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ABSTRACT A new one-parameter discrete distribution, namely discrete Burr-Hatke distribution is intro-
duced and its mathematical properties are studied comprehensively. The main properties of the discrete
Burr-Hatke distribution such as mean, variance, skewness and kurtosis measures are obtained in explicit
forms. Several parameter estimation methods are used to obtain unknown model parameters and these
estimationmethods are compared via simulation study. The discrete Burr-Hatke distribution is over-dispersed
since its variance is greater than its mean. This property of the proposed distribution opens a new opportunity
to model over-dispersed data sets. To show the importance of the proposed distribution against the existing
discrete probability distributions, three data sets in different fields are analyzed. Additionally, count regres-
sion model based on the discrete Burr-Hatke distribution is introduced with its residual analysis.

INDEX TERMS Burr-Hatke distribution, L-moment statistics, regression model, estimation methods,
simulation.

I. INTRODUCTION
Modeling the number of occurrences of events is an impor-
tant issue and gains much attention in recent years. These
types of data sets are modeled by discrete probability dis-
tributions such as Poisson, negative-binomail, geometric,
Poisson-Lindley etc. In the last decade, several discrete
distributions have been introduced such as discrete Lind-
ley distribution by Gómez-Déniz and Calderín-Ojeda [6],
generalized geometric by Gómez-Déniz [5], discrete gen-
eralized exponential type II by Nekoukhou et al. [16],
discrete Rayleigh by Roy [20], two-parameter discrete Lind-
ley by Hussain et al. [10] and exponentiated discrete Lindley
by El-Morshedy et al. (2020), new discrete extended
Weibull by Jia et al. [12], new Poisson-weighted exponential
by Altun [1] and among others. The main goal of these
studies is to provide an alternative model in modeling the
over-dispersed or under-dispersed count data sets. These dis-
tributions are obtained by using the survival discretization
method. Let the random variable X has the survival function
such as S(x) = Pr(X > x). The probability mass func-
tion (pmf) of the discrete random variable X is

P(X = x) = S(x)− S(x + 1), x = 0, 1, 2, 3, . . . (1)
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In this study, using the survival discretization method,
a new one-parameter discrete distribution, named discrete
Burr-Hatke (DBH), is proposed. The DBH distribution
can be a good choice for modeling the right-skewed and
over-dispersed counts data sets with decreasing failure rate.
The statistical properties of the DBH distribution, includ-
ing the moments, order statistics, L-moments, are studied
in detail. Three parameter estimation methods, maximum
likelihood (ML), method of moments (MM) and propor-
tion estimation (PE), are discussed to estimate the unknown
parameter of the DBH distribution via Monte-Carlo simu-
lation study. In addition to these, a new count regression
model for over-dispersed response variable is introduced with
its residual analysis and compared with Poisson regression
model.

The rest of the paper is organized as follows: In Section 2,
DBH distribution is introduced and its statistical properties
are obtained. In Section 3, different methods of parameter
estimation are given for DBH distribution. In Section 4, DBH
regression model is introduced. In Section 5, two simula-
tion studies are performed to investigate the finite sample
performance of parameter estimation methods and also brief
simulation study is given to evaluate the ML estimators of the
parameters of DBH regression model. Section 6 is devoted to
demonstrate usefulness of proposed models by means of real
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data applications. Section 7 contains the conclusion remarks
of this study.

II. THE DBH DISTRIBUTION
Let the random variable X follows a Burr-Hatke distribution,
introduced byManiu and Voda [15]. The cumulative distribu-
tion function (cdf) and probability density function (pdf) are
given, respectively, by

5(x;β) = 1−
e−βx

x + 1
; x > 0, (2)

and

π (x;β) =
1+ β(x + 1)
(x + 1)2

e−βx; x > 0, (3)

where β > 0 is a scale parameter. Using Equation (1), the cdf
of the DBH distribution is given by

F(x; λ) = 1−
λx+1

x + 2
; x ∈ N0, (4)

where 0 < λ = e−β < 1 and N0 = 0, 1, 2, 3, . . .. The
corresponding pmf to (4) is given by

f (x; λ) =
(

1
x + 1

−
λ

x + 2

)
λx; x ∈ N0, (5)

where λ controls the shape of the distribution. The pmf in
Equation (5) is log-convex for all values of 0 < λ < 1,
where f (x+1;λ)

f (x;λ) is an increasing function in x for all values of
the parameter λ, and therefore, the pmf is always decreasing
function in x. Figure 1 shows the pmf plots for different values
of the parameter λ.

FIGURE 1. The pmf plots of the DBH model.

The hazard rate function (hrf) is given by

h(x; λ) = 1−
x + 1
x + 2

λ; x ∈ N0, (6)

where h(x; λ) = f (x;λ)
1−F(x−1;λ) . The hrf is always decreas-

ing function in x for all values of the parameter λ, where

FIGURE 2. The hrf plots of DBH model.

d
dx h(x; λ) < 0. Figure 2 displays some possible shapes of
hrf for selected parameter values.

A. MOMENTS AND RELATED CONCEPTS
The r th rawmoments of theDBHdistribution can be obtained
by using

E(X r ) =
∞∑
x=0

{
([x + 1]r − xr )(1− F(x; λ))

}
= λ

∞∑
x=0

[x + 1]r − xr

x + 2
λx . (7)

Using Equation (7), the first four moments of the DBH dis-
tribution are

E(X ) = −
ln(1− λ)

λ
− 1, (8)

E(X2) =
λ

2

(
2(λ− 3)
λ(λ− 1)

+
6 ln(1− λ)

λ2

)
, (9)

E(X3) = −

(
7λ2 − 14λ+ 7

)
ln(1− λ)+ λ(λ2 − 11λ+ 7)

λ(λ− 1)2
,

(10)

and

E(X4) = λ
2

(
2(λ3−31λ2+37λ−15)

λ(λ−1)3
+

30 ln(1−λ)
λ2

)
. (11)

Using Equations (8-11), the variance, skewness and kurtosis
can be derived in closed forms where

Var(X ) = E(X2)− [E(X )]2, (12)

S =
E(X3)− 3E(X2)E(X )+ 2 [E(X )]3

[Var(X )]3/2
, (13)

and

K = E(X4)−4E(X2)E(X )+6E(X2)[E(X )]2−3[E(X )]4

[Var(X )]2
. (14)
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TABLE 1. Some descriptive statistics for the DBH distribution.

TABLE 2. The IOD and COV statistics for the DBH distribution.

Table 1 presents some numerical results of the mean, Var,
skewness and kurtosis for the DBH distribution for different
values of the model parameter.

From Table 1, it is clear that:
1) When the parameter λ approaches to unity, the mean

and variance of the DBH distribution increase,
2) The proposed model is appropriate only for modelling

positive skewed data,
3) The skewness and kurtosis have a bathtub-shaped,
4) The proposed model is leptokurtic in nature.

B. INDEX OF DISPERSION AND COEFFICIENT
OF VARIATION
The index of dispersion (IOD) is a measure to decide the
possible over-dispersion (under-dispersion) in the used data
set. When the IOD is higher than one, it indicates the
over-dispersion, opposite case indicates the under-dispersion.
When the IOD is equal to one, it indicates the equi-dispersion.
The IOD of the DBH distribution is

IOD(X ) =
Var (X)
E (X)

=
−λ

ln(1− λ)+ λ

×

{
λ

2

(
2(λ−3)
λ(λ−1)

+
6 ln(1−λ)

λ2

)
−

(
ln(1−λ)+λ

λ

)2
}
.

(15)

Further, the coefficient of variation (COV) is a measure of
variability in the data. If X has a DBH model, then the COV
can be expressed as

COV(X ) =
λ

2 |ln(1− λ)+ λ|

×

√
2λ
(
2(λ− 3)
λ(λ− 1)

+
6 ln(1− λ)

λ2

)
− 4

(
ln(1− λ)+ λ

λ

)2

.

(16)

The COVmeasure is generally used to compare to indepen-
dent samples based on their variability. The higher COVvalue
indicates the higher variability. Table 2 lists some numerical
results of the IOD and COV for different values of the model
parameter.

From Table 2, it is clear that:

1) The IOD increases, whereas the COV can be take
inverse J-shaped with λ −→ 1.

2) The proposed model is appropriate only for modelling
over-dispersed data where IOD > 1.

C. ORDER STATISTICS AND L-MOMENT STATISTICS
Assume that the random variables X1,X2, . . .,Xn follow a
DBH distribution and X1:n,X2:n, . . . ,Xn:n are the correspond-
ing order statistics (ORST) of these random variables. The cdf
of ith ORST is

Fi:n(x; λ) =
n∑
k=i

(
n
k

)
[Fi(x; λ]k [1− Fi(x; λ)]n−k

=

n∑
k=i

n−k∑
j=0

9
(n,k)
(m) [Fi(x; λ)]k+j

=

n∑
k=i

n−k∑
j=0

9
(n,k)
(m) Fi(x; λ, k + j), (17)

where 9(n,k)
(m) = (−1)j

(
n
k

)(
n− k
j

)
and Fi(x; λ, k +

j) = [Fi(x; λ)]k+j represents the cdf of the exponentiated
DBH (EDBH) model with power parameter k + j. Further,
the corresponding pmf of the ith ORST is

fi:n(x; λ) = Fi:n(x; λ)− Fi:n(x − 1; λ)

=

n∑
k=i

n−k∑
j=0

9
(n,k)
(m) fi(x; λ, k + j), (18)

where fi(x; λ, k + j) represents the pmf of the EDBH model
with power parameter k + j. Thus, the uth moments of Xi:n
can be expressed as

E(Xui:n) =
∞∑
x=0

n∑
k=i

n−k∑
j=0

�(n,k)
(m) x

ufi(x; λ, k + j). (19)

The L-moment statistics (LMST), introduced by Hosk-
ing [8] can be used to summarize the theoretical distribution.
LMST is an expectation of linear combinations of ORST. The
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LMST of X is given by

ϒδ =
1
δ

δ−1∑
j=0

(−1)j
(
δ − 1
j

)
E
(
Xδ−j:δ

)
. (20)

Using (20), some statistical measures based on the LMST can
be defined such as mean = ϒ1, COV =

ϒ2
ϒ1

, coefficient of
skewness = ϒ3

ϒ2
and coefficient of kurtosis = ϒ4

ϒ2
.

III. ESTIMATION METHODS
In this section, we consider three parameter estimation meth-
ods to obtain the unknown model parameters. These are
maximum likelihood, method of moment and proportion esti-
mation methods.

A. MAXIMUM LIKELIHOOD ESTIMATION
Let X1,X2, . . . ,Xn be a random variables follow a DBH
distribution. The log-likelihood function (L) is given by

L(x; λ) = ln(λ)
n∑
i=1

xi +
n∑
i=1

ln
[

1
xi + 1

−
λ

xi + 2

]
. (21)

By differentiating Equation (21) with respect to the param-
eter λ, we get the normal non-linear likelihood equation as
follows

1
λ

n∑
i=1

xi −
n∑
i=1

xi + 1
xi + 2− λ(xi + 1)

= 0. (22)

The solution of (22) gives maximum likelihood estima-
tor of λ. However, there is no explicit form for the solu-
tion of (22). Therefore, (22) has to be solved by using
iterative methods such as Newton-Raphson, Nelder-Mead
etc. The other choice is to direct minimization of negative
log-likelihood function. The optim and nlm functions of
R software (see, [21] can be used for this purpose.

B. MOMENT ESTIMATION
While using the MME for the parameter of DBH distribution,
λ, we have to first equate the population moment to the corre-
sponding sample moment than solve the non-linear equation

1
n

n∑
i=1

xi +
ln(1− λ)

λ
+ 1 = 0, (23)

with respect to λ. The nleqslv function of R software could
be used to solve.

C. PROPORTION ESTIMATION
Let x1, x2, . . . , xn be a random sample from the DBH distri-
bution. DBH distribution has a single parameter. Therefore,
one indicator function is defined as follows.

I (xi) =

{
1 if xi = 0
0 if otherwise.

(24)

Assume, W =

n∑
i=1

I (xi) denotes the number of zero

observations in the sample. Using (4) and (24), we get

P(X ≤ 0) = W
n . Thus, the PE of the λ is

λ̂ =
2
n
(n−W ). (25)

Since W
n is unbiased and consistent empirical estimator of

probability P(X ≤ 0), the λ̂ is also unbiased and consistent
estimator of λ (see, Khan et al. 1989 for details).

IV. DBH REGRESSION MODEL
Poisson regression model is widely used to model count
response variable with some covariates. However, when the
response variable displays over-dispersion, Poisson regres-
sion does not work. Here, we introduce a new regression
model for modeling these kind of data sets.
Proposition 1: Let λ=1+W

(
−e−µ−1 (µ+ 1)

)
/(µ+ 1).

Then, the pmf of DBH distribution is

P (Y = y)=

(
1

y+1
−
1+W

(
−e−µ−1 (µ+ 1)

)/
(µ+ 1)

y+ 2

)
×

{
1+W

(
−e−µ−1 (µ+ 1)

)
/(µ+ 1)

}y
,

y = 0, 1, 2, . . . , (26)

where E (Y |µ) = µ and W (·) is the Lambert-W
function (see, http://mathworld.wolfram.com/
LambertW-Function.html for details).

Assume that the random variable Y represents the counted
number of occurrences of an event and is distributed as DBH
distribution with the parameter µ, given in (26). The mean
of the random variable Y can be modeled by explanatory
variables using the appropriate link functions. The log-link
function can be used to link the covariates to the mean of
dependent variable, as follows

µi = E(Yi) = exp
(
xxxTi βββ

)
, i = 1, . . . , n, (27)

where xxxTi = (xi1, . . . , xik) is the vector of explana-
tory variables and βββ = (β0, β1, . . . , βk)

T is the
vector of unknown regression coefficients. Inserting
Equation (27) in Equation (26), the log-likelihood function
of DBH regression model is

` (βββ)=

n∑
i=1

ln

 1
yi+1

−

1+W
(
−e−e

xxxTi βββ−1
(
exxx

T
i βββ+1

))
/
(
exxx

T
i βββ+1

)
yi+2


+

n∑
i=1

yi ln
(
1+W

(
−e−e

xxxTi βββ−1
(
exxx

T
i βββ + 1

))
/
(
exxx

T
i βββ + 1

))
.

(28)

The MLE of βββ, say β̂̂β̂β can be obtained by taking the partial
derivatives of (28) with respect to the vector of unknown
regression coefficients and solving them simultaneously for
zero. However, there is no closed form expressions for the
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TABLE 3. Simulation results of DBH distribution for several parameter values.

MLEs of the parameters of the DBH regressionmodel. There-
fore, (28) have to be solved iteratively by using the statistical
or mathematical software such as MATLAB, R or S-PLUS.
Here, we use the statistical software, R, to obtain the MLE
of βββ. To construct the asymptotic confidence intervals of
the regression coefficients, the asymptotic covariance matrix
K (βββ)−1 of β̂ββ is used. The asymptotic covariance matrix is
approximated by the inverse of the (k+1)× (k+1) observed
information matrix whose elements are evaluated numeri-
cally via most statistical packages such as hess and fdHess
functions of R software.

A. RESIDUAL ANALYSIS
Residual analysis is an essential tool to check the adequacy
of fitted model on the used data set. Here, the randomized
quantile residuals are used to check the model assumption.
Let F (y;µ) is the cdf of DBH distribution. The randomized
quantile residuals of DBH regression model are

rq,i = 8−1 (ui) , (29)

where ui = F
(
yi; µ̂i

)
is uniformly distributed random vari-

able between ai = limy↑yiF
(
y; µ̂i

)
and bi = F

(
y; µ̂i

)
. The

randomization strategy is used to prevent masses of overlap-
ping points. When the fitted model is correct, the randomized
quantile residuals are normally distributed with zero mean
and unit variance.

V. SIMULATION RESULTS
Two simulation studies are carried out to compare the finite
sample performance of parameter estimation methods for the
unknown parameters of DBH models.

A. SIMULATION OF DBH DISTRIBUTION
Here, a simulation study is given to compare the finite sample
behaviour of the MLE, MME and PE methods. The simula-
tion procedure is given below.

TABLE 4. The simulations results of the DBH regression model.

1) Generate 1000 samples of size n = 20, 22, 24, . . . , 100
from DBH(0.7), DBH(0.5) and DBH(0.3),
respectively.

2) Compute the MLEs, MMEs and PEs for the 1000 sam-
ples, say λ̂j for j = 1, 2, . . . , 1000.

3) Compute the average of estimates (AEs), biases,
mean-squared errors (MSEs) and mean relative
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TABLE 5. The competitive models of the DBH distribution.

errors MREs) by using the below quantities.

Bias(λ) =
1

1000

∑1000

j=1

(
λ̂j − λ

)
,

MSE(λ) =
1

1000

∑1000

j=1

(
λ̂j − λ

)2
. (30)

AE(λ) =
1

1000

∑1000

j=1
λ̂j,

MRE(λ) =
1

1000

∑1000

j=1

λ̂j

λ
. (31)

The empirical results are given in Tables. From Table 3 the
following observations can be noted:

1) The magnitude of bias of the parameter approaches
zero when the sample size increases.

2) The MSEs of the parameter approaches zero when the
sample size increases. This shows the consistency of
the estimators.

3) The performance of all estimationmethods is quite well
for both small and large samples.

We have presented results only for λ = 0.7, 0.5 and 0.3.
But, the results are similar for other choices for λ.

B. SIMULATION OF DBH REGRESSION MODEL
In this section, simulation study is given to evaluate the
performance of the MLEs of the parameters of DBH
regression model. We generate N = 10, 000 sam-
ples of size n = 50, 250, 500 and 1000 by using the
µi = exp (β0 + β1 xi1 + β2 xi2 + β3 xi3). The indepen-
dent variables x1, x2 and x3 are generated from standard
uniform distribution, U (0, 1). The following vectors of
parameters are used to implement the simulation study:
βββ = (β0 = 0.5, β1 = 0.5, β2 = 0.5, β3 = 2) and βββ =

(β0 = 0.5, β1 = 2, β2 = 0.5, β3 = 4)
The simulation results are discussed based on the AEs,

biases and MSEs. Table 4 lists the simulation results. Based
on the results in Table 4, when the n increases, the AEs of
the parameters are near the their nominal values and biases
approach to zero. Similarly, the MSEs of the parameters

approach zero when the sample size increases. The consis-
tency property of the MLE is proved by these results.

VI. EMPIRICAL STUDIES
In this section, the importance of DBH distribution is demon-
strated based on the applications to real data sets. The com-
putational codes can be found in https://github.com/
emrahaltun/DBH-paper. The fitted models are com-
pared using some criteria, namely, Bayesian information cri-
terion (BIC), Hannan-Quinn information criterion (HQIC)
and Chi-square (χ2) with its corresponding P-value.We com-
pare the fits of the DBH distribution with some competitive
distributions having one or two parameters which are listed
in Table 5.

A. DATA SET I: CARIOUS TEETH
The first data set consists of the number of carious teeth
among the four deciduous molars. The sample size is 100.
The detail information on the used data set can be found in
Krishna and Pundir [14]. The fits of the DBH distribution
is compared with some competitive models having one or
two parameters such as DPa, Geo, DR, DIR, DLi, Poi, PoiLi,
EDLi, DLi-II, DGE-II, GGeo, DLFR, DW, DIW and DLogL
models. The MLEs with their corresponding standard errors
(Std-er), confidence intervals (C. I) for the parameter(s) and
goodness-of-fit test for data set I are listed in Tables 6 and 7,
where Table 6 lists the competitive models having only one
parameter, whereas Table 7 reports the competitive models
having two-parameter.

According to Tables 6 and 7, it is clear that some com-
petitive models (with significance greater than 0.05) work
quite well besides the DBH model. But, the DBH model is
the best model for evaluation of this data, because it has the
smallest value of BIC andHQIC aswell as the highest p-value
among all tested models. Figures 3 and 4 show the fitted
pmf plots for data set I which support our results reported in
Tables 6 and 7.
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TABLE 6. The MLE, C. I, χ2 and P-values for the competitive models having only one parameter for data set I.

TABLE 7. The MLE, C. I, χ2 and P-values for the competitive models having only two-parameter for data set I.

TABLE 8. Estimation methods and goodness-of-fit for data set I.

It is clear that the data set plausibly came from some
competitive models. But, the DBH model is the best.
Table 8 shows two different estimation methods of the DBH
parameter for data set I.

Depending on P-value, it is observed that the MME and
PE methods work quite well besides the MLE method for
estimating the unknown parameter. But, the PE method is the
best among all estimation methods for this data. Table 9 lists
some statistics for data set I using the estimators of the DBH
parameter in Tables 6 and 7.

Regarding Table 9, the following observations can be
made:

1) The estimates of the MLE, MME and PE methods give
the same results approximately.

2) This data is suffering from over dispersion phenomena
where IOD > 1.

3) This data has a long right tail as compared to its left tail
where a positive value of skewness with leptokurtic.

B. DATA SET II: CYSTS OF KIDNEYS
The second data set consists of the counts of cysts of kidneys
using steroids (see, Chan et al. [3]). The fits of the DBHdistri-
bution is compared with some competitive models Geo, DR,
DIR, DLi, Poi, PoiLi, DLi-II, GGeo, DLFR, DIW, DLogL,
DLo and DB-II models. The MLEs with their corresponding
Std-er, C. I for the parameter(s) and goodness of fit test for
data set II are reported in Tables 10 and 11.

According to Tables 10 and 11, it is clear that the GGeo,
DLogL, DLo and DB-II work quit well besides the DBH
model. But, the DBH model is the best model for this data.
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FIGURE 3. The fitted pmfs of the models having only one parameter for data set I.

FIGURE 4. The fitted pmfs of the models having only two-parameter for data set I.

TABLE 9. Some statistics for data set I.

Figures 5 and 6 show the fitted pmfs plot for data set II which
support our results reported in Tables 10 and 11.

It is clear that the data set plausibly came from the DBH,
GGeo, DLogL, DLo and DB-II distributions. But, the DBH
model is the best. Table 12 shows two different estimation
methods of the DBH parameter for data set II.

Depending on P-value, it is observed that theMMEmethod
works quite well besides the MLE method for estimating
the unknown parameter. But, the MME method is the best
among all estimation methods for this data. Table 13 lists
some statistics for data set II using the estimators of the DBH
parameters in Tables 10 and 11.
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TABLE 10. The MLE, C. I, χ2 and P-values for the competitive models having only one parameter using data set II.

TABLE 11. The MLE, C. I, χ2 and P-values for the competitive models having only two-parameter using data set II.

TABLE 12. Estimation methods and goodness-of-fit for data set II.

Regarding Table 13, the following observations can be
made:

1) The estimates of the MLE and MME methods give the
same results approximately.

2) This data is suffering from over dispersion phenomena
where IOD > 1.

3) This data has a long right tail as compared to its left tail
with leptokurtic.

C. DATA SET III: NUMBER OF DOCTOR VISITS
The data set comes from the Medicaid Consumer Survey
sponsored by the Health Care Financing Administration
in 1986. The detail information on the data set can be found

VOLUME 8, 2020 74367



M. El-Morshedy et al.: DBH Distribution With Properties, Estimation Methods and Regression Model

FIGURE 5. The fitted pmfs of the models having only one parameter for data set II.

FIGURE 6. The fitted pmfs of the models having only two-parameter for data set II.

TABLE 13. Some statistics for data set II.

in Gurmu [7]. The data can be found in Ecdat package of R
software. The aim of the study is to investigate the effects of
number of children in the household (x1i) and health status
(x2i) on the number of doctor visits (yi). Note that the higher
positive values of the health status indicate the poorer health
status. The below regression structure is fitted by Poisson and

DBH regression models.

ln (µi) = β0 + β1x1i + β2x2i. (32)

Table 14 lists the estimated parameters and corresponding
Std-er of fitted regression models. Since the DBH regres-
sion model has lower values of the AIC and BIC statistics,

74368 VOLUME 8, 2020



M. El-Morshedy et al.: DBH Distribution With Properties, Estimation Methods and Regression Model

TABLE 14. Estimated parameters of Poisson and DBH regression models.

FIGURE 7. The randomized quantile residuals and corresponding Q-Q plot.

it is concluded that the DBH regression model provides
higher modeling accuracy than the Poisson regression model.
As seen from the estimated parameters of DBH regression
model, we conclude that the number of children has no
statistically significant effect on the number of doctor visits.
However, the health status is statistically significant effect
on the number of doctor visits. The individuals having poor
health status have the larger number of doctor visits increase.

Figure 7 displays the randomized quantile residuals
and corresponding quantile-quantile (Q-Q) plot. These fig-
ures reveal that none of the observations can be evaluated as
a possible outlier. Moreover, these figures prove that the DBH
regression model fits well to the current data set.

VII. CONCLUSION
Discrete probability distributions play an important role in
modeling the counts. The count data sets are generally over-
dispersed. This study introduces a flexible discrete distribu-
tion to model these kind of data sets. The main advantage
of the DBH distribution against the existing ones is that the
statistical properties of the DBH distribution are in explicit
forms which are important in statistical inference. The impor-
tance of the DBH distribution is demonstrated via two real
data sets and compared with seventeen competitive models.

More importantly, a new regression model based on the DBH
distribution is introduced and compared with famous Poisson
regression model for the number of doctor visits data set.
We believe that the DBH model will increase its popularity
in the near future, especially in modeling the over-dispersed
count data sets.
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