUE PROBLEM

Dondu OZ¹, Ilkay KARACA²

¹Department of Mathematics, Ege University, Izmir/TURKEY
donduyahang@gmail.com
²Department of Mathematics, Ege University, Izmir/TURKEY
ilkay.karaca@ege.edu.tr

Abstract: In this study, we are investigated the existence of solutions for a fractional-order boundary value problem by using some fixed point theorem on the cone. An example is also given to illustrate the main result.

Keywords: Fractional-order, fixed point theorem, boundary value problem.

References:

PROPERTIES OF MINIMIZING CURVES FOR GEOMETRIC OPTIMAL CONTROL PROBLEMS

Driai Nedjoua
University of Setif 1, Algeria
ndriai@yahoo.fr

Abstract: The optimal control theory is a very important part of the optimization problem solving optimal control problems. In this paper we give a geometric approach to a problem of optimal control, where it uses the basic concepts of calculus of variations, such as the Euler-Lagrange equation as a necessary condition for optimality, the principle maximum of Pontriagaine (PMP), which gives an analytical aspect to the optimal control problem and allows us to study some property functions that define the criterion to minimize the regularity of solutions (minima or maxima). One other very important aspect is the geometric aspect that used to find the geodesics (surveying), their natures, their numbers requires a geometric background as fields, vector, vector spaces, eligible curve... So in may define an optimal control problem governed by EDO geometrically by giving some conditions.

Keywords. optimal control, the principle of maximum Pontriaguine, calculus of variations.
A NEW APPROACH OF THE CUTTING PLANE ALGORITHM USING INTERIOR POINT METHOD

El Amir DJEFFAL

Department of Mathematics, University of Batna 2,
Batna, ALGERIA
djefal_elamir@yahoo.fr

Abstract: This paper deals with the computation of cutting plane algorithm using interior point method, with a special application to the solution of convex differentiable programming problems. The interior point method is closely related to the classical method of path following, but the cuts are generated from different, more central, points in order to achieve deeper cuts and thereby accelerate convergence. The method is quite general in purpose as it can be applied to a large class of convex differentiable and nondifferentiable optimization problems.

Keywords: Convex optimization, Cutting plane algorithm, Interior point method, Path following algorithm.

References:

ON THE GENERALIZATION OF THE GRAPH-DIRECTED ITERATED FUNCTION SYSTEMS

Yunus ÖZDEMİR¹, Fatma Diğdem YILDIRIM²

¹Department of Mathematics, Anadolu University, Eskişehir, TURKEY
yunuso@anadolu.edu.tr
²Department of Mathematics, Anadolu University, Eskişehir, TURKEY
fdyildirim@anadolu.edu.tr

Abstract: In this presentation, we first introduce classical (hyperbolic) iterated function systems (IFS), countable iterated function systems (CIFS) and graph-directed iterated function systems (GIFS). Then we define the notion of graph-directed countable iterated function system (GCIFS) as a generalization of CIFS to the graph-directed case in the sense of Secelean (see [4,5]). We also give some novel examples as an attractor of some GCIFS.

Keywords: Iterated function systems (IFS), countable IFS, graph-directed IFS.

References:

APPOMATION OF THE UNILATERAL CONTACT PROBLEM BY THE FINITE ELEMENT METHOD

Frekh TAALLAH
Department of Mathematics, BadjiMokhtar University,
Annaba/ALGERIA
frekh2003@yahoo.fr

Abstract: Several problems in mechanic, physics, control and those dealing with contacts lead to study of systems of variational inequalities. In this study we considered a deformed elastic solid with a unilateral contact of a rigid body. This model has been studied by Lions, J.L. and G. Stampacchia [8]. In this paper, we studied the existence, uniqueness and continuity of the deformation of this solid with respect to the data.

Keywords: Contact, variational inequalities, finite element methods.

References:

SOME SPECIAL CURVES AND MANNHEIM CURVES IN THREE DIMENSIONAL EUCLIDEAN SPACE

Funda KAYMAZ¹, Ferdağ KAHRAMAN AKSOYAK²

¹Department of Mathematics, Ahi Evran University, Kırşehir/TURKEY
f_kaymaz@outlook.com
²Department of Mathematical Education, Ahi Evran University, Kırşehir/TURKEY
ferda.kahraman@yahoo.com

Abstract: In this paper we investigate some special curves which have Mannheim curves and Mannheim partner curves and obtain some characterizations about them.

Keywords: Mannheim curves, Mannheim partner curves, curvature, torsion

References:

LAMB SHIFT IN HYDROGEN LIKE ATOM INDUCED FROM NON COMMUTATIVE QUANTUM SPACE TIME

Hakim GUELMAINE
Department of Physics, Batna 1 University, ALGERIA
hakphy@yahoo.com

Abstract: In this work we present an important contribution to the non-commutative approach to the hydrogen atom to deal with lamb shift corrections. This can be done by studying the Klein-Gordon equation in a non-commutative space-time as applied to the Hydrogen atom to extract the energy levels, by considering the second-order corrections in the non-commutativity parameter and by comparing with the result of the current experimental results on the Lamb shift of the 2P level to extract a bound on the parameter of non-commutativity. Phenomenologically we show that the non-commutativity effects induce lamb shift corrections.

Keywords: Klein-Gordon equation, non-commutative space, quantum Hydrogen atom.

References:
MODELING AND CONTROL FOR NONLINEAR SYSTEM

Hachemi GLAOUI

Faculté des Sciences et technologies
Université de Béchar. BP 417 Béchar, 08000, Algérie.
glaouih@yahoo.fr

Abstract: Continuous processes in the plastics, textile paper and other industries, require several drives working in synchronism. The aim of this paper is to control speed of the winding system, and to maintain a constant mechanical tension between the rollers of the system. Several controllers are considered, including sliding-mode control (SMC) single input/single output (SISO) and SMC multi input/multi output (MIMO) and Proportional-integral (PI/MIMO). Since the PI control method can be applied easily and is widely known, it has an important place in control applications. But this method is insensitive to parameter changes. The advantage of an SMC is its robustness and ability to handle the non-linear behaviour of the system. The main contribution of this paper consists of designing MIMO sliding mode control law of a distributed parameter based on the original model for which the control variables are coupled. The performances of the control law are illustrated by means of simulations and compared to previous results obtained by SISO and (PI-MIMO) control laws.

Keywords: component; Winding system, induction machine Proportional-integral (PI), sliding mode control

References:

EXISTENCE OF POSITIVE SOLUTIONS FOR SOME SYSTEMS OF SINGULAR SECOND-ORDER DIFFERENTIAL EQUATIONS

Karima MEBARKI¹, Smail DJEBALI²

¹Department of Mathematics, Bejaia University, Béjaia/ALGERIA
mebarqi_karima@hotmail.fr

²Department of Mathematics, École Normale Supérieure, Algiers/ALGERIA
djebali@hotmail.com

Abstract: In this work, we are concerned with the existence and the multiplicity of nontrivial positive solutions for a boundary value problem of a second-order differential equations system subject to an integral boundary condition and posed on the positive half-line. The positive nonlinearities depend on the solution and their derivatives and may have space singularities. New existence results of single and multiple solutions are obtained by means of the fixed point index theory on special cones in some weighted Banach spaces. Examples with numerical computations are included to illustrate the obtained existence theorems. This work surveys and generalizes previous works.

Keywords: Second-order differential equations, systems, positive solutions, fixed point theory.

References:

ON INVARIANT WIDE BAND NOISE FILTER

Kanda ABUASSBA

Department of Mathematics, Eastern Mediterranean University, Cyprus/TURKEY
kinda.joudeh@gmail.com

Abstract: Kalman filtering is one of the most essential results of filtering theory. Originally it was set as a method for estimating linear systems disturbed by white noise process. Later on it was proved that the real noises are not exactly white, they are wide band. The noticeable characteristic of wide band noises is that they are observed only by autocovariance functions, which means that infinitely many distinct wide band noises may have the same autocovariance function. In this presentation we introduce an invariant result of linear filtering when the signal and observations are disturbed by independent wide band noise and white noise, respectively. The important feature of this result is that it depends on the autocovariance function and free of the relaxing function.

Keywords: Kalman filtering, white noise, wide band noise.

References:

ANALYSE AND STUDY OF ANTIPLANE ELECTRO-VISCOELASTIC CONTACT PROBLEM

Hacene Chaouche SOUMEYA¹, Mohamed DALAH¹ and Alloua BOUDJEDOUR¹

¹Department of Mathematics, Faculty of Sciences, Mentouri University Constantine, Constantine / Algeria
dalah.mohamed@yahoo.fr

Abstract: In this work we assume that the material is electro-elastic and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the well-posedness mathematical model. In the second step, we give the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field and a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model by using the Banach fixed-point Theorem.

References:

ON FINITE ELEMENT APPROXIMATION IN THE L^∞-NORM OF SYSTEM OF PARABOLIC QUASI-VARIATIONAL INEQUALITIES RELATED TO STOCHASTIC CONTROL PROBLEMS

Mohamed El Amine BENCHEIK LE HOCINE

7Department of Mathematics, Tamanrasset University Center, Tamanrasset/ALGERIA
kawlamine@gmail.com

Abstract: This paper deals with the numerical analysis of system of parabolic quasi variational inequalities related to stochastic control problems. An optimal L^∞-convergence of a piecewise linear finite element method is established using the concept of subsolution and discrete regularity.

Keywords: Parabolic quasi variational inequalities, Hamilton-Jacobi-Bellman equation, finite element methods, subsolutions method, L^∞-asymptotic behavior.

References:

THE EFFECT OF ALLEE FACTOR ON STABILITY IN A NONLINEAR DISCRETE-TIME POPULATION MODEL INVOLVING DELAY

Özlem AK GÜMÜŞ

Department of Mathematics, Adıyaman University, Adıyaman/TURKEY
akgumus@adiyaman.edu.tr

Abstract: In this study, I will present the effect of Allee factor on the local stability of equilibrium point of the discrete-time population model involving delay generated for k=1 in [1] with a different approach. The results demonstrate that the Allee effect either reduces the local stability of equilibrium point of the population dynamic model or increases.

Keywords: Allee effect, Discrete-time models, Local stability

References:

OPTIMAL CLAIM BEHAVIOUR FOR VEHICLE DAMAGE INSURANCES

S.SEGNI

1Department of Mathematics, University of Guelma, Box 401, 24000 Guelma/Algeria
segnianis@gmail.com

Abstract: In this paper we ananlyse the optimal claim behavior of a risk sensitive of a risk sensitive policy holder having a vehicle damage insurance.

It is proved that the optimal decision is of the form: to claim for damages only if its amount exceeds a certain limit. Moreover, we also derive the optimal stopping rule to terminate the insurance. Finally, some computational results are presented.

Keywords: Bonus-malus systems; Automobile insurance; Markov decision processes.

References:

VOLterra INTEGRO-DIFFERENTIAL EQUATIONS OF CONVOLUTION TYPE

Sami SEGNI

Department of Mathematics, Guelma University, Guelma, Algeria.

Abstract: In this poster, the operational matrices of piecewise constant orthogonal functions on the interval [0,1) are used to solve Volterra integro-differential equations of convolution type without solving any system. Begin we obtain Laplace transform of the problem and then we find numerical inversion of Laplace transform by operational matrices. Examples are given to illustrate our results.

Keywords: Volterra integro-differential equation; Piecewise constant orthogonal functions; Laplace transforms; Inversion of Laplace transform.
THE WEAK SOLUTION OF ANTIPLANE ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH REGULARIZED FRICTION LAW

Hacene Chaouche SOUMEYA and Mohamed DALAH

Department of Mathematics,
Faculty of Exact Sciences
University Mentouri Constantine, Algeria
samara_avenir@yahoo.fr
dalah.mohamed@yahoo.fr

Abstract: In this work we study the weak solution of the antiplane electro-viscoelastic problem with regularized friction law. In addition to the mathematical interest in the convergence result when the viscosity is very small, this is of importance from an electro-mechanical point of view, as it indicates that the case of elasticity with friction may be considered as a limit case of visco-elasticity with friction.

Keywords: Contact problem, antiplane, friction, formulation variationnelle, electro-visco-elasticity.

References:

NEW EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING TRIAL EQUATION METHOD

Riad HEDLI, Abdelouahab KADEM

Department of Mathematics, Ferhat ABBES University
Setif/ALGERIA
riadh_al19@yahoo.fr, abdelouahabk@yahoo.fr

Abstract: Nonlinear partial differential equations have a significant role in several scientific and engineering fields. These equations appear in solid state physics, fluid mechanics, chemical kinetics, plasma physics, population models, nonlinear optics, and many others. Many mathematicians and physicists work in the field using a variety of powerful methods to study nonlinear phenomena, such as the inverse scattering method, the Bäcklund transformation method, the Darboux transformation, Hirota’s bilinear transformation, the homogeneous balance method, the tanh method, sine-cosine method, the exp-function method, the G'/G-expansion method, and so on. These methods derived many solutions to most nonlinear evolution equations. Recently, Professor Liu proposed a powerful method called trial equation method for finding exact solutions to nonlinear differential equations. By using his method, the nonlinear differential equation is reduced to an ordinary differential equation under the travelling wave transformation. Then, the ODE is reduced to the elementary integral form. Finally, the complete discrimination system for polynomial is used to solve the corresponding integrals. We can obtain the classification of all single travelling wave solutions to the equation. This idea is competent to solve divers types of nonlinear differential equations. The trial equation method and complete discrimination system for polynomial give a lot of new solutions to many nonlinear differential equations that are presented in this paper.

Keywords: The Nonlinear Partial Differential Equation, Complete Discrimination System for Polynomial, Trial Equation Method, Exact solution.

References:

A STUDY OF THE APPLICATION OF CHAOS TO THE GLOBAL OPTİMİZATION

Tayeb HAMAIZIA

Department of Mathematics, Faculty of Sciences Exacts, University Constantine 1 Algeria.

h2tayeb@gmail.com

Abstract: In this communication we undertake a performance analysis for a new class of evolutionary algorithms called chaos optimization algorithm (COA), recently proposed by Caponetto and al. [1], [2], [3]. It was originally proposed to solve nonlinear optimization problems with bounded variables. Different chaotic mapping have been considered, combined with several working strategy. In this work, a chaotic strategy is proposed based on a new two-dimensional discrete chaotic attractor. Experiments results showed that the proposed algorithm can achieve good performance.

Keywords: Chaos; Chaos optimization; discrete map ; Global optimization.

References:

DETERMINATION OF SOME NON LINEAR GROWTH CURVES WITH THE SUM OF SQUARE REDUCTION TEST FOR TURKEYS REARING IN FREE RANGE SYSTEM

Ufuk KARADAVUT¹, Atilla TAŞKIN², Mehmet Emin YAZICI³

¹Department of Biometry and Genetic, Ahi Evran University, Kırşehir/TURKEY
ukaradavut@ahievran.edu.tr

²Department of Animal Science, Ahi Evran University, Kırşehir/TURKEY
ataskin@ahievran.edu.tr

³Department of Animal Science, Science Institute, Kırşehir/TURKEY
emn_0602@hotmail.com

Abstract: In this study was aimed to determine non linear growth curves of live weight of turkey breed British United Turkeys (BUT) Big 6 in rearing free range system. For this, turkeys were grown for 8-20 weeks. Live weights were modeled with fitting Generalized Logistic, Logistic and Gompertz growth curves. Coefficient of Determination (R^2), residual sum of square (RSS) and mean square error (MSE) were used as comparison criteria. As results, growth curve fitting revealed that Generalized Logistic (0.951) and Logistic models (0.953) provided similar R^2, but they had lower than RSS (953.247 and 954.122) and MSE values (12.36 and 13.25) according to Gompertz model. Gompertz model showed in high RSS (1026.2) and MSE (26.35) values both for sex and low value of R^2(0.912). According to the sum of square reduction test, female have the highest live weight potential (5208 g), as male have the smaller (4502 g).

Key Words: Growth Curves, Free Range System, Modeling, Turkeys

References:

LOCAL CONDITIONS FOR THE EXISTENCE OF CYCLES

Zineb BENMEZIANE
Université des sciences et de la technologie Houari Boumediene
Faculté de Mathématiques, Département de Recherche Opérationnelle
BP 32 ElAlia, Algiers (Algeria)
zbenmeziane@yahoo.fr

Abstract: In this presentation, we deal with the existence of cycles in a particular extension of claw-free-graphs namely the quasi-claw-free graphs. A graph G is quasi-claw-free if for any two vertices x and y with distance 2 there exist a vertex u \in N(x) \cap N(y) such that N(u) \subseteq N[x] \cup N[y].

In this paper, we are interested in local conditions on graphs such as triangularly connected graphs. A graph G is triangularly connected if for every pair of edges e_1, e_2 \in E(G), G has a sequence of triangles T_1, T_2, ..., T_l such that e_1 \in T_1, e_2 \in T_l and E(T_i) \cap E(T_{i+1}) = \emptyset for 1 \leq i \leq l-1.

We prove that every triangularly connected quasi-claw-free graph is almost fully cycle extendable. Therefore, Ainouche’s conjecture is once again solved.

Keywords: Cycles, Hamiltonicity, connected, claws.

References:

MAPPINGS BETWEEN C^*-ALGEBRAS THAT PRESERVE
THE SPECTRUM

Hakan AVCI¹, Nilay SAGER²

¹, Department of Mathematics, Ondokuz Mayis University,
Samsun/TURKEY
hakanav@omu.edu.tr
², Department of Mathematics, Ondokuz Mayis University, Samsun/TURKEY
nilay.sager@omu.edu.tr

Abstract: In this study, we show that a *-homomorphism $\varphi : A \to B$
between unital commutative C^*-algebras A and B which verify
$r_B(\varphi(x)) = r_A(x)$ for any $x \in A_+$ satisfies the property to preserve
spectrum and hence adjoint mapping $\varphi^* : \Delta(B) \to \Delta(A)$ is surjective, that
is, φ^* maps maximal ideal space of B to maximal ideal space of A.

Keywords: C^*-algebra, Gelfand transform, maximal ideal, spectrum,
complex homomorphism, topological divisor of zero.

References:

EXISTENCE OF MINIMAL AND MAXIMAL SOLUTIONS
FOR A SECOND ORDER QUASILINEAR DYNAMIC
EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Mohammed DERHAB¹, Mohamed NEHARI²

¹University Abou-BekrBelkaidTlemcen, Department of Mathematics
Tlemcen, Algeria
derhab@yahoo.fr

²Dynamic Systems and Applications Laboratory
Preparatory School of Economy
Tlemcen, Algeria
Nehari_72@yahoo.fr

Abstract: This work is concerned with the construction of the minimal and
maximal solutions for a second order quasilinear dynamic equation with
integral boundary conditions, where the nonlinearity is a continuous
function. We also give an example to illustrate our results.

Keywords: Integral boundary conditions, upper and lower solutions,
monotone iterative technique, time scale, p-Laplacian,
INDEX

A

A. BENRABAH .. 40
A. BOULAOUAD ... 34
A. EROĞLU ... 22, 48, 306
A. H. ADOUM ... 218
A. N. MAMMADOVA .. 64
A. Neşe DERNEK ... 129, 271
A. Turan GÜRKAŅLI ... 242
A.E. ABDULLAYEVA .. 35
Abbes RABHI .. 36
Abdelaziz AZEB AHMED ... 69
Abdelhak Berkane .. 324
Abdelkader BENALÎ .. 38
Abdelkrim Zekri ... 324
Abdelmalek KOUADRI .. 171
Abdelmejid BAYAD .. 37
Abdelouahab KADEM ... 346
Abderrazek CHAOUI .. 39
Abdul Rahim KHAN .. 30
Abdulcabbar SÖNMEZ ... 208
Abdulhamit KUCUKASLAN .. 39
Abdulkadir DOGAN ... 41, 42
Abdulkadir KARAKAŞ .. 43
Abdullah KABLAN ... 76
Abdullah ÖZBEKLER ... 44
Abdullah YENER .. 45
Abdulatif YALÇÎN ... 51
Adrian PETRUSEL ... 28
Afaf ALAM ... 46
Ahmet DAŞDEMR .. 47
Ahmet Hamdi AVSAR ... 49
Ahmet Oçak AKDEMİR ... 50, 51
Ahmet Sinan CEVİK ... 163
Ahmet ŞAHÎNER ... 127, 226
Ahsene LANANI .. 325
Ahu ERCAN .. 52
Aicha BOUSSAH ... 326
Akhlad IQBAL .. 48
Akshaya DEVI .. 53
Alexander E. LABOVSKY .. 87
Ali AKBULUT .. 53
Ali FARAJZADEH ... 31, 68
Ali Hakan TOR .. 54
Ali KARAÎSA .. 55, 56
Ali KURT ... 317
Allaoua BOUDJEDOUR .. 327, 341
Alper EKİNÇ ... 50
Alper KORKMAZ ... 240
Aly R. SEADAWY .. 57
Anwar JA’ÅFAR ... 58
Arezki KHELOUFI ... 59
Arife Aysun KARAASLAN ... 60
Arshed A. AHMAD .. 206
Asif YOKUS .. 61, 89
Assia FRIOUI .. 327
Atilla TAŞKIN .. 348
Atok ZULJAMO .. 286
Ayhan ESI ... 279
Ayhan ŞERBETÇI ... 62
Aykült Ahmet AYGUNEŞ ... 63
Ayşen ŞAHÎN .. 65
Aysun SOYSAL .. 66
Aysun YURTTS .. 163
Ayye Betül KOÇ ... 67
Ayetkin ERYILMAZ .. 287
Azadeh HOSSEINPOUR .. 68

B

B. ABDELLAOUI .. 22, 321
B. LABED ... 322
B. MEROUANI ... 34
Badreddine MANSOURI .. 70
Bağdağlı KARAL ... 72
Bahaaettin CENÎZ ... 73
Bahatîn DAŞBAŞ ... 328
Bahatîn DAŞBAŞI .. 294
Banu AYTAR GÜNTERM .. 73
Bapurao DHAGE .. 280
Barış ÇELİK ... 74
Baver OKUTMUŞ ... 75
Bayram BALA ... 76
Benabderrahmane BENYATTOU 77
Bilal ALTAY .. 189, 250
Bilal ÇAVDAR .. 56
Birol GÜNĐÜZ .. 230
Boubaker-Khaled SADALLAH 59
Boukerrioua KHALED ... 78
Boussielia NADJIB .. 77
Burak DİKICI ... 253
Burak KURT ... 79
BüleÎent DEMİR ... 80
BüleÎent YILMAZ ... 244
Bünyamin AYDIN .. 81, 82
Büşra BALKAŞ .. 137

C

Cafer AYDIN .. 186
Cahit KÖME ... 83
Canan Akkoyunlu .. 216
Canay AYKOL YÜÇE .. 84
Celal Sami TÜFEKÇİ .. 320

Back to Top
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cem ÖGUZ</td>
<td>329</td>
</tr>
<tr>
<td>Cemil TUNC</td>
<td>100</td>
</tr>
<tr>
<td>Chiheb TARIK</td>
<td>85</td>
</tr>
<tr>
<td>Cihan ÜNAL</td>
<td>85</td>
</tr>
<tr>
<td>Coşkun YAKAR</td>
<td>164</td>
</tr>
<tr>
<td>Çiğdem A. BEKTAŞ</td>
<td>281</td>
</tr>
<tr>
<td>Dellaï ABDELKADER</td>
<td>330</td>
</tr>
<tr>
<td>Derya SEKMAN</td>
<td>86</td>
</tr>
<tr>
<td>Dilek ERKLEN</td>
<td>87</td>
</tr>
<tr>
<td>Djabrane YAHIA</td>
<td>88</td>
</tr>
<tr>
<td>Doğan KAYA</td>
<td>89</td>
</tr>
<tr>
<td>Dondu ÖZ</td>
<td>331</td>
</tr>
<tr>
<td>Drazil Nedjoua</td>
<td>332</td>
</tr>
<tr>
<td>Duran TÜRKÇOĞLU</td>
<td>217, 306</td>
</tr>
<tr>
<td>Eberhard MALKOWSKY</td>
<td>111</td>
</tr>
<tr>
<td>Ebrahim ZAMANI</td>
<td>138</td>
</tr>
<tr>
<td>Ecem ACAR</td>
<td>90</td>
</tr>
<tr>
<td>Egemen HALICI</td>
<td>91</td>
</tr>
<tr>
<td>El Amir DJEFFAL</td>
<td>333</td>
</tr>
<tr>
<td>Elgiz BAIRAMOV</td>
<td>289</td>
</tr>
<tr>
<td>Elif DEMİRİ</td>
<td>92</td>
</tr>
<tr>
<td>Elimhan MAHMUDOV</td>
<td>128, 276</td>
</tr>
<tr>
<td>Elifcan KAYA</td>
<td>118</td>
</tr>
<tr>
<td>Emel KARACA</td>
<td>233</td>
</tr>
<tr>
<td>Emirhan HACIOGLU</td>
<td>93, 307</td>
</tr>
<tr>
<td>Emrah Evren KARA</td>
<td>94, 188</td>
</tr>
<tr>
<td>Emrah YILDIRIM</td>
<td>95</td>
</tr>
<tr>
<td>Emrah YILMAZ</td>
<td>96, 97</td>
</tr>
<tr>
<td>Emre TAŞ</td>
<td>98</td>
</tr>
<tr>
<td>Emre Haydari BARAZ</td>
<td>328</td>
</tr>
<tr>
<td>Erbaş ÇETİN</td>
<td>99, 304</td>
</tr>
<tr>
<td>Erdaç KORKMAZ</td>
<td>100</td>
</tr>
<tr>
<td>Erdaç UNLUOY</td>
<td>101</td>
</tr>
<tr>
<td>Erdinç DÜNDAR</td>
<td>82, 102, 203, 222, 278, 291</td>
</tr>
<tr>
<td>Erhan GÜLER</td>
<td>102, 103, 235, 273</td>
</tr>
<tr>
<td>Erhan SET</td>
<td>50, 74, 202</td>
</tr>
<tr>
<td>Erkan BOSTANCI</td>
<td>91</td>
</tr>
<tr>
<td>Ertan İBIKLI</td>
<td>277</td>
</tr>
<tr>
<td>Esra GÜLÜ</td>
<td>103</td>
</tr>
<tr>
<td>Esra KAMBER</td>
<td>104</td>
</tr>
<tr>
<td>Esra YOLACAN</td>
<td>146</td>
</tr>
<tr>
<td>Elifcan S. PANAKHOV</td>
<td>52</td>
</tr>
<tr>
<td>Ezgi ERDOĞAN</td>
<td>105, 271</td>
</tr>
<tr>
<td>F. Ayça ÇETİN KAYA</td>
<td>106</td>
</tr>
<tr>
<td>F. MAHMoudI</td>
<td>22, 321</td>
</tr>
<tr>
<td>F. REBBANI</td>
<td>40</td>
</tr>
<tr>
<td>Fahreddin ABDULLAYEV</td>
<td>108, 243</td>
</tr>
<tr>
<td>Faik GÜRSOY</td>
<td>109, 110, 168, 212</td>
</tr>
<tr>
<td>Faruk OZGER</td>
<td>111</td>
</tr>
<tr>
<td>Faruk POLAT</td>
<td>112</td>
</tr>
<tr>
<td>Fatih DERİNGÖZ</td>
<td>112</td>
</tr>
<tr>
<td>Fatih NURAY</td>
<td>102, 222, 321</td>
</tr>
<tr>
<td>Fatih SİRİN</td>
<td>113</td>
</tr>
<tr>
<td>Fatih TAŞCI</td>
<td>117</td>
</tr>
<tr>
<td>Fatma BOUADOU</td>
<td>283</td>
</tr>
<tr>
<td>Fatma Dişdemir YILDIRIM</td>
<td>334</td>
</tr>
<tr>
<td>Fatma ÖZTÜRK ÇELİKER</td>
<td>114</td>
</tr>
<tr>
<td>Fayyaz ROUZKARD</td>
<td>115</td>
</tr>
<tr>
<td>Fellia BERRIMI</td>
<td>116</td>
</tr>
<tr>
<td>Ferdaş KAHRAMAN AKSOYAK</td>
<td>336</td>
</tr>
<tr>
<td>Ferhat ŞAH</td>
<td>117</td>
</tr>
<tr>
<td>Ferhat KARAKOYAN</td>
<td>301</td>
</tr>
<tr>
<td>Frekha TAALLAH</td>
<td>335</td>
</tr>
<tr>
<td>Fridoun MORADLOU</td>
<td>119, 266</td>
</tr>
<tr>
<td>Fuad KİTTANEH</td>
<td>157</td>
</tr>
<tr>
<td>Fuat USTA</td>
<td>120, 121</td>
</tr>
<tr>
<td>Fulya YÖRÜK DEREN</td>
<td>122</td>
</tr>
<tr>
<td>Funda KAYMAZ</td>
<td>336</td>
</tr>
<tr>
<td>Ferhat ŞAH</td>
<td>117</td>
</tr>
<tr>
<td>Fernane KHAIREDDINE</td>
<td>118</td>
</tr>
<tr>
<td>Feyzi BAŞAR</td>
<td>301</td>
</tr>
<tr>
<td>G. Canan HAZAR</td>
<td>123</td>
</tr>
<tr>
<td>G. ZAMANI ESKANDANIAND</td>
<td>124</td>
</tr>
<tr>
<td>Gabiil AdİLOV</td>
<td>152</td>
</tr>
<tr>
<td>Gabiil M. AMIRALİYEV</td>
<td>125, 151, 209, 228</td>
</tr>
<tr>
<td>Galip OTURANÇ</td>
<td>272</td>
</tr>
<tr>
<td>Gradimir V. MILOVANOVIČ</td>
<td>27</td>
</tr>
<tr>
<td>Gulsen OZDEMİR</td>
<td>126</td>
</tr>
<tr>
<td>Gumrak UYSAL</td>
<td>277</td>
</tr>
<tr>
<td>Gülcan KAPUZUZ</td>
<td>127</td>
</tr>
<tr>
<td>Gülnare ABDULLAYEV</td>
<td>108</td>
</tr>
<tr>
<td>Gülseren ÇİÇEK</td>
<td>128</td>
</tr>
<tr>
<td>Gülşen MENSİLİMİ</td>
<td>129</td>
</tr>
<tr>
<td>Hacene Chaouche SOUMAYA</td>
<td>345</td>
</tr>
<tr>
<td>Hacene Chaouche SOUMAYA</td>
<td>341</td>
</tr>
<tr>
<td>Hacer Bilgin ELLİDOMOZLOĞLU</td>
<td>130, 131</td>
</tr>
<tr>
<td>Hacer ŞENGÜL</td>
<td>132, 133</td>
</tr>
<tr>
<td>Hachemi GLAOUJ</td>
<td>338</td>
</tr>
<tr>
<td>Hafiz FUKHAR-UD-DIN</td>
<td>30</td>
</tr>
<tr>
<td>Hafize GÜMÜŞ</td>
<td>134</td>
</tr>
</tbody>
</table>
Öznur KULAK.. 242
Selahattin MADEH... 269, 270
Selcan KOCABAŞ... 271
Selma ALTUNDAĞ.. 104
Selman UĞUZ.. 90
Sema Gülbahar... 61
Sema SERVI.. 272
Sema SARAÇOĞLU ÇELİK............................... 103, 235, 273
Serbay DURAN... 273
Servan TURHAN.. 269
Serkan DEMİRİZ.. 130, 131
Sevda ATPINAR... 274, 275
Sevilay DEMİR.. 276
Sevilay KIRÇI SERENBAY............................... 277
Sevim YEGÜL.. 278
Sezayi HIZLIYEL... 311
Sezgin AKBULUT... 230
Shahla GALANDAROVA................................. 291
Shahrbanoo KBARPOOR................................. 96
Sibel PAŞALI ATMACA................................. 233
Sibel YASEMİN GOLBOL................................. 279
Sidheshwar BELLEALE.................................. 280
Sinan ERCAN... 281
Slimane ZAIM... 318
Smail DJEBALI... 339
Smail KELAIAYA... 282
SOLEKHUDIN.. 286
Somayot PLUBTIENG.................................... 68
Sonja RADJEF... 283
Souad AZRA... 284
Soumen SHAW... 284
Stephan HEYNS.. 33
Stéphane MAINGOT..................................... 231
Suayip TOPRAKSEVEN................................. 285
SUMARDI.. 286
SUPAMA... 286
Sure İKME... 287

Ş

Şamil AKÇAĞIL... 299
Şebnem YILDIZ... 288
Şerfenur CEBESOY....................................... 289
Şeyda SOLMAZ.. 289
Şeyhmus YARIMCIMİ................................. 156
Şeyma ÇETİN.. 234
Şeyma ÇEVİK.. 290
Şükru TORTOP... 291

T

Tahir GADJIJEV... 291
Taqseer KHAN... 292
Tayeb HAMAIZIA... 347
Tedjani HADJ AMMAR............................... 69
Tefaruk HAKTANIR..................................... 293
Teslima DAŞBAŞI.. 294
Timur AYHAN ... 295, 296
Tuba GULSEN ... 97, 297
Tufan TURACI ... 149, 298
Tuğba AYDEMİR .. 299
Tuğba ŞENLİK ÇERDİK .. 122
Tuğçe ÜNVER ... 300
Tuncay KÖR ... 71
Tülin COŞKUN .. 268

Y
Y. Y. MAMMADOV .. 306
Y. PELİN ... 306
Yakup HAMEŞ .. 161
Yasin YAZLIK ... 83, 207
Yavuz ALTIN .. 308
Yavuz ALTIN .. 43
Yavuz ÜGURLU ... 273, 309
Yavuz YAZICI .. 310
Yeşim SAGLAM ÖZKAN .. 311
Yıldıray KESKIN .. 272
Yılmaz ALTUN .. 167
Yılmaz SIMSEK ... 37, 126, 153
Yunus ATALAN .. 307, 313
Yunus Emre YILDIRIR .. 49, 249
Yunus ÖZDEMİR .. 334
Yurdal SEVER ... 314
Yusuf KOÇAK ... 315
Yusuf YAYLI ... 102
Yusuf ZEREN ... 113, 142, 172, 234, 316
Yücel ÇENESİZ ... 317
Yüksel SOYKAN .. 184

Z
Zameddin I. İSMAİLOV ... 244
Zarife ZARARSIZ .. 319
Zehan KESİLMİŞ ... 136
Zeynab JOUYMANDI .. 119
Zeynep EKİÇİOĞLU KÜZECİ .. 320
Zhamile ASKEROVA ... 215
Zineb BENMEZIANE ... 349
Zohra Sabrina DELHOUM ... 283
Zuhair NASHED .. 26
This is to certify that

Erhan GÜLER

has presented an oral presentation entitled

ENNEPER TYPE SURFACES IN 4-SPACE

during the 2nd International Conference on Analysis and its Applications, held on

July 12-15, 2016 at Ahi Evran University, Kirşehir-TURKEY

On behalf of Organizing Committee

Prof. Dr. Vatan KARAKAYA
Chairman
Rector Of Ahi Evran University