On \mathcal{J}_G-convergence of folner sequence on amenable semigroups

Omer Kisi1 and Burak Cakal2

1Department of Mathematics, Faculty of Science, Bartın University, Bartın, Turkey
2Department of Mathematics, Bartın University, Bartın, Turkey

Received: 9 April 2018, Accepted: 23 May 2018
Published online: 4 July 2018.

Abstract: In this paper, the concepts of σ-uniform density of subsets A of the set \mathbb{N} of positive integers and corresponding \mathcal{J}_σ-convergence of functions defined on discrete countable amenable semigroups were introduced. Furthermore, for any Folner sequence inclusion relations between \mathcal{J}_σ-convergence and invariant convergence also \mathcal{J}_σ-convergence and \mathcal{V}_λ-convergence were given. We introduce the concept of \mathcal{J}_σ-statistical convergence and \mathcal{J}_σ-lacunary statistical convergence of functions defined on discrete countable amenable semigroups. In addition to these definitions, we give some inclusion theorems. Also, we make a new approach to the notions of $[\mathcal{V}, \lambda]$-summability, σ-convergence and λ-statistical convergence of Folner sequences by using ideals and introduce new notions, namely, $\mathcal{J}_\sigma-[\mathcal{V}, \lambda]$-summability, $\mathcal{J}_\sigma-[\lambda]$-statistical convergence of Folner sequences. We mainly examine the relation between these two methods as also the relation between \mathcal{J}_σ-statistical convergence and $\mathcal{J}_\sigma-[\lambda]$-statistical convergence of Folner sequences introduced by the author recently.

Keywords: Folner sequence, amenable group, inferior, superior, \mathcal{J}-convergence.

1 Introduction

Statistical convergence of sequences of points was introduced by Fast [5]. Schoenberg [27] established some basic properties of statistical convergence and also studied the concept as a summability method.

The natural density of a set K of positive integers is defined by

$$\delta(K) := \lim_{n \to \infty} \frac{1}{n} \{k \leq n : k \in K \},$$

where $|k \leq n : k \in K|$ denotes the number of elements of K not exceeding n.

A number sequence $x = (x_k)$ is said to be statistically convergent to the number L if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \{k \leq n : |x_k - L| \geq \varepsilon \} = 0.$$

In this case we write $st \lim x_k = L$. Statistical convergence is a natural generalization of ordinary convergence. If $\lim x_k = L$, then $st \lim x_k = L$. The converse does not hold in general.

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r)$.

* Corresponding author e-mail: okisi@bartin.edu.tr and burakcakal@gmail.com

© 2018 BISKA Bilişim Technology