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Abstract

The proposed method aims to approximate a solution of a fluid—fluid interaction problem in case of low viscosities. The
nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the
atmosphere—ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air—sea coupled flows
in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and
stable decoupling of the problem, which would allow for the usage of preexisting codes for the air and sea domain separately,
as “black boxes”. This is combined with the variational multiscale stabilization technique for treating flows at high Reynolds
numbers. We prove the stability and accuracy of the method, and provide several numerical tests to assess both the quantitative
and qualitative features of the computed solution.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

The study of solving coupled Navier—Stokes equations with special interface conditions is of considerable interest,
for instance in the simulation of atmosphere—ocean (AO) interaction or two layers of a stratified fluid. In this paper,
we investigate a low-viscosity fluid—fluid interaction problem, aiming at modeling AO flow in a turbulent regime.

Consider the d-dimensional (d = 2,3) polygonal or polyhedral domain (2 in space that consists of two
subdomains {2; and (2%, coupled across an interface I, for times ¢ € [0, T]. Coupling problem is: given v; > 0,
fi 1 [0,T] - H'2),u;(0) € H'(2) and « € R, find (for i = 1,2) u; : & x [0,T] — R¢ and
pi : §2 x [0, T] — R satisfying (for 0 <t < T)

8,14,' — ViAMi —+ u; - Vui + Vpi = fz in Qi, (11)
—vift; - Vu; -t = klu; —uj|@w; —u;)-t onlfori,j=12i#j, (1.2)
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u;-ny =0 on [ fori, j=1,2, (1.3)

V~M,‘ =0 in .Qi, (14)

ui(x,0) = ud(x)  in £, (L.5)

M,‘ZO onF,-:GQ,-\I, (]6)

where | - | represents the Euclidean norm and the vectors n; are the unit normals on 92, and t is any vector such

that 7 - 77; = 0. Here u;, and p; denote the unknown velocity fields and pressure. The parameters are v; Kinematic
viscosities, f; the body forcing on the velocity, « the friction parameter (frictional drag force is assumed to be
proportional to the square of the jump of the velocities across the interface).

Numerical methods for solving this type of coupled problems in laminar flow regime have been investigated
[[-4]. In [2], IMEX and geometric averaging (GA) time stepping methods have been proposed (and further
developed in [4]) for the Navier—Stokes equations with nonlinear interface condition.

The study of fluid—fluid interaction has received considerable interest in the last thirty years, starting with
the seminal paper of Lions, Temam and Wang, [5,6], on the analysis of full equations for AO flow. Today, many
models exist and an abundance of software code is available for climate models (both global and regional), hurricane
propagation, coastal weather prediction, etc. see, e.g., [7-9] and references therein. The reasoning behind most of
these models is as follows: the boundary condition on the joint AO interface must be chosen in such a way, that
fluxes of conserved quantities are allowed to pass from one domain to the other. In particular, the nonlinear interface
condition (1.2), together with (1.3) ensures that the energy is being passed between the two domains in the model
above, with the global energy still being conserved.

The AO coupling problem (as well as its modest version, the fluid—fluid interaction with nonlinear coupling,
considered in this report) provides many challenges. In addition to the usual issues one has to overcome when
solving the Navier—Stokes equations, the AO models should allow to use different spacial and temporal scales for
the atmosphere and ocean domains, as the energy in the atmosphere remains significant at smaller time scales and
larger spatial scales, than the energy of the ocean. In order to do so, as well as make use of the existing codes
written separately for the fluid flows in the air or the ocean domains, one needs to create partitioned methods, that
allow for a stable and accurate decoupling of the AO system.

The literature on numerical analysis of time-dependent coupling problem (1.1)—(1.6) is somewhat scarce; some
approaches to creating a stable, accurate, computationally attractive decoupling method can be found in [1-4,10,11].
The methods in [4,11] provide second order accuracy in temporal discretization. However, the authors could not
find any reports on methods for approximating the solution of (1.1)—(1.6) in a turbulent regime. This problem is
magnified over the usual issues in turbulence modeling, because of several extra obstacles: the size of the problem,
the necessity to treat the atmosphere and ocean codes as “black boxes” — therefore utilizing one of only a few
existing decoupling methods; and, finally, the lack of benchmark problems for turbulent AO coupling. We propose
to start working in this direction by using a stabilization technique for low-viscosity problem (1.1)—(1.6).

Various stabilizations have proven to be essential computational tools for the numerical simulations. The general
idea of two level stabilization is pioneered by Marion and Xu in [12] and the analysis for Navier—Stokes is presented
in seminal papers [13,14]. This idea has been strongly connected with variational multiscale (VMS) methods
introduced in [15,16]. VMS methods have proven to be an accurate and systematic approach to the numerical
simulation of multiphysics flows and different realizations of VMS in the literature exist, e.g., see [17-20]. In
particular, we consider a projection-based VMS in this paper which has been proposed in [21]. According to VMS
concept, global stabilization is introduced in all scales, then removes the effective stabilization on the large scales
of the solution. In this way, stabilization is effective only on the smallest scales, where the non-physical oscillations
occur. For more details, we refer the reader to [19,20]. We also refer to [22] for the derivation of the different VMS
methods for turbulent flow simulations.

Due to the success of VMS method, there is a natural desire to introduce this accurate and systematic approach
to the simulation of fluid—fluid interaction. We consider an extension of VMS method with GA of the nonlinear
interface condition. As first contribution of this paper, we first show the conservation of GA-VMS method’s discrete
kinetic energy, frequently evaluated quantity of interest in AO flow simulations along with stability and long-
time stability properties of GA-VMS method. We show both stability bounds are unconditional, i.e., without any
restriction on time step size. Secondly, we provide a precise analysis of the stability, convergence and accuracy of the
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GA-VMS method. Lastly, we present numerical studies in case of different viscosities compared with monolithically
coupled algorithms.

The paper is organized as follows. The GA-VMS method for solving (1.1)—(1.6) in the case of high Reynolds
number(s) is presented in Section 2, along with a short discussion on an alternative formulation of the method.
After mathematical preliminaries are introduced in Section 3, a complete numerical analysis is then done on the
proposed method in Section 4. Finally, Section 5 provides the numerical tests that validate the theoretical findings,
and conclusions are given in Section 6.

2. GA-VMS method for fluid—fluid interaction problem

In this paper, standard notations of Lebesgue and Sobolev spaces are used. Let each subdomain 2 C RY, i =
1,2,d = 2,3 be a bounded domain. The L? space is equipped with the inner product, (-, -) @, and the norm || - || o, .

In particular, the norm L3(I) at the interface will be denoted by | - ||;. In each subdomain, the spaces H*(2)?
and L?(0, T; H*(2;)) are equipped with the norms || - k. and || - [l Lo, 7; k(52> Tespectively. The norm of the
dual space of H~'({2) of H,(f2) and the semi-norm of H*, for 1 < k < oo are denoted by || - |1 o and |- |,
respectively.

For the weak formulation of problem (1.1)—(1.6), we use the function spaces fori = 1, 2
X; ={ve@*2):Vve LX), v=0 on a2,\I, v-A; =0on I},
0 = L3@) =lg e L@): [ qar=0)
2
Herein, define X = X; x X5, Q = Q) x Q and L*(2) =L*(2,)x L*(f). For u; € X; and ¢; € Q;, we denote

u = (uy, uy) and q = (g1, ¢2), respectively. For u, v € X, the L? inner product and induced norm are denoted by
(u,v) and |u| = +/(u, w). In a similar manner, the H' inner product and induced norm are denoted by (u, v)x and

lul x = +/(u, wy, respectively.
Using these function spaces, the weak formulation of (1.1)—(1.6) is as follows: Find (u;, p;) € (X;, Q;) for
i,j=1,2, i # j such that for all (v, g;) € (X;, O;).

Brui, vi) o, +vi(Vu;, Vv g, + c¢i(ui; ui, vi) — (pi, V-vi)o, +(V-ui, qi)o,

+/c/1|u,-—uj|(u,-—uj)vids=(ﬁ,vi)gl.. 2.1
Here and in the rest of the paper, c;(-; -, -) denotes the usual, explicitly skew symmetrized trilinear form

ci(u;v,w) = %(u -V, w)g, — %(u -Vw, v)g, 2.2)
for functions u, v, w € X;, i = 1,2 on ). Notice the well known property

ci(u; v, w) = —ci(u; w, v)

for all u, v, w € X; such that in particular ¢;(u; v, v) = 0 for all u, v € X;.
The standard monolithic weak formulation of (1.1)—(1.6) is obtained by summing (2.1) over fori, j = 1,2, i # j
and is to find (u, p) € (X, Q) such that for all (v, q) € (X, Q)

G, v) +v(Vu, Vv) +c(u;u, v) —(p, V- V) +(V-u,q) + « / [[a]|[u][v]ds = (£, v), 2.3)
I

where [-] denotes the jump across the interface I and f = f;, v = v; on (2.

For finite element discretization, let 7" and T be admissible triangulations of (2, where T}" refers to fine
mesh and TiH denotes the coarse mesh, i.e. H > h. Let (X f’, Qf?) C (X;, Q;) be conforming finite element spaces
satisfying the so-called discrete inf—sup condition [23,24]. In our tests, we have used the velocity-pressure pairs of
spaces (Py, Pr—1), k > 2. Let Vih be the space of the discretely divergence-free functions

VI ={vi € X" (qni, V-vni)o =0, for all g,; € O, 2.4)

which is a closed subspace of th The dual space of Vih is given by Vl.h* with norm || - [|,»«. We also need to
introduce the space l

L¥RT, V™) = {fi : 2 x RY — R, 3IM < oo with || fi(®)llym < Ma.e.t > 0} (2.5)
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To solve two decoupled systems (atmosphere and ocean separately) through GA on the interface with the
projection-based VMS formulation, for each subdomain let

LI c L :@*02)*™

be a continuous finite element space of functions defined on (2; representing a coarse or large scale space and let
vr,; be eddy viscosity term assumed herein a non-negative function depending on the mesh size 5.

We now present the projection-based VMS discretization of (2.1) by using the Euler method in time. For this
purpose, consider a partition 0 = fy < t; < --- < tyy41 = T of the time interval [0, T] and define At = T/(M + 1),
» = nAt. GA-VMS formulation applied to the problem (2.1) reads as follows: Given uj,, u); € X!, find

(uﬁl, p;,‘jl, G]I.H'"“) e (X", ol LE), n=1,..., M, satisfying

“7*1 — Up;
(#, vni)eo + (v + VT,i)(VMZfl, Vuni)o + Ci(MZjIQ MZ?, Vp,i) — (PZ,TI, Vi)
, 14172
+(V gt qnidg + & / [y )t vp s — x/uz,,-uu,;n”zuuz 1 vpds
1 1
= (ﬁn+1s vh,i)Qi + UT,Z'(G],‘HLna vvh,i)Qi (26)
(G = Vup ;Lo =0, 2.7)

for all (Uh,iv qh.is LIH) € (ths th9 LlH)

Remark 2.1. In (2.7), the tensor GEHI’” represents the large scales of Vuy, ;, defined by L?-projection of Vuj, ; on
£2; into the large scale space L (see Definition 3.1). Hence, the difference GJZ.HI'" — Vuy, ; represents the resolved
small scales. This way, the GA-VMS method (2.6)—(2.7) introduces the additional viscous term into the momentum
equation acting only on the resolved small scales. We note that the L- projection terms for G]IH’” can be discretized
implicitly or explicitly in time. We will consider here the computationally attractive explicit discretization, and refer
the reader to [20,25] for further discussions on explicit vs. implicit discretizations of G],-HI’".

In GA-VMS formulation of (2.6)—(2.7), the large scale spaces L and vr; parameters must be chosen suitably.
In [26], it was concluded that the choices of L¥ have a large impact on the results. The large scale spaces have to
be in some sense a coarse finite element space. Mainly, there are two approaches. The first approach is to define
L# using lower order finite element spaces on the same mesh, provided that finite element spaces (X fl, Qf.’) are
high enough order [20]. Second approach is to define L7 on a coarser grid, H > h, see, e.g., [19]. Herein, we
will use the first approach, which is the most common choice in geophysical problems because of the very large
scales of the problems studied. Thus, we choose L to be piecewise polynomials of degree k — 1.

In general, VMS approach will treat the diffusion differently in each subdomain. For instance, one can model a
turbulent atmospheric flow over a transitional or even laminar ocean flow; in that case, the choice vy = h, vy 2 =0
could be warranted. However, in order to address the most complicated case of both flows being turbulent, but also
trying to minimize the number of parameters in the method, in our numerical experiments we choose vy ; = & in
each subdomain (typical for various artificial viscosity-type models); different optimal parameter choices of eddy
viscosity parameter require further investigations. In addition, we note that while the larger choice of the coarse
mesh size H provides more efficient projections into large scale spaces L and reduces storage, the accuracy of
the solutions decreases. For k = 2, the typical choice is H = O(h'/?) for the projection-based VMS. This choice is
obtained from balancing terms in the convergence analysis. In our numerical studies, we will use single mesh, that
is H = h. With the space LiH consisting of piecewise polynomials of degree k — 1, this creates a good balance
between accuracy and required computational resources; see [20] for a similar discussion on the choice of L
spaces.

It also has to be noted that while the projection steps between two time marching add extra computations beyond
GA, these computations do not add extra time for computations and even increases the efficiency of the linear
solvers, and hence decreases computational time, see Section 6. In addition, they do not require too much extra
memory since only the projection of already-stored solutions from previous time level is taken on a space which
has relatively much less degrees of freedom comparing to that of velocity spaces. Since the corresponding system
matrix for the projection is symmetric and positive definite, it allows the usage of efficient iterative solvers such as
conjugate gradients. Finally, we note that there are several possible realizations of VMS methods in the framework
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of finite element discretizations. For further discussions of VMS methods, we refer to reader to the survey on the
VMS methods [22].

With the discrete inf-sup condition, GA-VMS formulation (2.6)—(2.7) can be computed equivalently solving:
Find (u} ', uph!, GIY" G e (v, v L, L) such that

n+1 n

u — U
h,1 h,1 1.t
(— v, + 01 +vr DVt Vo D, + el up i )

1 1/2 —1q,1/2
+K/| up|up o, nds—K/uZ,zl[uZ]l Pl o, ds
1

=" une, + vr 1 (G, Vor ) (2.8)
G\ = Vul |, Lig, =0, (2.9)
and
n+1 n

W't —u
2 2 1 o.h 1 1
(— vp2)o, + (2 + VT,Z)(VMZ:E Voo, +ea(ulh MZJE , Vn2)

1/2 —_1q,1/2
+x/|uh |u"“vhzds—x/u,,.|[u 120 vy ads
I

= (A v g, + 172Gy, Vo), (2.10)
(G, = Vul 5, Lig, =0, 2.11)

for all (vy, 1, vao, L, LYY e (V] V]I, LE L.

Remark 2.2. Notice that the GA-VMS method (2.8)—(2.11) is derived, based on the variational formulation (2.1)
— or, equivalently, one could derive (2.8)—(2.11) from (1.1)—(1.6), but the coefficients v; would need to be replaced
with v; +vr; in (1.2). If, however, one tried to create a GA-VMS method from (1.1)—(1.6), all the interface integrals
in (2.8)—(2.11) would be multiplied by UL VT’ . Numerical tests show that this alternative approach fails to provide
good quality approximations even for hlgh v; values.

3. Mathematical preliminaries

In this section, some inequalities and definitions are introduced. The following lemmas are required for the
analysis.

Lemma 3.1. Let o, 8,60 € H'(£2) for i = 1,2, then there exist constants C(§2;) > 0 such that
ci(a; B.0) < C(Wllall g Vel 1V Bl IO o

/Otl[ﬂllé’ = CUDllalNBINe
1

ol = € (el IVl i+l 1Vl 3 ) 3.1

Proof. The first two bounds are standard — see, e.g., Lemma 2.1 on p. 1301 of [2]. The third bound can be found
in [27], see Theorem 11.4.1, p. 63. O

Lemma 3.2. Leta; € X;, 0j € X;, B € HY($2) and €;, €j,&,¢€; (i, j = 1,2) be positive constants, then one
Cx? €; ;i
x/|a,-||[ﬂ1||9,~| < Nl FIBNEG + 510515, + 5 -1V, 1%, (3.2)
I V}- p ZEJ J
o€ o2 L 5 6110 112
K/IOliII[ﬂ]IIQjI < Ck (U—'Sll[ﬂ]lllllolillgi +v—§||[ﬂ]||1||9jllgj>
1 i j

+ L Va3, + L (V6,1 (3.3)
e N T g NPy '
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63 2 2 j
|Oll|| [B1116;] < Ck ||Oéz||1< 5||,31||91 5”:82”_()2 —16; ”_Q)
V5

—|IV — IV, |2 \{Z 3.4
+4€1 VB ||Q1 + 462 = | Ballo, + || ”_Q 3.4

2/9

Proof. Use Lemma 3.1 and Young’s inequality (see Lemma 2.2 on p. 1302 of [2]). O

Denoting the corresponding Galerkin approximations of (u;, p;) in (X ih, Qf’) by (vn.i, gn.;), one can assume that
the following approximation assumptions (see [23]):

inf (Nl = vl + VG = v )l ) < CH i, (3.5)
v,,,,-exil
inf lpi = qnill < Ch* I pills- (3.6)
theQ

The L? projection is defined in the usual way.
Definition 3.1. TheA L? projection P of a given function L; onto the finite element space L is the solution of
the following : find L; = PAILL; € L¥ such that
Ly — P"1Li, Su)g, =0, (3.7
for all Sy € LiH.
Hence, we get
ILi — PPLill g < CH"Lillis1, (3.8)

for all I € (L(£2))™4 N (H**1(£2))4<4.
We also use Poincaré-Friedrichs inequality as: There exists a constant C, such that

lunillg, < CpllVunillg, Yup; € X! (3.9)
holds. Along the paper, we use the following inequality whose proof can be found in [28].

Lemma 3.3 (Discrete Gronwall Lemma). Let v;, 0;, Bi, a; (for i > 0), and At, C be a non-negative numbers such
that

M M M
ym+ ALY 0 <At iy + Aty pi+C, VM = 0.
i=0 i=0 i=0
Assume o; At < lfor all i, then,

M
yM+Ar29 <exp<AtZ€ At)(AtZO:ﬁ,Jrc), YM > 0.

i=0

4. Energy conservation and stability properties of GA-VMS method

This section considers the energy balance and the stability for the GA-VMS scheme. We first show that the
scheme admits an energy balance which is analogous to balances for the continuous fluid—fluid interaction problem.
Next, we prove its unconditional stability and long-time L? stability of velocity.

Lemma 4.1 (Global Energy Conservation). Let the starting values ”2,5 and u,ll’i be given. The scheme (2.8)—(2.11)
admits the following energy conservation law:

M+1 M+1 M+1 M+1
% ||Ql+|| R, + A Vel S, + oral Va1,

1 1 2
+ At Z(Hu"* — 1 5, + lups —uh 5,
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M
+ A0 Y (20 IV IR, +or 1V =GR IR, + vr Vi, — G,

n=1

M
+ A Y (202 VU I, + vrall Vigh = G, + vral Ve, — G,

n=1

+KAr/|[uh]|<| MLl s

112 2
+KAtZ/’|[u;]|1/2u;+ll =2, | ds
n=1 1

ds

2
+mz2/\|[uh]|‘/2 v I

n=1

1 I 2 I 2 I 2
= lluy, 1||QI + lluy, 2”92 + AI(VT,I Vuy, 1||Q + VT,2||Vuh,2||QZ)

+KAt/|[uh]|(|uh1| + Jub o )ds + 241 Z(fm W, + 2408 Z( g, “.1)

n=1

Proof. Letting v, = uﬁl in (2.8) and v, = uzgl in (2.10) and using the skew-symmetry property of nonlinear
terms, we get
n+1 n
u, ' —u
h,1 h1 1 1
(———=.up D, + W +vr )Vl I,

1,2 172 —1q,1/2 1
+K/| uy] ||u’,fq | ds—/c/uz’2|[u2]| / [~ ”+ ds
I

= (I Do, + G, Vg, 4.2)
and
uri+1 _ un
(22 e, + )1V I,
+Kf| w1l ds—x/u',:,luu',;n”zuu 1
I
= (A ul D, + oGy, Vul g, (4.3)
Utilizing
1
(a—b)-a= 5<|a|2 + la — b — b, 4.4)
we have
oy (N, + 5 = a1, = N 1 1)
+ 1+ or DIV, — veaGE Vi g,
+Kf|uh 11 L' ds — /uz,2|[uz]|“2[uz—‘1”2 s
1
=" up D, 4.5)
and

+1 +1 2 2
5 51, - 5! = o, =l 1)

+(V2 +or)IVup 55, — vraGy ", Vo,
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+x/|[uh]nu”+‘| ds—xfuz,luuzn”u w1 g ds
1
_ (fn+l n+1)02’ (46)

Adding (4.5) to (4.6) and multiplying by 2A¢ yields
lup i 1%, + Nt — g 1%, — Mg 1%, + N5 1%, + lup s — uh o115, — lluf 15,
+ 240 (1 + v DIV I, = vra G, Vi ha, + 2+ vr I Vg o, = vraG5, Vil 5o,
+2KA[/|[11 et ds+2/<At/| uh]||u"+l| ds
1

- _ 1/2
_ZKAt/“Z*Z'[“Z“I/z[“Z 111/2”%1‘“—ZKAt/,“Z,Il[uZ]Wﬂ[uZ Nt

=2At(f7 " uf e, + 2405w e, 4.7

The interface terms on the left hand side of (4.7) can be expressed as (see [2])
/ [EANT AR f 7| [ U R
n+1 1/2 n—111/2 n+1
+/c/|[uh]||u IdS /uhl|[uh]| [[w, 1| " uy 5 ds
/|[u,,]|(|u"+‘| 1 s — —f| 100 o+ L o s
+5 (|[uzl|‘/zu;ﬁl 11"
K , n 14,172 2
+E/I‘|[u,; W 2upt — (e ugil‘ ds. (4.8)
Substituting (4.8) into (4.7) gives

+1 +l 2 2 +1 1 2 2
ey S 0%, + e 5 = w1, = N 1%, + M 5 0%, + g 5! — w515, — g 51,

+2At<(V1+VT1)||VMn+1||Q, v G Vil Do, + (0 +vr)IVul 5 g, — vr2(Gy™", Vu "“)92)
+KAr/|[u,,J|<|u"“| ] )ds—mr/uu Y1l 12+ a5 Pds

_ 1,12 2
+xArf\|[u21|‘/2u;;“ w1y /\uuzn”uz;‘ ™11 | ds
1

=24t(f g D 4 240w g, 4.9)

Also considering the fact that (Vu] , — G;"", G;""), = 0, one can easily show
H, H,
IVup; — G 1%, = Vg 15, — 16115,
The last equality and some algebraic manipulations give

Wi F eIVt 1%, — v (G, Vit g,

vi | Va1, + —(||wz+,<1 — G I3, + 2G, Vg — 1G] 1%,

— oG Vo, + S (I 1%, — 190,1%,) + 521V, 1,

+1 +1 H,n 2 Vr.i H,
Vil Vuy, ”_Q +—|IV wi — G, +—|IV i~ G ”IIQ,.

Vr.i n+1y2 2
+= (IVu 1%, = ||Vuh,i||gi)-
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Substituting the last equation in (4.9),
+1 +1 2 +1 +1 2 2
Nt 1%, e — a1, — N g1, + s S, - g — g 0%, — g 1%,

+ Ar(zvl Vit 13, + vra I Vagt = G,

Fvr Vil = GE IR, +vra (15 1%, = 16 11%,))

+ Ar(203| Vi 5 I, + vra Vs — GE I,

FuralVuh, — Gy I3, +vra(IVus 113, — ||Vu;;,2||292))

+KAt/|[uh]|(|u"“| + luy 5| )ds—KAt/| Ty P+l Pds

2
+;<At/‘|[u2]|”2ug+1‘ [Crlh u272’ ds+KAr/1’|[uZ]|1/2u2+2‘ =91 ds
=241 up Do, + 2405w e, (4.10)

Summing over the time levels completes the proof. [

We now provide the stability of (2.8)—(2.11).

Lemma 4.2. Let f; € L%, T; H'(2)) fori = 1,2. The scheme (2.8)—(2.11) is unconditionally stable and
provides the following bound at time step t = M + 1

M+1 M+I M+1 M+1
Nl 0%, A+ Nl 1, + At Va1, + v IVl %)

M
1 1 H,n 2 H,n 2
+ At Z(wnwzj Iy + v Vi = GE I, + vra Vi — G, )

n=1

M
1 1 H,n 2 H,n 2
+ A Y (nalI Va5 I, + vrall Vi — G I, + vral Vi, - GE I, )

n=1
+xAt/|[uh]|<|uM“| M ) ds
_ 1/2
+KAth‘|[u;§ 12— ) ds
n=1 1
M 1/2
+KAIZ/‘|[IIZ W 2ups — |[u';;‘]|/ ds
n=1 !

12 1 2 0 12 12 1 2 1 2
= ”uh71”Ql + ||’/‘h,2||92 +KAI/|[uh]|(|uh,1| + |”h,2| )ds + AZ(VT,IHVMhJHQI + VT,2||V”}1,2||92)
1

M

F ALY O A g oy AT ,) (4.11)
n=1

Proof. Performing Cauchy—Schwarz and Young’s inequalities for the last two terms on the right side of energy
conservation equation (4.1), we have

24t Z(f"+1 e, < v 1Aanf"“u Lo, +v1Athw"“an, (4.12)
n=1

24t Z( g, < v lAan T2 192+v2AtZ||W"“||92 (4.13)
n=1

Substltutmg (4.12)—(4.13) in (4.1) and dropplng non-negative terms produces the required result. [
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We next prove that (2.8)—(2.11) is unconditionally long-time stable. To perform the long-time stability, in view
of Lemma 4.2, the right-hand side of (4.11) is denoted by Sy,

. 12 12 0 12 12 12 12
Sy = ||uh,1 ||_Q1 + ||uh,2||(22 +xAt / |[“h]|(|uh1| + |th2| )ds + At(VT,l ||Vuh71 ”Ql + VT,2||Vuh,2||Qz)
1

+Ar2(v AR g o AT o)) (4.14)

Lemma 4.3. Let f; € L¥(RT, Vih*)for i = 1,2 be given, then solutions of the scheme (2.8)—(2.11) are long-time
stable in the following sense: for any time step At > 0 and for any n > 0

513, + vra AtV g, + kAt / 11035 s
Hlup 5 1%, + vra At Vup b, + kAt f 011035 s
- 2
< ()™ (lluh 1, + vr At Va1, +KAt/|[uh1|<lui,1I ds
1

2
b 53, + i At Vil AR, + K At / 11} s )

+a At A ||LOO(R+ v +v, ||f2||LOO(R+ Vh*)) (4.15)
\ . {viAt Vi v,-(CKZSM N 2C12, N v,) } P 12
where o = min , ,— —L ori =
3Cl27 3VT,i 3 4 vis 4

Proof. Letting LY = GEHI’” in (2.9) and (2.11) and utilizing Cauchy—Schwarz inequality gives
IG " ey < Vel (4.16)

Adding (4.5) to (4.6), applying Cauchy—Schwarz and Young’s inequalities, using (4.8), (4.16), multiplying by 2A¢
and dropping the non-negative terms, we have

I3V ora AV W, A [ i s

+ ups %, + vra AV, +KAI/I Wiy s
+ 1)1At||Vu"’H IIQ + Uzﬂf”V’lHl ||Q2

2 -1 2
< luj 15, +vea At Vg 115, +KAI/|[HZ 1l 1 [D)ds
1

+ Nl o lI%, + vr2 At Vuy |5, + k At / w1, P)ds
1
+ AT AT g+ AL e (4.17)

Using Lemma 3.2 with ¢ = 2, Poincaré inequality and Lemma 4.2 produce

2

Ci?
K/|[u ]|| n+1| = I[uh]| | "+1| +(_+_)”V n+1”
I

I/\

2
+1 1/3 +1,,5/3 p Vi +12
|[ w7l N Vug e, +(7+Z)||VMZ,,- ',

i

(CKZSM

2C35 |
< (— +_+_)||v g, fori=1,2, (4.18)
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where S, has been defined in (4.14). Thus, the last two terms on the left hand side of (4.17) can be written as

1 1
v AtV G, + Al Vup g,

> a(nu"*‘ngl +vra AtV G, + kAt / w11y )ds

+ up 5%, + vr2 At Vuy G, + kAt f [T )ds) (4.19)
(At v v Ck2S 2C; v

where o = min{ Y , e , v_( K ou +—2L 4+ v—)‘1 }, for i =1, 2. Inserting (4.19) in (4.17) and multiplying
3C§ 3vp; 3 4 vf 4

by (1 +a)~!, we obtain
lup 5%, + vea AcVup G, 4+« At f w11 s
53, + vra AV R, +xAr/I|[u WG Prds
=4 +a>—‘(||uz,1||291 + v AtV 11, +xAr/I|[uz*1]|<|uz,1|2)ds

+ g, l1%, + v At Vi, |E, + mr/ w11, 2|2)ds)
+ Ao (U4 AR 0 4+ At A ) AT (e (4.20)

Vh*
Utilizing induction produces the stated result (4.15). O
Remark 4.1. Lemma 4.3 proves that the long-time velocity solutions are bounded by the problem data and this

bound is weakly dependent on the initial conditions when n is sufficiently large. In the limit, as n — oo, this upper
bound on the problem data becomes independent of the initial conditions.

5. Convergence analysis

This section presents convergence analysis of (2.8)—(2.10). It is assumed that all functions are sufficiently regular,
i.e. the solution of (1.1)—(1.6) satisfies

ue L0, T; HY' Q)N H3 (), 8u € L0, T; H*'(D)Y),  d,u € L0, T; H' (2)?). 5.1
We need to define the following discrete norms to use in the convergence analysis.
M 1
lelloep = max ). Nl = (A )» ;)" (5:2)
j=
Following the notation of [2], let D"*' = 95(1 + KCE™ 4+ |Vulll, o + 0F, + v%’z)h—z)’ where U =

max{(vi +vr.1)"L, (V2 + vr2)7'} and E"T = max;_o 1,1 {max{[lu(t?)|S, lluj]}}.

Theorem 5.1.  Let the time step be chosen so that At < 1/D"*'. Then the following bound on the error holds
under the regularity assumptions (5.1):

M
3
JuG ) — w4+ 2 v A VG — a1

n=I

+2:<Ar2 / I TG — w s + 2 <v2+vm>AtZ||V(uz<r"+‘> O

n=I

(vi4v71)At
< Jue") —uj? + %mwmo‘) —up DID, + 1V () — ) IS
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(vatvr o)At
+ LD 0V st - uh I, + 19 2) = )1

+ CAP + B + (V7 52 +vr2) ™ + 07 (0 +vr) HH), (5.3)
where C is a generic constant depending only on f;,v; + vr;, §2.
Proof. The finite element error analysis starts by deriving error equations for GA-VMS finite element method

(2.8)—(2.10) by subtracting the scheme from weak formulation of (1.1)—(1.6) . To do this, first note that the true
solution of (1.1)—(1.6) at time #"*! satisfies

(ul(rﬁ‘) — up (")
At
+x / @i (") — w ("D T g ids + e (s un (0", i)
I

u (" —ua (")

o) + v Va0, Vo Do, — (01T, V-,

=(

— Ju ("™, v D), + e (Vur ("), Vg,

At
+ (T v e, (5.4)
and
u ([”+1) —u (tn) " n
(—————, Un2) 2, + (2 4+ vr ) (Vua ("™, Vup2) o, — (p2(t"™), V - vi2) 0,

At
+K / (") — i ("D T g ads + eaua(t™); ua (™), i)
I

up (1" — un (")

= (T — Qua(t" ), vp2) 2y + V72 (Vua ("), Vo 2) o,
+(HH w0, (5.5)
for all (vj,1, vy2) € (VI', V). For arbitrary &} € V' and a3 € V}!, the error is decomposed into
S = g () — = () — i) — @ — iy = — g
ngrl = (™) — w = ™) — i) — ] — ) =t — g, (5.6)

The interpolation error can be estimated with (3.5). Thus, subtracting (2.8)—(2.11) from (5.4)—(5.5) gives

¢n+l _ ¢h .
(T vp, 1) + (V1 g, 1)(V¢ZJ[ s Vo), +« / |[uh]|un+lvh,1ds

—K / Il Y]y (" yvp ids + « / wr (" [a" ] vy 1 ds
I 1

1/2 —1q,1/2
—K/u',:,zuuzn/uuz 11" vpads
1

nt
L w e, + W v DV Vo Dg, — (i@ — CIZTI, Vg

At
n u (tn+]) —u (tn) n n
+ (0ruq (2 +1) - %, vy, 1)()1 + qul(G]iH’ — Vu(t +]), Vvh,l)Ql

i i 1. n+tl
+ o1 u (", o) — Cl(ufﬁ ; Mﬁ ,UR1), (5.7

=(

and
¢n+1 _ ¢Z,2
At

—K / ™ ™) ua (" vy 2ds + K / w (" Y] g 2ds
I

1

( )y + 2+ ) (Vo Vuro)a, +« f [ 1wy 5 v 2ds
1

1/2 —1q,1/2
_K/“ZJH“Z” P vy 2ds
I
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+1 n
nmo =N
(%, Un2)a, + W+ vr ) (Vs Voo, — (pa(t"™) — q;ﬁl, V2o,
ur (1" — up (1)
At
+ ca(ua(t" s un ("), vy 2) — Cz(MZEI, MZJEI, Vp,2).

+ (Bua (") — i), Fr2(Gy " — Vs (1", V),

Then choosing vy, | = d)"“ in (5.7) and using the polarization identity (4.4) provides

o (||¢"“||91 165,113, + 165" = @i11%,) + 01+ vr DIV,

+x / [y ]luy ¢t ds — / " D]y " gyt ds
1

+K/MZ(tn+1)|[u([n+1)]|¢2jlds _K/MZ,2|[UZ]|1/2|[UZ_1 | ¢/n+1ds
I I

n+1
Ui
(1—

op D |+ 0+ vr) [Vt Ve e | + (Y — iV - g D |

u (l‘n+l) —u (tn) .
= A B¢ +1)Ql

1 1 1 1. ntl 1
+ e (" (", ¢ — eyt ug L op .

+ @y (") —

1[G = Vi), Ve g,

Applying Cauchy—Schwarz, Young’s, and Poincaré inequalities along with Taylor theorem, we get

nn+l _ 77 i+l
A gt < Conbor At [ i,
tl‘l
w1 +vr1) n
+ e IVeilG,
W1+ vr) (VT Vet e, | < Coor+vr )Vl g,
(Vl +vr1) n
= IV,
[(p1 ") =gy Vg D | < COr o) P — g G,
(v +vr1) "
+ e IVeiTlG,
ety W@ =@, . wy (") — uy (1)
‘(aful(t - A Day| = ConFvr ) @ - —————Il5,
(V1 +vr1) n
e IV,

13

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Eqgs. (2.9) and (2.11) state that GJI.HI’" = PHVMZJ- where P is the L?(§2;)-orthogonal projection defined by (3.7).
Hence, utilizing Cauchy—Schwarz and Young’s inequality to the fifth term on the right hand side of (5.9) yields

v |G = Vi ("), Vethg,
< vra(PHV @ —ur (™). Voo, — vea(( — PPV i), Veiihe,
—vra (V") = uy ("), V1D,
< Cvr i’ +vr)™! (||P”vm 1%, + 1PV, 115,
+ (I = PPYVu ", + 1V @i ") — w»nzl)

Vi + VT 1
+——= Ve 1%, -

(5.14)
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Taylor remainder formula is used along with (3.7), (3.8) and inverse inequality to get

vra |G = Vui (", Vi,

= Cor 01+ v ™ (191 + B 216512 + B ()1

vy +v
)+ 1 T1||V¢"+'|| 2 (5.15)

The nonlinear terms can be rearranged by addlng and subtracting terms and using cl(uZJrll; ;1“[1 ”H) =0 as

follows.
1 (Y uy (Y, ¢n+l) C1(MZ+11, “Ztlv ¢n+1)
=™ @, opih — a@h i @, ¢ith
+erG i eph. (5.16)
Bounds for the terms on the right hand side of (5.16) are given as
@t @™, ¢yt < Cor 4 vr )TV, IV I,
(v +vr1)

+ e IVe TG,

@t m @, i = Clign g IV G IV ™ Dl IV, e,
< Ci +vr) gt G, IVu " HIG,
(V1 +vr1)

+ At ”8[1/[] ||L00(tn mHL H(02))

6 IVl
cr@y T epth < Cor v )T IV, VU IS,
(v +vr1) "
+ e IVe TG, (5.17)

The interface integrals can be expressed as

/ w1yt it ds — / [ D ur "y ds
_ _”/I'[ A ds+:</|[uh]|n"“¢>2#ds

i /1 (gl = 108 (" s

i /1 (L — [0 gy s

+x / (Ila@™)]| = [[uE" 1w gt ds, (5.18)
1
and

n n n n— 2 n
f«/u2<r"+‘>|[u(r"“)uqsh*ﬁds —K/u,,zuu 1721011 gt ds
1

1
=« f (") = ur ("D DIy ds + f (52 = )l Dy ds
i / o (1w - —<|[u(r N+ |[u<t"*1>]|>)¢;:j‘ds

)

(5
/,u (GO + 101~ 011+ 11D ) s
(

+

(0@ + [fuG"=H] - —(I[ "I+ I[ﬁ'H]I)))¢Z,+1'dS

+
=

1
+K/ulz SO+ 101D = 111 210w~ 1) s (5.19)

1
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With the use of Lemma 3.2 and the following inequalities
oG = 1@ 1| < 11,
0w = 1060 <l (5.20)

we bound the terms on the right hand side of (5.18) as

/In"“ll[u 13" 1ds

(n + UT 1)

||n"+‘|| I 117 + Cr +vr) g IS, + IV 15, (5.21)

p / (Y] — ()1 ds
I

< cK6||u1<t"“>||?(<vl F .0 Nh 15, + 2+ v72) NI, 115,

5[ pn+] (i +vr1)
+ 0+ I I, ) + o

(va 4+ v72) (v +v7r 1) "
e IV, + S IV, (5.22)

2
N

/Im(t"“)l(l[ll 11— [la@IDIg; Y Ids

Ck?
< —||u1<t"+'>|| " 117 4+ Cor +vr) g1,

(Vl +vr1)
36

/|u1(t"+1)||[u([ ) — u(t”+])]||¢n+l|ds

IVt 1%, (5.23)

Ck?
= =l @ DITIE" = u@ DT + Cor+ v I3 1,

(V1 + vr.1) ||V¢n+l ”01 (5.24)

Similarly, the first six terms on the right hand side of (5.19) become

/ lua (") — wa () [u(E ] s

Ck?
= =l = w7 IE I + Cor+vrn N3,
(Vi 4 vr1)
+ e IV, (5.25)

f B0 TG 1 Ids

< i u( I (02 + vr2) 1970, + 01 + v e 1, )

(v2 +vr2) o2 (w1 +vr1)
+ T||V¢h,z||92 T

Ck?
/ I I DG, Ids < == I3 1T DI + Con+vr) 1955,

(Vl + VT 1)

IVt 1%, (5.26)

IVt 1%, (5.27)
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/'”“' (1m0 = S0 + w10 ) g s

IA

% / |u2,2|(|[u(tn) — u(ﬂ’H—l)]' + |[u([n—l) u(t”+])]|)|¢n+1|ds
1

2

C
< =g o1 (I = w17 + "™ — w7 )

w1 +vr1)
36

/'““' [0+ a1 — [ — 161 g7 ds

+Cr +vr )l G, + Ve 1%, (5.28)

||u,,2|| AT + 1" D + Cor+vr)llg g,
N (v1 +UT1)||V¢n+]||Ql (5.29)
/|uhz| "]+ 1[0 — (w1 — [[w), ]|)|¢"“|ds

< C®lluj 59 ((vl Fur ) NG, + 2 +vr) 9,115, + 0+ vr) 7l I,

- W) oo
+ 02+ 072 1653 W, + 0+ I, ) + (T IV,

(va +vr2) " (v +vr1) (va + v72)
eIVl + IV, + IV,

v +vr1) .

e NCAN P (5.30)

The last term of (5.19) can be written as
1 n— n n— n
« / (S0 + 1w~ 1D) = 102105~ ) 971

< —/|u,,2| 1511+ 1165~ 10”1+ 1"~ 111+ 1w = w11 ) 1945 1ds, (5.31)

which can be bounded in a similar way to (5.29) and (5.30). Inserting all bounds in (5.9) and multiplying by 2 At
gives
it 1%, — Ik 15, + N85 — dh 15, + 1+ vr )AL Ve g

n +v
+2mr/|[uh]||¢ HPds — %At(nwh %, + 1VentIs)

V2 4+ vr g
- ————Au(|IVé¢, 2”()2 + ||V¢ ||Q2

1

SCAt(Arl f 10 1, + (14 IV DI, + 15 1%, 1V )2
m

u (1" —uy (e
At

+ vt 1 +or ) T HR un ()5, + AP du |12

+ TG + N DI

+ e O IE) = w@ YT + lua @™ — wa @17 1TuE O

+ s I I DT + luh 7AW T + 10"~

a3 (1™ = 06 D1 + (G — w1 + [ue) - u(r"—lnﬁ))

+lp " = gp G, + N0 " — 1%, + IVni I,

Lot i+l H'(Q))
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=5 1y 4 6 16 1 6

+Ci +vr) <1 + IV " DG, + kU@ HIT + T O
+1 5 1 -2 2

+ llup 57 )>|I¢" 1%, + Cie ((vl + 7.0 Ul HIG + lluh 19 + v,/ )II(MZ,IIIQ1

+ Ck®(vy + vr,l)s(nul(r"“)n? + [luj, 1§ + ||[u<t"“)]||?> 5 5115,

+ CS w1+ ) g 15 (105 1, + 195513, ). (5:32)

Under the interpolation estimates (3.5), (3.6) and Lemma 3.1, the terms on the right hand side of (5.32) can be
expressed as

t”+]
[ 10 < ORI B s sy (533)
M7 < IV G, < Ch* luillzyy g, (5.34)
I %, < CR* P luilizyy g (5.35)
[P — g s, < CR*IpiIR o, (5.36)
W (") — ui (")
At”aful - A—IHZ‘QI E CA[ ||8tfu1||LOC(tn m+1. LZ(Q))’ (537)
for i = 1, 2. Substituting (5.33)—(5.37) into (5.32) and summing over the time steps yield
e 1%, — ln I, + Z Igp st — oI5, + (o1 + v A Z IV,
n=1 n=1
M 2 v +
n n 1 Vr.1
+2KAtZ/ w1l ph ' " ds — ——— At Z(va %, + V853115,
1%} + V7.2 Vatvra 4
— rZ(nwh 2%, + 1V, 15,
< C(h”‘“naful 1 207 k41 + WA+ NV o) + Sidllur I3 i1 + B W pall3
+ At (||8ttul ”LOO(O T: L2(Q )) + ”atul ”iOO(O,T;H](.Q))) + vT,lz(Vl + VT,1)71H2k|||u1 |||%,k+1
+ 1 30, + SN gy + A Sarlludll3 iy + ||[u]||io,,|||uz|||§,k+1>
+ COr v S (1HIVI I, g, + €IS, + NI, + Su)) Ar Z 6} 1
n=1
M
C (1 + vr.) U U, + San) + V3,8 72) ALY 97,1,
I
+Ck(vy + vr,o—s(uwnio,, + Su + ||[u]||2o,,)At D lnal,
n=1
+Ckr +vr) S Ar Z(nqsh G, + 195 ||292)) (5.38)

n=1

where Sy, represents to right hand side of (4.11). Simplifying (5.38), we have

M
I I — U8l + 3 I — 6 + 01+ vr0 e 3 1955

n=I n=1

_l’_
+2xArZ/|[ Mgy s — 2 T‘ArZ(||V¢hl||gl+||V¢ 2,

n=1
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V2+V72

== Ar Z(nvm 2%, + 1Ve55'15,)
< C(Ar +h2k+VT,1 W1+ v H)

+COr )7 (1HIVa G g, + < IS, + I, + Si)) At Z 1655115,

n=1

M

C (€ + vr) Ul + San) + V3,5 72) A Y 197, 1,
M

+ CeSr v )7 (WS, + Sw + I, ) Ar Y 9741,

1O + o) Sy Al Z(n:p i, + 16531 1%,)- (5.39)

n=1

Similar to the derivation of (5.39), we can bound the right hand side of (5.8). Combining it with (5.39) and using
(4.11) gives

Iy 17 — b I +Z||¢"+' ¢il’ +2KAfZ / w1165

(vl +vr1) At Z IV, 17 + (Vz +vr2) At Z IV, 5?

n=1 n=1

M
+ (v1+vT1>At( Z(HW“HQ, ||V¢;;,1||§2,)+Z(nwz,lnzﬂl—||V¢z;‘||291))

n=1

M
+ (V2+VT2)AI< Z(IIW"“IIQZ ||V¢;:,2||§22)+Z(||V¢z,2||292—||V¢272'||292))

n=1

< C(AP + h* + (vr <v1 + 7)) vr o (e 4+ vr2) T HHH) 4+ CiS((vy +vr2)

M
0+ vr2) (14 VUl o + € IS, + Bl + i) A Y 165712
n=1

M
C (0 + vr.2) ™ 4 v 2) Ul + WIS, + Sw) + 3, h72) A Y 712

n=1

M
+ COr 4 v72) 7 + (4 vr2) )Su ALY gy I (5.40)
n=1

Dropping the positive term and using discrete Gronwall Lemma 3.3 produce

gy 112 +2KArZ f [CR AR

3
+ 31+ vr)Ar Z IV P + 5 (Vz +vr2) At Z IV I°

n=1 n=1

1

+ g+, DALV IS, + IV 115,
1

+ 502 V) ANV G, + IVeiL115,)

< lI$hI* + gm o)AV I, + V), 13,
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1
+ 502+ vr2) AUV, 51, + IV)215,)
+CAL2 + 1 + r 21 + o)™+ v’ + o) HH). (5.41)
Applying triangle inequalities yields the stated result of the theorem. [

Corollary 5.1. Let (u, p) be a solution of (1.1)—(1.6) with regularity assumptions (5.1) and suppose that (th, Qf")
for i = 1,2 is given by (P,, P) Taylor Hood finite elements and LlH is given by Py polynomials, vr; = h and
H = h. Assume the velocity data u’, u! satisfies

ey —u'flx + [u@®) —u’|x < Cih

for a generic constant C| independent of At and h. Then the error satisfies

M
3
JuG ) — R+ 2 v DAY IVt — I

n=1

M
+§(vz+vm)AtZ||V(uz(r”“>—u"“>|| < C((A* + 1. (5.42)

n=1
6. Numerical studies

In this section, we present several numerical experiments which verify the claimed theoretical results for the
proposed GA-VMS method, and also demonstrate its advantage over the underlying GA method in the case of low
viscosity flows. Numerical studies of GA-VMS method include a comparison with different types of finite element
discretizations of fluid—fluid interaction. The first experiment serves as a support for the orders of convergence given
by Corollary 5.1. The energy balance is considered in the second experiment. Lastly, we consider the “flow over a
cliff” type of problem. The simulations were performed with the Taylor—Hood pair of spaces (P,, P;) for velocity
and pressure, and also piecewise linear finite element space P; for the large scale space on the same mesh instead
of piecewise quadratic finite element space P, on a different coarse mesh (which would otherwise require transfer
of solutions from one mesh to the other, which adds extra computational complexity — see [19]).

We first compare our results with GA of [2]. The scheme reads: Find (qul, p,’lHl'l) € (Xf‘, Ql’.') satisfying

i =,

('T Vi), +V1(VMZf],Vvhl).Q -|-(M"+1 VMZfl,vh,i)Q,- _(ij'—lav‘Uh,i)

OV g, + K / W14 vy s — f A1 2w P ds = (£, v 6.1)
1

for all (vy ;. qn) € (XL, Q).

In addition, we also use monolithically coupled algorithms for comparison. This way, the proposed model
could be compared against computationally very expensive, yet highly accurate, in terms of interface coupling,
solutions. TWM and TWM-VMS refer to solving the system two-way monolithically and two-way monolithically
with variational multiscale method, respectively. Galerkin FEM approximation of TWM method reads: Find
@it i) € (X7, Q) satisfying

Wity

(’”A—t’“,vh,i).o,. F (Vi Vg + @t Vult v )g — (oL V)

+(Vupt gni)g K / 110wy onds = (7 v, (6.2)
1

for all (vi;, qni) € (X,]»’, Qf’). Similar to GA-VMS method, TWM-VMS finite element discretization reads: Find
(”Ztl’ Ph+1 GH "y e (X!, @l L) satisfying

n+1 n

Upi Upi
(el hi

At
+(Vupt gni)g K / I o ids = (F o), 4+ vri(G", Vo), (6.3)

| 1 | ]
Jni) + Wi A vr)(Vuy L Vg g 4 @yt Vugt veiag — (Pt Vo)
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Table 1
v = 0.5, v, =0.1, « =0.001.
Errors and rates with GA Errors and rates with GA-VMS
1/h llu — u|| 22 CR e — u|| 25 CR [ — u|| ;272 CR N — || 25 CR
8 1.73449e—04 - 8.24852e—03 - 2.54902e—04 - 8.39643e—03 -
16 3.80466e—05 2.19 2.04670e—03 2.01 4.86909¢—05 2.39 2.06158e—03 2.03
32 9.16182e—06 2.05 5.10721e—04 2.00 1.04724e—05 2.22 5.12344e—04 2.01
64 2.26916e—06 2.01 1.27623e—04 2.00 2.42949¢—06 2.11 1.27811e—04 2.00
Table 2
v; = 0.5, v, =0.1, « = 0.001.
Errors and rates with TWM Errors and rates with TWM-VMS
1/h [l —u"|],2,2 CR e — u" || 2 CR [ —u"|];2,2 CR N — ul|| 20 CR
8 1.67933e—04 - 8.23653e—03 - 1.95624e—04 - 8.36568e—03 -
16 3.64680e—05 2.20 2.04372e—03 2.01 4.59099¢—05 2.09 2.05606e—03 2.02
32 8.75103e—06 2.06 5.09978e—04 2.00 9.88564e—06 2.21 5.11277e—04 2.01
64 2.16553e—06 2.01 1.27437e—04 2.00 2.30198e—06 2.10 1.27585e—04 2.00
H, H
GE" — vy Lihg, =0, (6.4)

for all (vh., gass L) € (X2, QL L.
Simulations were performed at a problem defined in 2 = (2 U (% with £, = [0,1] x [0,1] and (% =
[0, 1] x [0, —1] with prescribed solution

uy = avie P'x*(1 — x)*)(1 4+ y) + ae ""x(1 — x)v; //ka
Ui, =avie P xy2 4+ y)(1 —x)2x — 1) +ae " yQ2x — v //xa

)Y
21 = ane (1 = R0+ )
2
— —2bt V1
uzr =avie 7 xy(l —x)2x — D2 + v_y)’
2

Herein, for simplicity pressures are set to zero in both domains, and right hand side forcing, boundary and two
initial values are computed using the manufactured true solution as is done in [4]. Problem parameters, a = 1,
b =1/2 and the final time T = 1 are fixed while «, v; and v, vary from one computation to the other. Numerical
experiments are performed on a single mesh, that is H = h. Also discretization parameters, i, At = h? and the
eddy viscosity parameter vy | = vy = h are refined all together. Therefore, second order accuracy is expected in
numerical experiments.

Convergence Rates. Results with the high viscosity and weak coupling are presented in Tables 1-2. These results
agree with the analytical predictions in terms of accuracy. This serves as a verification of GA’s effectiveness in
decoupling the laminar fluid—fluid interaction problems. Another computation has been performed with low viscosity
in the lower domain and stronger coupling on the interface. It is observed that GA and TWM both fail to converge,
unless the discretization parameters have been substantially refined. Even as the mesh diameter and the time step
have been refined and GA and TWM start converging, their accuracy is much worse, than that of the GA-VMS —
which validates the necessity of incorporating a turbulence model, as in GA-VMS. Consequently, equipping GA
and TWM with VMS regularizes their systems and produces believable results for this setting, see Tables 3—4 for
the choices v; = 0.1, v, = 0.0001, k = 1. Altogether, the behavior of the discrete solutions observed here is in
agreement with the analytical results: GA-VMS is a second order in space and first order in time accuracy model
of fluid—fluid interaction. It can be also observed that decoupling systems will not introduce too much error as
TWM-VMS and GA-VMS both give very similar accuracy results. This might be attributed to the viscosity error
dominating the decoupling error.

To save horizontal space in the following tables, let the error norms |u — u” || L20.7:12(2) and |u —
u" || 20,711 (27 be abbreviated to [lu — u"|| ;2,2 and |lu — u"|| 241, respectively.



M. Aggul, F.G. Eroglu, S. Kaya et al. / Computer Methods in Applied Mechanics and Engineering 365 (2020) 112957 21

Table 3
v; = 0.1, v, =0.0001, « = 1.
Errors and rates with GA Errors and rates with GA-VMS
1/h [ — u|| 272 CR N — || 25 CR [ — u|| ;272 CR N — u|| 25 CR
8 not conv. - not conv. - 1.93634e—02 - 4.69936e—01 -
16 not conv. - not conv. - 2.97186e—03 2.70 1.28426e—01 1.87
32 not conv. - not conv. - 3.21593e—04 3.21 2.81163e—02 2.19
64 3.99034e—04 - 1.47302e—01 - 3.77500e—05 3.09 6.22355e—03 2.18
Table 4
v = 0.1, v, =0.0001, x = 1.
Errors and rates with TWM Errors and rates with TWM-VMS
1/h e —u"|];2,2 CR N — u|| 20 CR [ —u"|];2,2 CR N — ul|| 20 CR
8 not conv. - not conv. - 1.cmal1299093652e—02 - 4.69974e—01 -
16 not conv. - not conv. - 2.87967e—03 2.75 1.28333e—01 1.87
32 not conv. - not conv. - 3.21353e—04 3.16 2.80955e—02 2.19
64 3.99033e—04 - 1.47302e—01 - 3.77021e—05 3.09 6.22028e—03 2.18
Table 5
GA-VMS alternative approach for v; = 0.5, v, = 0.1, « = 0.001.
1/h Ml —u"|| 22 Rate e — ul|| 250 Rate
8 2.69576e—03 - 2.82051e—02 -
16 1.30156e—03 1.05 1.33436e—02 1.08
32 6.42476e—04 1.02 6.55157e—03 1.03
64 3.20172e—04 1.00 3.25761e—03 1.01

It has to be noted that the alternative approach for GA-VMS mentioned on Remark 2.2 fails to provide
good-quality results, see Table 5.

Conservation of Energy. Computational results related to conservation of global energy are presented next. For
simplicity, the problem has been set to keep the same total energy over all time levels. For this reason, we choose
homogeneous Dirichlet boundary conditions everywhere except the interface, and choose zero forcing. Expectations
of the energy have to be discussed before presenting any computational results. To that end, weak formulation of
the continuous problem shall be considered under homogeneous boundary conditions and zero forcing: Multiplying
(1.1) by u € X, integrating over the whole domain and over [0, T'], we get the following energy equality:

T

T T
la(T)|I5, + 2w f IVui ()5, dt + 2v / IVuar(t)l15,dt + 2 / / Ilu()])’dsdt = [u(0)]>3. (6.5)
0 0 0 1

Herein, define
I = initial kinetic energy = [lu(0)[|5, = [u1 ()13, + lu2(0)5,.
KE = Xkinetic energy at T = [[w(T)||5, = [lui(T)II5, + llua(T) %,

T
& := energy dissipated by the time T = 2v; /0 ||Vu1(T)||2QIdt
T
+ 2u2/0 IV ua(T)| 5, dt.
T
& = interface dissipation by the time T = 2« / / |[u(t)]|3dsdt
o JI
T
=2K/ fl[u(t)]l[U(t)]ul(t)dsdt
o JI

T
- 2K[ /I[U(t)]l[u(t)]uz(t)dsdt
0 I
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Energy equality (6.5) means continuous system conserves global energy for all time. However, discrete models
introduce discretization errors such as decoupling errors, consequently, energy is not exactly conserved. On the
other hand, both GA and GA-VMS have their own exact energy conservation properties, see Eq. (4.1) and Lemma
3.11in [2].

The following quantity gives a measurement of how far away energy goes beyond being exact. Considering (6.7),
we define

AED)" := absolute energy difference at T(= ty4) = |[I' — KEMT — gM+1|. (6.6)
2 2
I = luy 1%, + g o5, + At(vraIVu, 15, + vl Vi l15,) + c At / L1y, |+ g o)),
1

KEM = "%, + llu M+‘||92+KAt/| [T ul 1 + a5 Dds

+1 1
+ArZ(||u" —up I, + s = u,115,),

M+1 M+1 M+1
EMF = At (vr IVl %, + vrall Va3,

(6.7)
M
+ A0 Y (20 IV W, + vralVag s = G, + vra Vi, - G, )
n=1
M
+ Atz<2v2||vun+l||gz +vralVuls' — G Ig, + vrallVug , — H"”QZ)
n=1

M
n n— ]/2}1 2 n n 2
+KAt§ /‘|[uh]|1/2 N v uh’z‘ ds + Aty /)|[uh 12 — g | ds.
n=1 1

As mentioned above for continuous solution, the problem has been constructed so that it has zero forcing and
homogeneous Dirichlet boundary conditions everywhere except the interface, and divergence-free initial values, ug j
have been chosen as follows:

u;,1 = sin(2mwy) sinz(nx), 63
iy = —sin(2wx)sin’(wy),i = 1, 2. ©68)
Both GA and GA-VMS require two initial values. Therefore, we compute the second initial values with one step
of IMEX method proposed in [2] and investigated in [3].

Discretization parameters are chosen uniform, 7 = 1/32, Ar = 0.01, and computations ended at the final time
T = 25. k = 1000 is chosen fixed and code has been run twice: one with high and the other with small v; and
v, values. All computations have been performed on the uniform square mesh shown faded in Fig. 1. Noting the
fact that global energy is exactly conserved in the true solution of fluid—fluid interaction, any proposed model shall
conserve it as much as possible. The absolute differences between the total energy and the initial energy input are
computed over all the time levels, and presented in Fig. 2. Both GA and GA-VMS perform equally well when
applied to a fluid—fluid interaction problem at high viscosity. However, Fig. 2 illustrates that, when viscosities are
low, the GA solution blows up around ¢ = 4.5 while GA-VMS conserves global energy all the time.

Long-Time Stability. We now present computational results for the long-time stability of GA and GA-VMS. This
is investigated for a problem, where a parabolic inflow in the atmosphere passes a backward-facing step — a widely
used benchmark problem for one-domain fluid-flow — before atmosphere and ocean meet, see the domain in Fig. 3.
Note that this setup could be a description of a coast mountain, cliff, etc. in a real life simulation.

Homogeneous Dirichlet boundary conditions have been strongly enforced on the step, on the left wall and the
bottom of the ocean. While parabolic inflow profile with maximum inlet 1 drives the flow in the atmosphere,“do
nothing” boundary conditions are weakly imposed on the outflow, on the top of atmosphere and the right wall of
the ocean. Both fluids are at rest initially, and the second initial values have been computed by one-step of IMEX
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Fig. 2. AED,I:’I for vi = 1.5¢ — 01, vy = 1.0e — 02 on the left and for v = 1.5¢ — 05, v, = 1.0e — 06 on the right.

' . §
S B
o ¥
o
Y-Axis
°
)

PR SN TR ST THNT S SN NN S SN ST THNT SR TN AT VY T NN THNT SN VR S ST ST ST ST N A S ST ST ST ST W S W

~=0.7500
~— 0.2500
Max: 1,000
Mir: 0,000
-0.5
-1.0
Fig.
%1073
0 5 10 15 20 25

LA AR AR RN RARLLR AR LARALRL R

0.2 0.4 0.6 0.8
X-Axis

1. Initial flows.

10°

23

method as in the previous example, i.e. flows in both domains start with the same initial values. The rest of the
parameters have been chosen as in Table 6.

Fig. 4 illustrates that the GA solution starts blowing up around ¢ = 25, while GA-VMS produces stable results
all the way up to final time 7" = 100.
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Fig. 4. Temporal evolution of ||uZ+1|| with GA and GA-VMS.

Table 6
Problem parameters.
v vy K T At h V1 =vr2
Se—04 5e—03 2.45e—03 100 0.01 0.1-0.14 0.01
Table 7
Computational times.
GA 33 m:16 s
GA-VMS 23 m:35 s

Expected vector fields with GA and GA-VMS (in Fig. 5) illustrate that both methods produce very similar results
as long as they are both stable. However, as seen in Figs. 5(e) and 5(g), solution with GA has already started blowing
up around ¢t = 25.

In addition to checking long time stability properties of methods, computational times have been recorded up to
t = 20. This time has been chosen in particular so that GA does not yet start to blow up and both methods still
produce similar results. It is observed that it takes much longer time for GA to converge, as seen in Table 7. Also,
it has to be noted that this computation has still been performed on a regime where GA produces reliable results
up to some time, changing parameters to increase the numerical singularity has a greater impact on computational
time than reported here.

Figs. 5 and 6 suggest that the interface flow in the ocean tends to follow the direction of the flow just above. For
this reason, all consistent direction changes on the interface of the atmosphere results in a separate vortex formation
right below. Furthermore, the reattachment point in the atmospheric flow and the separation point of two vertices
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(g) GA at t=27.75 (h) GA-VMS at t=27.75

Fig. 5. Expected vector fields with GA and GA-VMS.

(e) GA-VMS at t=70 (f) GA-VMS at t=80

(g) GA-VMS at t=90 (h) GA-VMS at t=100

Fig. 6. Expected vector fields with GA-VMS.

25



26 M. Aggul, F.G. Eroglu, S. Kaya et al. / Computer Methods in Applied Mechanics and Engineering 365 (2020) 112957

in the ocean coincide. One can intuitively expect this phenomenon already since, for this setting, the oceanic flow
is due to merely its interaction with the atmosphere and possess of very low energy to determine its own persistent
direction.

7. Conclusions

In this report we introduced a method for approximating solutions to a turbulent fluid—fluid interaction problem
(1.1)—=(1.6). The method combines the Geometric Averaging method for stable decoupling of the two-domain
problem with the Variational Multiscale stabilization technique for high Reynolds number flows. We performed
full numerical analysis of the method, proving its stability and accuracy. One of the challenges we had to overcome
was the lack of benchmark problems for qualitative testing of our method in the case of low viscosities, v < 1.
In addition to verifying numerically the claimed theoretical accuracy of the method in the case of a known true
solution, we also used two other numerical tests to assess the qualitative behavior of the solution. First, we showed
that the total global energy of the approximate solution is better conserved with the proposed method — as it should
be in the continuous coupled solution. Secondly, we introduced a “flow over a cliff” type of a problem, which could
serve as an analogue of flow over a step, in the case of fluid—fluid interaction. The vortices forming and detaching in
the air domain were closely matched by the sea regions with increased flow velocity. The GA method (without the
VMS component) had failed to work in any of the tests, if the viscosity coefficient was taken to be small enough,
while the proposed GA-VMS technique has matched the expectations both quantitatively and qualitatively.
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