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ABSTRACT The aim of this article is to propose a new three-parameter discrete Lindley distribution. A wide
range of its structural properties are investigated. This includes the shape of the probability mass function,
hazard rate function, moments, skewness, kurtosis, index of dispersion, mean residual life, mean past life
and stress-strength reliability. These properties are expressed in explicit forms. The maximum likelihood
approach is used to estimate the model parameters. A detailed simulation study is carried out to examine
the bias and mean square error of the estimators. Using the proposed distribution, a new first-order integer-
valued autoregressive process is introduced for the over-dispersed, equi-dispersed and under-dispersed time
series of counts. To demonstrate the importance of the proposed distribution, three data sets on coronavirus,
length of stay at psychiatric ward and monthly counts of larceny calls are analyzed.

INDEX TERMS Survival discretization method, over-dispersion, INAR(1) process, simulation.

I. INTRODUCTION
Statistical distributions play an important role in data mod-
eling, inference, and forecasting processes. The occurrence
times, frequencies and effects of many events in nature are
analyzed by statistical modeling techniques. Most of the
events in nature or other scientific fields have their own
characteristics. Earthquakes, traffic accidents, counts of land-
slide or number of people dying from the disease are modeled
by discrete probability distributions. Researchers have pro-
posed more flexible distributions to reduce estimation errors
in the modeling of these data sets. There are two popular
methods used to introduce a new discrete distribution. These
are mixed-Poisson type discrete distributions and survival
discretization method. The recently introduced discrete dis-
tribution based on the survival discretization method can
be cited as follows: discrete Lindley (DLi) distribution by
Gómez-Déniz and Calderín-Ojeda (2011), discrete inverse
Weibull (DIW) distribution by Jazi et al. (2010), discrete Burr
type XII (DB-XII) distribution by Para and Jan (2014), dis-
crete Pareto (DPa) distribution by Krishna and Pundir (2009),
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generalized geometric by Gómez-Déniz (2010), discrete gen-
eralized exponential type II by Nekoukhou et al. (2013),
discrete Rayleigh (DR) by Roy (2004), two-parameter dis-
crete Lindley by Hussain et al. (2016), discrete extended
Weibull distribution by Jia et al. (2019), discrete Gompertz-G
family of distributions by Eliwa et al. (2020), exponentiated
discrete Lindley by El-Morshedy et al. (2020) and discrete
Burr-Hatke (DBH) distribution by El-Morshedy et al. (2020).
Recently, a new one-parameter discrete distribution was
introduced by Eliwa and El-Morshedy (2020). The Poisson-
Lindley distribution, introduced Sankaran (1970) is one of the
popular discrete distributions obtained by assuming that the
parameter of the Poisson distribution follows the Lindley
distribution. After the work of Sankaran (1970), several
generalization of the Poisson-Lindley distribution was pro-
posed such as generalized Poisson-Lindley distribution by
Mahmoudi and Zakerzadeh (2010), a new generalized
Poisson-Lindley distribution by Bhati et al. (2015),
a new three-Parameter Poisson-Lindley distribution by
Das et al. (2018) and Poisson-generalized Lindley distribu-
tion by Wongrin and Bodhisuwan (2016). Using the similar
approach to Sankaran (1970), several authors have been
introduced mixed-Poisson distributions such as Poisson-Bilal
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distribution by Altun (2020a), a new Poisson-weighted
exponential distribution by Altun (2020b), Poisson-xgamma
distribution Altun et al. (2020), Poisson-weighted Lindley
distribution by Atikankul et al. (2020) and Poisson-
transmuted exponential distribution by Bhati et al. (2017).

Additionally, the modeling of the time series of counts
is an important research area for all applied sciences. For
instance, a company in insurance sector cares about predict-
ing the number of claims for next month. Another example
is that epidemiologist wants to predict the monthly deaths
from a disaster such as coronavirus, bird flu, ebola virus
infection. In this case, first-order integer-valued autoregres-
sive process, shortly INAR(1) process, can be used. The
INAR(1) process with Poisson innovations was developed by
McKenzie (1985) and Al-Osh and Alzaid (1987). After the
pioneer works of McKenzie (1985) and Al-Osh and Alzaid
(1987), the INAR(1) process have increased its popularity
and researchers have focused on the innovation processes
of the INAR(1) process to make it more flexible for mod-
eling the over(under)-dispersed time series of counts. The
INAR(1) process with geometric innovations (INAR(1)G) by
Jazi et al. (2012), INAR(1) process with Poisson-Lindley
innovations (INAR(1)PL) by Lívio et al. (2018) and INAR(1)
process with a new Poisson-weighted exponential innova-
tions ((INAR(1)NPWE)) by Altun (2020b) can be given as
examples for over-dispersed INAR(1) process.

The goal of this work is to introduce an alternative
discrete distribution to model both over-dispersed and
under-dispersed count data sets. The over-dispersion and
under-dispersion is a widely studied problem of count data
modeling. The over-dispersion appears in the case that the
empirical variance is greater than empirical mean. The oppo-
site indicates the under-dispersion. In the real-life data mod-
eling, we encounter quite often with these two problems,
however, the over-dispersion problem is seen more. We intro-
duce a new three parameter discrete distribution by using
the three-parameter Lindley (Li-3P) distribution introduced
by Shanker et al. (2017) based on the survival discretization
method. The proposed distribution is called three parame-
ter discrete-Lindley, shortly (DLi-3P), distribution. The con-
tributions of the presented study to statistics literature can
be summarized as follows: (i) an alternative model for the
over(under)-dispersed data sets is introduced, (ii) the statisti-
cal properties of the DLi-3P distributions is studied in detail,
(iii) INAR(1) process with DLi-3P innovations is introduced,
(iv) three applications to coronavirus, psychiatric ward and
larceny calls data sets are analyzed by the models introduced
based on the DLi-3P model.

The article is organized as follows. In Section 2, we intro-
duce the DLi-3P distribution. Different statistical and reli-
ability properties are discussed in Section 3. In Section 4,
the model parameters are estimated by using the maximum
likelihood estimation (MLE) approach. In Section 5, we dis-
cuss the computational complexity of the DLi-3P distribution
its limitations. In Section 6, INAR(1) process with DLi-3P
innovations is introduced and its statistical properties are

derived. Simulation study is presented in Section 7. Three
distinctive data sets are analyzed to show the importance of
the DLi-3P distribution in Section 8. The detail interpreta-
tion of the empirical results are given in Section 9. Finally,
Section 10 provides some conclusions.

II. THE DLi-3P DISTRIBUTION
In this section, we derive the discrete analogous of the Li-3P
distribution, shortly DLi-3P distribution, by using the survival
discretization method. Assume that the random variable X
follows a Li-3P distribution whose probability density func-
tion (pdf) and the corresponding survival function (sf) are
given, respectively, by

f (x; θ, α, β) =
θ2

αθ + β
(α + βx) e−θx; x > 0 (1)

and

S(x; θ, α, β) =
(
1+

βθx
αθ + β

)
e−θx; x > 0, (2)

where θ > 0, β > 0 and αθ + β > 0. The derivation
of Li-3P distribution is similar to the Lindley distribution.
The Li-3P distribution is obtained as mixture distribution of
exponential (θ ) and gamma (2, θ) with a mixing proportion
αθ

αθ+β
. Using the survival discretization method and survival

function of the Li-3P distribution given in (2), the probability
mass function (pmf) of the DLi-3P distribution with positive
parameter 0 < λ < 1 can be expressed as

Px(x; λ, α, β)

=
λx

β − α ln λ

×

{
β − α ln λ−βx ln λ
−λ (β−α ln λ−β(x+1) ln λ)

}
; x ∈ N0, (3)

where λ = e−θ and N0 = {0, 1, 2, 3, . . . , q} for 0 < q <∞.
The corresponding cdf and sf to (3) are given, respectively,
by

F(x; λ, α, β)=1−
(
1−

β(x+1) ln λ
β−αlnλ

)
λx+1; x ∈ N0 (4)

and

S(x; λ, α, β)=
(
1−

β(x+1) ln λ
β−α ln λ

)
λx+1; x ∈ N0. (5)

The pmf in (3) is log-concave, where Px (x+1;λ,α,β)
Px (x;λ,α,β)

is a

decreasing function in x for all values of the model param-
eters. The several possible shapes of the DLi-3P distribution
are displayed in Figure 1. From this figure, we conclude that
the DLi-3P distribution could be used to model left-skewed
count data sets.

The shapes of the pmf of DLi-3P can be uni-
modal or decreasing. The hazard rate function (hrf) of the
DLi-3P distribution is

h(x; λ, α, β) =

(
−α ln λ− βx ln λ
−λ (β − α ln λ− β(x + 1) ln λ)

)
β − α ln λ− βx ln λ

, (6)
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FIGURE 1. The possible pmf shapes of the DLi-3P distribution.

FIGURE 2. The hrf shapes of the DLi-3P distribution for selected
parameter values.

where x ∈ N0. Figure 2 displays the hrf plots of the DLi-3P
distribution for different values of the model parameters. It is
observed that the hrf of the DLi-3P distribution has increasing
shape.

III. STATISTICAL PROPERTIES
In this section, the statistical properties of the DLi-3P distri-
bution are derived such as mode, rawmoments, skewness and
kurtosis measures. Additionally, reliability properties of the
DLi-3P distribution are derived such as stress-strength, mean
residual life (mrl) and mean past life (mpl).

A. MODE
The mode of any discrete distribution shows the value at
which the specific discrete distribution takes its maximum
value. If X has a DLi-3P distribution, then the mode can be
obtained by solving the following non-linear equation

λx+1 (βx + α + β)− λx (βx + α) = 0. (7)

Then, the mode of the DLi-3P distribution can be
expressed as

M(X ) = −
αλ+ βλ− α

β(λ− 1)
. (8)

B. MOMENTS, SKEWNESS, KURTOSIS AND
DISPERSION INDEX
Assume X be a DLi-3P random variable. Then, the proba-
bility generating function (pgf) can be expressed in a closed
form as

GX (s) =

{
−sαλ2 + ([1− s]β + [1+ s]α) λ− α

}
× ln λ+ β(λ− 1)(λs− 1)

(β − α ln λ) (λs− 1)2
, (9)

where GX (s) =
∑
∞

x=0 s
xPx(x; λ, α, β). Replacing s by es

in (9), we get the moment generating function (mgf). The first
four derivatives of the mgf, with respect to s at s = 0, give
the first four raw moments. Thus, the first four moments of
the DLi-3P model are

E(X )= λ
(−αλ+ α + β) ln λ+ (λ− 1)β

(α ln λ− β) (λ− 1)2
, (10)

E(X2)= λ
(−αλ2 + 3βλ+ α + β) ln λ+ (λ2 − 1)β

(β − α ln λ) (λ− 1)3
, (11)

E(X3)= λ

(−αλ3 − 3αλ2 + 7βλ2 + 3αλ+ 10βλ+ α + β)
× ln λ+(λ−1)(λ2+4λ+1)β

(α ln λ−β) (λ− 1)4

(12)

and

E(X4)=λ

(−αλ4 − 10αλ3+15βλ3+55βλ2+10αλ
+25βλ+α+β) ln λ+(λ2−1)(λ2+10λ+1)β

(β−α ln λ) (λ−1)5
.

(13)

The variance and dispersion index (DI) of the DLi-3P distri-
bution are given, respectively, by (14) and (15), as shown at
the bottom of the next page.

The skewness and kurtosis can be derived also in explicit
forms by using the below quantities.

Skewness(X ) =
E(X3)− 3E(X2)E(X )+ 2 [E(X )]3

[Var(X )]3/2

and

Kurtosis(X )

=
E(X4)− 4E(X2)E(X )+ 6E(X2) [E(X )]2 − 3 [E(X )]4

[Var(X )]2
.

The DI can be calculated by dividing the sample variance
to sample mean. When the DI is equal to one, it indicates
the equi-dispersion. When the DI is greater than one, it indi-
cates the over-dispersion, opposite case indicates the under-
dispersion. Table 1 presents some numerical results of the
mean, variance, DI, skewness and kurtosis for the DLi-3P
distribution for different values of the model parameters.

91152 VOLUME 8, 2020



M. S. Eliwa et al.: New Three-Parameter Discrete Distribution

TABLE 1. Some descriptive statistics for the DLi-3P distribution for α = 0.01, β = 0.5 and various values of λ.

From Table 1, the DLi-3P model is appropriate for mod-
eling under(over)-dispersed data sets. Moreover, this model
is capable of modeling positively skewed and leptokurtic
data sets.

C. MEAN RESIDUAL LIFE AND MEAN PAST LIFE
The mrl and mpl are two commonly used measures to study
the ageing behavior of a component or a system of compo-
nents. The mrl is used to model the burn-in and maintenance
of the component. The mrl is defined as

�i = E (T − i|T ≥ i)

=
1

1− F(i− 1; λ, α, β)

×

q∑
j=i+1

[1− F(j− 1; λ, α, β)] ; i ∈ N0, (16)

where N0 = {0, 1, 2, 3, . . . , q} for 0 < q < ∞. Let T
be a DLi-3P random variable. Then, the mrl, say �i, can be
expressed in a closed form as

�i = −λ

(
βλi ln λ+ αλ ln λ− βi ln λ
−α ln λ− β ln λ− βλ+ β

)
(βi ln λ+ α ln λ− β)(λ− 1)2

. (17)

The other reliability measure is mpl which measures the time
elapsed since the failure of T given that the system has failed
sometime before i. The mpl, �∗i , is given by

�∗i = E (i− T |T < i) =
1

F(i− 1; λ, α, β)

×

i∑
m=1

F(m− 1; λ, α, β); i ∈ N0 − {0}. (18)

where �∗0 = 0. If T be a DLi-3P random variable, then the
mpl can be represented in a closed form as

�∗i =
1

1− λi
(
1− βi ln λ

β−α ln λ

)
×

{
i−

λi+1 − λ

λ− 1
−
βλi+1 ([λ− 1]i− 1)+βλ ln λ

(α ln λ− β)(λ− 1)2

}
.

For i ∈ N0, we get �∗i ≤ i. The mean of the distribution
function can be expressed as

Mean = i−�∗i F(i− 1; λ, α, β)

+�i [1− F(i− 1; λ, α, β)] ; i ∈ N0 − {0}. (19)

The reversed hrf (rhrf) and the mpl are related as

r(i; λ, α, β) =
1−�∗i+1 +�

∗
i

�∗i
; i ∈ N0 − {0}. (20)

If T be a DLi-3P random variable, then the cdf can be
recovered by the MPL as

F(k; λ, α, β)

= F(0; λ, α, β)
k∏
i=1

[
�∗i

�∗i+1−1

]
; k ∈ N0 − {0}, (21)

where F(0; λ, α, β) =
( q∏
i=1

[
�∗i

�∗i+1−1

])−1
and 0 < q <∞.

D. STRESS-STRENGTH ANALYSIS
Stress-strength (Str-Sth) has many applications in different
scientific fields. Let XStr be a stress and XSth be a strength of

Var(X ) =

λ


α2 λ2 log(λ)2 − 2α2 λ log(λ)2 + α2 log(λ)2

−α β λ2 log(λ)2 − 2α β λ2 log(λ)+ 4α β λ log(λ)
+α β log(λ)2 − 2α β log(λ)+ β2 λ2 log(λ)+ β2 λ2

−β2 λ log(λ)2 − 2β2 λ− β2 log(λ)+ β2


(β − α log(λ))2 (λ− 1)4

(14)

DI =

α2 λ2 log(λ)2 − 2α2 λ log(λ)2 + α2 log(λ)2 − α β λ2 log(λ)2

−2α β λ2 log(λ)+ 4α β λ log(λ)+ α β log(λ)2 − 2α β log(λ)
+β2 λ2 log(λ)+ β2 λ2 − β2 λ log(λ)2 − 2β2 λ− β2 log(λ)+ β2


(α log(λ)− β) (λ− 1)2 (β λ− β + α log(λ)+ β log(λ)− α λ log(λ))

. (15)
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the system. The expected reliability (RStr−Sth) can be calcu-
lated by

RStr−Sth = Pr [XStr ≤ XSth] =
∞∑
x=0

fXStr (x)RXSth (x). (22)

Let XStr ∼ DLi-3P(λ1, α1, β1) and XSth ∼ DLi-
3P(λ2, α2, β2). Then, RStr−Sth can be represented in a closed
form as

R Str-Sth =

α1λ2
2λ1

3 (α2 − β2)− (β2 − α2) (β1 − α1)

×λ2λ2λ1
2
− 2β1β2λ2λ12 + α2β1λ2λ12

−α1β2λ2λ1
2(

[ln (λ2) ln (λ1)]−1 (β1 − α1 ln (λ1))
× (β2 − α2 ln (λ2)) (λ2λ1 − 1)3

)

+

2α1α2λ2λ12 + (−β2 − α2) λ1λ2β1 − α1λ1λ2
× (β2 − 2α2)+ λ1α2 (β1 + α1)− α1α2(

[ln (λ2) ln (λ1)]−1 (β1 − α1 ln (λ1))
× (β2 − α2 ln (λ2)) (λ2λ1 − 1)3

)

−

β2

[
α1λ2λ1

2
+ β1λ1λ2 − α1λ1λ2

−β1λ1 − α1λ1 + α1

]
ln (λ1)(

(β1 − α1 ln (λ1)) (β2 − α2 ln (λ2))
× (λ2λ1 − 1)2

)

+

(λ1 − 1) β1

[
(λ2λ1β2 − λ1α2 + α2) ln (λ2)
+λ2λ1β2 − β2

]
(β1 − α1 ln (λ1))
× (β2 − α2 ln (λ2)) (λ2λ1 − 1)2

.

(23)

From (23), the value of RStr−Sth depends only on the model
parameters. Some numerical results of RStr−Sth are reported
in Table 2 by using the DLi-3P distribution for the parameters
α1 = α2 = 0.01 and β1 = β2 = 0.5.

It is clear that RStr−Sth increases (decreases) with λ2 −→ 1
(λ1 −→ 1) for fixed value of the other parameters.

E. GENERATING RANDOM VARIABLES FROM
DLi-3P DISTRIBUTION
We introduce an algorithm to generate random variables from
the DLi-3P distribution. The below algorithm could be used
for this purpose.

1) Set the parameter values λ = exp (−θ), α β
2) Generate random variable, u, from the standard

uniform distribution, U (0, 1).

3) Compute

Z = −
αθ + β + βW−

(
exp

(
− (αθ)

/
β − 1

)
× (u− 1) (β + αθ) β−1

)
βθ

(24)

4) X = bZc
To generate random sample of size n from the DLi-3P distri-
bution, the steps 1-4 should be repeated n times. The func-
tionW− (·) represents the negative branch of the Lambert-W
function.

IV. MAXIMUM LIKELIHOOD ESTIMATION
Assume that the random sample x1, x2, . . . , xn come from the
DLi-3P distribution with unknown parameters λ, α and β.
The log-likelihood function of the DLi-3P is

` (x; λ, α, β) =
n∑
i=1

ln
{
β (λ (log (λ)− 1)+ 1)
+ (λ− 1) log (λ) (α + βxi)

}

+ ln (λ)
n∑
i=1

xi − n ln (β − α log (λ)) (25)

By differentiating (25) with respecto the unknown param-
eters, we have, ∂`

∂λ
, ∂`
∂α
, and ∂`

∂β
, as shown at the bottom of this

page.
The simultaneous solutions of these likelihood equations

give the MLEs of the model parameters. However, these
equations cannot be solved analytically; therefore, an iter-
ative procedure like Newton-Raphson is required to solve
it numerically. Here, we use the constrOptim function of
R software to maximize the log-likelihood function of the
DLi-3P distribution given in (25). The standard errors of the
estimated parameters are obtained by means of the squared
root of the inverse of the hessianmatrix evaluated at estimated
model parameters. The fdHess function of R software is used
to obtain hessian matrix.

V. THE COMPUTATIONAL COMPLEXITY AND
LIMITATIONS OF THE DLi-3P DISTRIBUTION
Proposing a new distribution with adding one or more addi-
tional shape parameters increases the model complexity.
The proposed distribution, DLi-3P, contains three parameter
which requires a good initial parameter vector in estima-
tion step. More importantly, the domain of the parameter λ

∂`

∂λ
=

1
λ

n∑
i=1

xi −
n∑
i=1

[
αβ−1 − (ln λ)−1

]2
+ (xi + 1)

[
αβ−1 − (ln λ)−1

]
+ (xi − λ(xi + 1)) (ln λ)−2

(1− λ)
[
αβ−1 − (ln λ)−1

]2
+ (xi − λ(xi + 1))

[
αβ−1 − (ln λ)−1

] ,

∂`

∂α
=

n∑
i=1

− (xi − λ(xi + 1)) β−1

(1− λ)
[
αβ−1 − (ln λ)−1

]2
+ (xi − λ(xi + 1))

[
αβ−1 − (ln λ)−1

]
∂`

∂β
=

n∑
i=1

(xi − λ(xi + 1)) αβ−2

(1− λ)
[
αβ−1 − (ln λ)−1

]2
+ (xi − λ(xi + 1))

[
αβ−1 − (ln λ)−1

] .
91154 VOLUME 8, 2020
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TABLE 2. Some numerical results of RStr−Sth for various values of the parameters λ1 and λ2.

is (0, 1). The estimation of the parameter λmay yield a value
which is outside of its domain. To overcome these problems
one should take into consideration the points given below.

X The initial parameter vector should be correctly deter-
mined. The generalized simulated annealing method is
implemented to obtain a resonable initial vector. The
GenSA package ofR software is used for this purpose.

X Since the domain of the parameter λ is (0, 1), the con-
strained optimization algorithm should be used to
obtain estimated of the parameter λ. The constrOptim
function of R software is used for this purpose.

VI. INAR(1)DLi-3P PROCESS
The INAR(1) process is widely used to model the time series
of counts in different applied sciences such actuarial, finance,
medical sciences. The INAR(1) process differs from the first-
order autoregressive, shortly AR(1), process by applying the
binomial thinning operator. The INAR(1) process is given by

Xt = p ◦ Xt−1 + εt , t ∈ Z, (26)

where p ∈ (0, 1) and {εt } is an innovation process with mean
E (εt) = µε and variance Var (εt) = σ 2

ε . The first INAR(1)
process was introduced by McKenzie (1985) based on the
Poisson innovations. This model is called as INAR(1)P. The
symbol, ◦, represents the binomial thinning which is defined

by p ◦ Xt−1 :=
Xt−1∑
j=1

Wj where Wj is the Bernoulli random

variable with Pr
(
Wj = 1

)
= 1 − Pr

(
Wj = 0

)
= p. The

one-step transition probability of INAR(1) process is

Pr (Xt = k|Xt−1 = l)

=

min(k,l)∑
i=1

×Pr
(
Bαl = i

)
Pr (εt = k − i) ,

k, l ≥ 0, (27)

where Bαn ∼ Binomial (α, n) and α ∈ [0, 1). The mean,
variance and DI of the Xt process are given, respectively,

by (Weiß, 2018)

E (Xt) =
µε

1− p
(28)

Var (Xt) =
pµε + σ 2

ε

1− p2
(29)

DIXt =
DIε + p
1+ p

(30)

where µε, σ 2
ε and DIε are the mean, variance and DI of the

innovation distribution.
Following the results of McKenzie (1985) and Al-Osh

and Alzaid (1987), we propose a new INAR(1) process with
DLi-3P innovations by assuming that the {εt }t∈Z innovations
follow a DLi-3P distribution, given in (3). The proposed
INAR(1) process opens an opportunity to model both over-
dispersed and under-dispersed time series of counts data
sets. The one-step transition probability of INAR(1)DLi-3P
process is, (31) as shown at the bottom of this page.

Hereafter, (31) is called as the INAR(1)DLi-3P process.
The mean, variance and DI of the INAR(1)DLi-3P process
can be easily computed by replacing µε, σ 2

ε and DIε in
(28), (29) and (30) with (10), (14) and (15), respectively.
Since the DLi-3P distribution has an ability to model under-
dispersion, equi-dispersion and over-dispersion simultane-
ously, the INAR(1)DLi-3P will be good candidate to model
all kind of dispersed time series of counts. The conditional
expectation and variance of INAR(1)DLi-3P process are
given, respectively, by (see Weiß, 2018, and Alzaid and
Al-Osh, 1988)

E (Xt |Xt−1) = αXt−1 + µε (32)

and

Var (Xt |Xt−1) = α (1− α)Xt−1 + σ 2
ε , (33)

where µε and σ 2
ε are given in (10) and (14)

A. ESTIMATION OF INAR(1)DLi-3P PROCESS
The three estimation methods are generally used to
estimate the unknown parameters of INAR(1) process.

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑
i=1

(
l
i

)
pi(1− p)l−i ×

λk−i {β (λ (log (λ)− 1)+ 1)+ (λ− 1) log (λ) (α + β (k − i))}
β − α log (λ)

. (31)
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These estimation methods are Yule-Walker (YL), conditional
least squares (CLS) and conditional maximum likelihood
estimation (CMLE). The relative efficiencies of these estima-
tion methods have been discussed in several researches based
on the simulation studies (see Bourguignon et al., 2019, and
Lívio et al., 2018). According to these simulation studies,
CMLE method performs better than other two estimation
methods for both small and large sample sizes. Based on these
facts, we prefer the CMLE method to obtain the unknown
parameters of INAR(1)DLi-3P process. The conditional log-
likelihood function of the INAR(1)DLi-3P process is

` (2)

=

T∑
t=2

ln [Pr (Xt = k|Xt−1 = l)]

=

T∑
t=2

ln


min(Xt ,Xt−1)∑

i=1

(
Xt−1
i

)
pi(1−p)Xt−1−i

×

λXt−i

{
β (λ (log (λ)−1)+1)+(λ−1)
× log (λ) (α+β (Xt − i))

}
β−α log(λ)


(34)

where 2 = (p, λ, α, β) represents the parameter vector to
be estimated. It is not possible to obtain the explicit formula-
tions of the CMLE of the parameters of the INAR(1)DLi-3P
process. Therefore, (34) has to be maximized by using the
statistical software such as R,Matlab, S-Plus or Python. Here,
we use the constrOptim function of the R software to min-
imize the minus of the log-likelihood function given in (34).
The standard errors of the estimated parameters are obtained
by means of the squared roots of the diagonal elements of the
Hessian matrix whose elements are numerically calculated
by using the fdHess function of the R software. The initial
parameter vector of the INAR(1)DLi-3P process is obtained
by GenSA package of the R software.

VII. SIMULATION
The finite-sample performance of the MLEs of the parame-
ters of the DLi-3P distribution is investigated by a simulation
study. The below simulation procedure is implemented for
this purpose.

1) Set the simulation replication number is 1000.
2) Set the parameters of DLi-3P distribution λ = 0.11,

α = −0.12 and β = 0.30.
3) Using the given parameter values, generate random

variables with sample size n = 5, 10, 15, . . . , 40 from
the DLi-3P by repeating N times.

4) For each generated sample size, obtain the λ̂j, α̂j and
β̂j, j = 1, 2, . . . ,N .

5) Compute the estimated biases and mean-squared errors
(MSEs). The required equations can be found in Altun
(2020a).

The simulation results are summarized graphically
in Figure 3. From this figure, we conclude that the esti-
mated biases approach to the desired value, zero, for large

FIGURE 3. The bias and MSE of λ̂, α̂ and β̂ versus for the DLi-3P model.

sample sizes. Also, the estimated MSEs are near the zero
for both small and large sample sizes which confirms the
consistency property of the MLE.

VIII. APPLICATIONS
In this section, we analyze three real data sets by using
developed models in the previous sections of the presented
study. In the first application, the suitable probability distri-
bution for the numbers of daily deaths from the coronavirus
in Iran is investigated. In the second application, the length
of stay in a psychiatric ward is analyzed. In the third appli-
cation, the monthly counts of the larceny calls in Pittsburgh
are predicted by INAR(1)DLi-3P process. The fitted models
are compared utilizing some criteria, namely, the negative
maximized log-likelihood (−`), Akaike information crite-
rion (AIC), corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn infor-
mation criterion (HQIC), Chi-square (χ2) test with its corre-
sponding p-value, and Kolmogorov-Smirnov (K-S) test with
its corresponding p-value. The below strategy is used to
decide best fitted model.

X The AIC, CAIC, BIC, HQIC, χ2, −` and KS test with
its p-value are computed for all competitive models as
well as DLi-3P distribution

X The models with p-values greater than 0.05 are identi-
fied as potential models.

X Among the potential models, the best model is deter-
mined as the model with the smallest values of the AIC,
CAIC, BIC, HQIC, chi2, − ell.

The computational results are carried out in R software.
The used computer features are: Intel Core i5-826U CPU
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TABLE 3. The estimated parameters of the fitted models for the coronavirus data set.

TABLE 4. The goodness of fit statistics of the fitted models for the coronavirus data set.

1.80 GHz, 8GB RAM, 2GB graphic card. The execution time
of the DLi-3P model is measured with tictoc package of
R software.

A. CORONAVIRUS
The firs data set is reported in https://www.worldometers.
info/coronavirus/country/iran/ and represents the daily new
deaths in Iran from 15 February to 10 March, 2020. We com-
pare the fits of the DLi-3P model with some competitive
models such as DLi, DR, DIW, DB-XII, DPa, DBH and Pois-
son (Poi) models. The all used competitive models, except
the Poi distribution, enables to model over-dispersion. To be
fair in comparison, we choose the over-dispersedmodels. The
MLEs with their corresponding standard error (SE), confi-
dence interval (C. I) for the parameter(s) and goodness of fit
test for the coronavirus data set are listed in Tables 3 and 4,
respectively. As seen from the reported values in Table 4,
DLi-3P distribution has the lowest values of the goodness-of-
fit statistics which is evidence to conclude that the DLi-3P
distribution is more suitable probability distribution than
other competitive models for the data used. The execution
time of the DLi-3P model for the coronavirus data set is
0.65 seconds.

Figure 4 shows the profile log-likelihood functions of the
DLi-3P distribution. It is clear that the estimated parameters
are maximizers of the log-likelihood function.

Figures 5 and 6 display the estimated cdfs and P-P plots of
the fitted distributions for the data used. From these figures,
we conclude that the DLi-3P distribution provides the best
fits among others.

Table 5 lists the mean, variance, DI, skewness and kur-
tosis values of the fitted DLi-3P distribution. As seen from
these results, the fitted DLi-3P distribution right skewed and
leptokurtic.

FIGURE 4. The profile log-likelihood functions of the DLi-3P distribution
for the coronavirus data set.

TABLE 5. The mean, variance, DI, skewness and kurtosis values of the
DLi-3P distribution for the coronavirus data.

B. PSYCHIATRIC WARD
The data presented herein give the length of stay on a psychi-
atric ward for 67 Male patients (see Chakraborty and Gupta,
2015). The MLEs with their corresponding SE, C. I for the
parameter(s) of the fitted distributions and the goodness of
fit test results for the data used are listed in Tables 6 and 7,
respectively. Since the DLi-3P distribution has the lowest
values of the goodness of fit statistics with highest p-value,
it could be selected as a best model among others. The
execution time of the DLi-3P model for the length of stay
data set is 0.05 seconds.
In the Figure 7, the profile log-likelihood functions of

the DLi-3P distribution for the fitted data set are plotted
to demonstrate that the estimated parameters of the DLi-3P
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TABLE 6. The estimated parameters of the fitted models for the length of stay data set.

TABLE 7. The goodness of fit statistics of the fitted models for the length of stay data set.

FIGURE 5. The estimated CDFs for the coronavirus data set.

distribution are themaximizers of the log-likelihood function.
As seen from the Figure 7, the estimated parameters of the
DLi-3P distribution are the maximizers of the log-likelihood
functions of the DLi-3P distribution.

FIGURE 6. The P-P plots for the coronavirus data set.

Figures 8 and 9 show the estimated pmfs and P-P plots
for the fitted data. These figures reveal that the DLi-3P
distributions are the best choice among others for the fitted
data.

91158 VOLUME 8, 2020



M. S. Eliwa et al.: New Three-Parameter Discrete Distribution

FIGURE 7. The profile log-likelihood functions of the DLi-3P distribution
for the length of stay data set.

FIGURE 8. The estimated PMFs for the length of stay data set.

FIGURE 9. The estimated P-P plots for the length of stay data set.

Table 8 lists the mean, variance, DI, skewness and kurtosis
values of the fitted DLi-3P distribution. As in first appli-
cation, the fitted DLi-3P distribution is right-skewed and
leptokurtic.

TABLE 8. The mean, variance, DI, skewness and kurtosis values of the
DLi-3P distribution for the length of stay data set.

C. LARCENY CALLS
Here, the importance of INAR(1)DLi-3P process is com-
pared with INAR(1)NPWE, INAR(1)P, INAR(1)G and
INAR(1)PL processes. The required formulation for the
translation probabilities of these competitive models can be
found in Altun (2020b). The best fitted model is selected
based on the information criteria, AIC and BIC statis-
tics. We analyze the crime data set on the monthly counts
of 911 larceny calls which contains 144 observations between
Jan. 1990 and Dec. 2001. The data is was available in http://
www.forecastingprinciples.com/index.php/crimedata. Firstly,
we investigate whether the data used displays over-dispersion
problem. To do this, we calculate the mean, variance and DI
of the data set. The following results are obtained, respec-
tively, 19.951, 39.613 and 1.985. Then, the hypothesis test
for over-dispersion, proposed by Schweer and Weiß (2014),
is applied to decide the whether the observed over-dispersion
is statistically significant. The obtained test statistic is 15.936
and its p-value is less than 0.001 which reveal that the data
display significant over-dispersion.

FIGURE 10. The ACF, PACF, histogram and time series plots of the larceny
calls.

The fundamental plots of the data used such as autocorrela-
tion function (ACF), partial ACF (PACF), histogram and time
series plots are displayed in Figure 10. From the Figure 10
we conclude that the INAR(1) process could be a possible
model for this data set since the only first lag is significant in
PACF plot.
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TABLE 9. The estimated parameters of the fitted models for the 911 larceny calls.

The estimated parameters of the competitive models as
well as INAR(1)DLi-3P model and corresponding standard
errors, also AIC and BIC statistics, are listed in Table 9.
As seen from the results given in Table 9, the INAR(1)DLi-3P
model has the lowest values of the AIC and BIC statistics
which are evidence to conclude that the INAR(1)DLi-3P
model provides better fits than other competitive models for
the data used. The execution time of the INAR(1)DLi-3P
model for the larceny data set is 1.97 seconds. To check the
accuracy of the fitted INAR(1)DLi-3P process, the residual
analysis is conducted. We calculate the Pearson residuals of
the INAR(1)DLi-3P process by using the following equation

rt =
Xt − E (Xt |Xt−1)

Var(Xt |Xt−1)1/2
(35)

where E (Xt |Xt−1) and Var (Xt |Xt−1) are given in (32)
and (33), respectively. As reported in Harvey and Fernan-
des (1989), when the fitted INAR(1) process is statistically
valid, the Pearson residual has zero mean and unit variance.
Additionally, the residuals should be uncorrelated. The mean
and variance of the Pearson residuals of the INAR(1)DLi-3P
process are obtained 0.002 and 0.989, respectively. These
values are very near the desired values of the Pearson
residuals for the INAR(1) process. Following the results of
Jazi et al. (2012), the obtained INAR(1)DLi-3P process for
the data used can be given as follows

Xt = 0.5195 ◦ Xt−1 + εt .

where the innovation process is

εt ∼ DLi-3P (0.8134,−3922, 1.2776) .

The predicted values of the larceny calls obtained by the
INAR(1)DLi-3P process and the ACF plot of the Pearson
residuals are displayed in 11. The ACF plot of the Pearson
residuals confirms that the residuals are uncorrelated.

IX. ANALYSIS OF RESULTS
In this section, we interpret the empirical results more effi-
ciently. In previous section, we analyze three data set to

FIGURE 11. The predicted and actual values of the larceny calls (right)
and the ACF plot of the residuals (left).

convince the readers in favour of the DLi-3P distribution.
The all used data sets are over-dispersed. The competitive
models, DLi, DR, DIW, DB-XII, DPa and DBH distribu-
tions, except the Poisson distribution, have good properties to
model the over-dispersion. However, a few of them achieve to
demonstrate acceptable fit to used data sets such as DLi, DIW
and DB-XII distributions. The parameter λ of the DLi-3P
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distribution controls the shape of the distribution and thanks
to the parameter λ, the DLi-3P distributions gains much
more flexibility than the other competitive models. More
importantly, the skewness, kurtosis and DI measures of the
DLi-3P distribution has wider range than those of competi-
tive models. Additionally, the profile log-likelihood plots of
the DLi-3P distribution reveal the righteousness of the used
strategy in estimating the unknown parameter vector of the
DLi-3P distribution.

X. CONCLUSIONS
This paper introduces a new three-parameter discrete distri-
bution, shortly DLi-3P distribution. The statistical properties
of the DLi-3P distribution are derived in great detail. The
maximum likelihood estimation method is used to obtain
unknown parameters of the proposed distribution and a brief
simulation study is given to discuss the performance of the
maximum likelihood estimators of theDLi-3P distribution for
both small and large sample sizes. More importantly, a new
INAR(1) process with DLi-3P innovations are introduced and
studied. The three real data sets are analyzed to convince the
readers in favour of the DLi-3P distribution against the other
competitive models. We believe that the DLi-3P will increase
its popularity and find a wider range of application area in
different scientific fields.
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