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Abstract
Functional data analysis tools, such as function-on-function regression models, have
received considerable attention in various scientific fields because of their observed
high-dimensional and complex data structures. Several statistical procedures, includ-
ing least squares, maximum likelihood, andmaximum penalized likelihood, have been
proposed to estimate such function-on-function regression models. However, these
estimation techniques produce unstable estimates in the case of degenerate functional
data or are computationally intensive. To overcome these issues, we proposed a partial
least squares approach to estimate the model parameters in the function-on-function
regression model. In the proposed method, the B-spline basis functions are utilized
to convert discretely observed data into their functional forms. Generalized cross-
validation is used to control the degrees of roughness. The finite-sample performance
of the proposed method was evaluated using several Monte-Carlo simulations and
an empirical data analysis. The results reveal that the proposed method competes
favorably with existing estimation techniques and some other available function-on-
function regression models, with significantly shorter computational time.
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1 Introduction

Recent advances in computer storage and data collection have enabled researchers
in diverse branches of science such as, for instance, chemometrics, meteorology,
medicine, and finance, recording data of characteristics varying over a continuum
(time, space, depth, wavelength, etc.). Given the complex nature of such data collec-
tion tools, the availability of functional data, in which observations are sampled over
a fine grid, has progressively increased. Consequently, the interest in functional data
analysis (FDA) tools is significantly increasing over the years. Ramsay and Silverman
(2002, 2006), Ferraty and Vieu (2006), Horvath and Kokoszka (2012) and Cuevas
(2014) provide excellent overviews of the research on theoretical developments and
case studies of FDA tools.

Functional regression models in which both the response and predictors consist of
curves known as, function-on-function regression, have received considerable atten-
tion in the literature. The main goal of these regression models is to explore the
associations between the functional response and the functional predictors observed
on the same or potentially different domains as the response function. In this context,
two key models have been considered: the varying-coefficient model and the function-
on-function regression model (FFRM). The varying-coefficient model assumes that
the functional response Y(t) and functional predictors X (t) are observed in the same
domain. Its estimation and test procedures have been studied by numerous authors,
including Fan and Zhang (1999), Hoover et al. (1998), Brumback and Rice (1998),
Wu and Chiang (2000), Huang et al. (2002, 2004), Şentürk and Müller (2005), Car-
dot and Sarda (2008), Wu et al. (2010) and Zhu et al. (2014) among many others. In
contrast, the FFRM considers cases in which the functional response Y(t) for a given
continuum t depends on the full trajectory of the predictors X (s). Compared with
the varying-coefficient model, the FFRM is more natural; therefore, we restrict our
attention to the FFRM for this study.

The FFRM was first proposed by Ramsay and Dalzell (1991), who extended
the traditional multivariate regression model to the infinite-dimensional case. In the
FFRM, the association between the functional response and the functional predic-
tors is expressed by integrating the full functional predictor weighted by an unknown
bivariate coefficient function. More precisely, if Yi (t) (i = 1, . . . , N ) and Xim(s)
(m = 1, . . . , M), respectively, denote a set of functional responses and M sets of
functional predictors with s ∈ [0, S] and t ∈ [0, T ], where S and T are closed and
bounded intervals on the real line, then the FFRM for Yi (t) and Xim(s) is constructed
as follows:

Yi (t) = β0(t) +
M∑

m=1

∫

S
Xim(s)βm(s, t)ds + εi (t), (1.1)

whereβ0(t) is themean response function,βm(s, t) is the bivariate coefficient function,
and εi (t) denotes an independent random error function having a normal distribution
with mean vector 0 and variance-covariance matrix �ε , i.e., εi (t) ∼ N(0,�ε). The
main purpose of model (1.1) is to estimate the bivariate coefficient function βm(s, t).
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In this context, Yamanishi and Tanaka (2003) proposed a geographically weighted
regression model to explore the functional relationship between the variables; Ram-
say and Silverman (2006) proposed a least squares (LS) method to estimate βm(s, t)
by minimizing the integrated sum of squares; Yao et al. (2005) extended the FFRM
to the analysis of sparse longitudinal data and discussed the estimation procedures;
Müller and Yao (2008) proposed a functional additive regression model where regres-
sion parameters are estimated using regularization; Matsui et al. (2009) suggested a
maximum penalized likelihood (MPL) approach to estimate the coefficient function
in the FFRM; Wang (2014) proposed a linear mixed regression model and estimated
the model parameters via the expectation/conditional maximization either algorithm;
Ivanescu et al. (2015) developed several penalized spline approaches to estimate the
FFRM parameters using the mixed model representation of penalized regression; and
Chiou et al. (2016) proposed a multivariate functional regression model to analyze
multivariate functional data.

Most investigations on parameter estimation in FFRM have generally focused on
the LS, maximum likelihood (ML), and MPL approaches. While these approaches
work well in certain circumstances, they are characterized by several drawbacks. For
instance, the ML and LS methods produce unstable estimates when functional data
have degenerate structures (see Matsui et al. 2009). They also encounter a singular
matrix problem when a large number of functional predictors are included in the
FFRM. Alternatively, the singular matrix problem can also occur when a large number
of basis functions are used to approximate those functions. In such cases, the LS
and ML methods typically fail to provide an estimate for βm(s, t). Although the
MPL method can overcome such difficulties and produce consistent estimates, it is
computationally time-consuming for a computer with standard memory. It may not be
possible to obtain theMPL estimates where a large number of basis functions are used
to approximate the functional data. In this paper, we propose a partial least squares
(PLS) approach to estimate the parameter of the FFRM to overcome these vexing
issues.

The functional counterparts of the PLS method, when the functional data consist
of scalar response and functional predictors, were proposed by Preda and Saporta
(2005), Reiss and Ogden (2007), Krämer et al. (2008), and Aguilera et al. (2010).
Febrero-Bande et al. (2017) compared these methods and discussed their advantages
and disadvantages. Hyndman and Shang (2009) proposed aweighted functional partial
least squares regression method for forecasting functional time series. Their method
is based on a lagged functional predictor and a functional response. In this paper,
we proposed an extended version of the functional partial least squares regression
(FPLSR) of Preda and Schiltz (2011). The proposed method differs from the previous
FPLSR in two respects. First, while the FPLSR considers only one functional predictor
in the model, our approach allows for more than one functional predictor. Second, the
FPLSR uses a fixed smoothing parameter when converting the discretely observed
data to functional form. However, our approach uses a grid search to determine the
optimal smoothing parameter.

In summary, our proposed method works as follows. First, the B-spline basis
function expansion is used to express discretely observed data as smooth functions.
The number of basis functions is determined using the penalizedLS, and the smoothing
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parameter that controls the roughness of the expansion is specified by the generalized
cross-validation (GCV). The discretized version of the smooth coefficient function
obtained by the basis function expansion is solved for a matrix [(say B in (2.6)] using
a PLS algorithm. In this study, we used the two fundamental PLS algorithms found in
the literature to estimate B—nonlinear iterative partial least squares (NIPALS) (Wold
1974) and simple partial least squares (SIMPLS) (de Jong 1993). Finally, the estimate
of the coefficient function βm(s, t) was obtained by applying the smoothing step. The
main advantage of the proposedmethod is that it bypasses the singularmatrix problem.
Further, the proposed method increases the predicting accuracy of the FFRM and is
more efficient compared with some other available estimation methods.

The remainder of this paper proceeds as follows. Section 2 is dedicated to the
methodology of the proposed method. Section 3 evaluates the finite-sample perfor-
mance of the proposed method using several Monte-Carlo experiments. Section 4
applies the proposed method to a dataset on solar radiation prediction. Section 5 con-
cludes the paper and provides several future research directions.

2 Methodology

For the FFRM provided by (1.1), the functional random variables are assumed to be
an element of L2, which expresses square-integrable and real-valued functions. They
are further assumed to be second-order stochastic processes with finite second-order
moments. The association between these functional variables is characterized by the
surfaceβm(s, t) ∈ L2, whereL2 denotes a square-integrable functional space.Without
loss of generality, the mean response function β0(t) is eliminated from the model (1.1)
by centering the functional response and functional predictor variables.

If Y∗
i (t) = Yi (t) − Y(t), X ∗

im(s) = Xim(s) − Xm(s) and ε∗
i (t) = εi (t) − ε(t) are

used to denote the centered versions of the functional variables and the error function
defined in (1.1), the model (1.1) can be re-expressed as follows:

Y∗
i (t) =

M∑

m=1

∫

S
X ∗
im(s)βm(s, t)ds + ε∗

i (t). (2.1)

By custom, we expressed the functional variables and the bivariate coefficient function
as basis function expansions before fitting the FFRM.

Initially, let x(t) denote a function finely sampled on a grid t ∈ [0, T ]. Based on
a pre-determined basis and a sufficiently large number of basis functions K , it can
be approximated as x(t) ≈ ∑K

k=1 ckφk(t), where φk(t) and ck , for k = 1, . . . , K ,
represent the kth basis function and its associated coefficient vector, respectively. In
this study, the functions were approximated using B-spline basis and the number of
basis functionswere determined according toGCV.Similarly, the (centered) functional
variables and the bivariate coefficient function in (2.1) can be written as basis function
expansions as follows:
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Y∗
i (t) =

KY∑

k=1

cikφk(t) = ci�(t) ∀t ∈ T , (2.2)

X ∗
im(s) =

Km,X∑

j=1

dimjψmj (s) = dim�(s) ∀s ∈ S, (2.3)

βm(s, t) =
∑

j,k

ψmj (s)bmjkφk(t) = �m(s)Bm�(t) ∀t ∈ T , ∀s ∈ S, (2.4)

where �(t) and �(s) are the vectors of the basis functions with dimensions KY and
Km,X , respectively, ci and dim , respectively, are the KY and Km,X dimensional coeffi-
cient vectors, andBm is a Km,X ×KY dimensional coefficient matrix. Replacing (2.2)
to (2.4) with (2.1) yields:

ci�(t) =
M∑

m=1

dimζψm
Bm�(t) + ε∗

i (t),

= ziB�(t) + ε∗
i (t), (2.5)

where ζψm
= ∫

S ψm(s)ψ�
m (s)ds is a Km,X × Km,X cross-product matrix,

zi = (
d�
i1ζψ1

, . . . ,d�
iMζψM

)�
is a vector of dimension

∑M
m=1 Km,X , and B =

(B1, . . . ,BM )� is the coefficient matrix with dimensions
∑M

m=1 Km,X × KY . Let

C = (c1, . . . , cN )�, Z = (z1, . . . , zN )� and εεε(t) = (
ε∗
1 (t), . . . , ε

∗
N (t)

)�, the
model (2.5) can then be rewritten as follows:

C�(t) = ZB�(t) + εεε(t). (2.6)

Assuming that the error functionεεε(t) in (2.6) can also be represented as a basis func-
tion expansion, then εεε(t) = e�(t) with e = (e1, . . . , eN )�, where each ei consists of
independently and identically distributed (iid) random variables ei = (ei1, . . . , eiK )�
having a normal distribution with mean 0 and variance-covariance matrix �. Replac-
ing εεε(t) with e�(t) in (2.6), and multiplying the whole equation by ��(t) from the
right and integrating with respect to T , yields:

C = ZB + e.

Estimating B is an ill-posed problem. The dimension of B increases exponentially
when a large number of basis functions are used to approximate the functions or
when a large number of predictors are used in the model. In such cases, traditional
estimation methods such as LS and ML fail to provide an estimate for B. However,
the MPL method can produce a stable estimate for B as long as the functional data
are approximated by a small number of basis functions. Because it is computationally
intensive, obtaining anMPL estimate ofBmay not be possible. This is the case when a
relatively large number of basis functions are used to convert discretely observed data
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into the functional form. In this paper, we propose using the PLS approach to obtain
a stable estimate for B. Compared with MPL, PLS has several important advantages,
including flexibility, straightforward interpretation, and fast computation ability in
high-dimensional settings. Note that our proposal is based on an extended version of
the FPLSR suggested by Preda and Schiltz (2011).

2.1 PLS for the function-on-function regressionmodel

Let XXX ∗(s) = (
X ∗
1 (s), . . . ,X ∗

M (s)
)
with X ∗

m(s) = (
X ∗
m1, . . . ,X ∗

mN

)
(m = 1, . . . , M)

and Y∗(t) = (
Y∗
1 (t), . . . ,Y ∗

N (t)
)
denote a matrix of M sets of centered functional

predictors of size (M × N )× Jx and a matrix of a set of centered functional response
of size N × Jy , respectively. Herein, the terms Jx and Jy denote the lengths of time
spans where the predictors and response functions observed. Let us now denote the
FFRM of Y∗(t) onXXX ∗(s) as follows:

Y∗(t) =
∫

S
XXX ∗(s)βββ(s, t)ds + εεε∗(t), (2.7)

where βββ(s, t) and εεε∗(t) denote the M sets of bivariate coefficient functions and error
functions, respectively. The PLS components of the FFRM (2.7) may be obtained as
solutions of Tucker’s criterion extended to functional variables as follows:

max
κ∈L2, ‖κ‖L2=1
ζ∈L2, ‖ζ‖L2=1

Cov2
(∫

S
XXX ∗(s)κ(s)ds,

∫

T
Y∗(t)ζ(t)dt

)
.

The functional PLS components also correspond to the eigenvectors of Escoufier’s
operators (Preda and Saporta 2005). Let Z ∈ L2 denote a random variable. Then, the
Escoufier’s operators of the centered functional response, WY∗

, and the matrix of M
sets of centered functional predictors, WXXX ∗

, are given as follows:

WY∗ =
∫

T
E

[
Y∗(t)Z

]
Y∗(t)dt

WXXX ∗ =
∫

S
E

[
XXX ∗(s)Z

]
XXX ∗(s)ds.

The first PLS component of the FFRM (2.7), η1, is then equal to the eigenvector of
the largest eigenvalue of the product of Escoufier’s operators, λ:

WXXX ∗
WY∗

η1 = λη1.

The first PLS component is defined as follows:

η1 =
∫

S
κ1(s)XXX ∗(s)ds,
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where the weight function κ1(s) is as follows:

κ1(s) =
∫
T E

[
Y∗(t)XXX ∗(s)

]
dt

√∫
S

(∫
T E

[
Y∗(t)XXX ∗(s)

]
dt

)2
ds

.

The PLS approach is an iterative method, which maximizes the squared covariance
between the response and predictor variables as a solution to Tucker’s criterion in
each iteration. Let h = 1, 2, . . . denote the iteration number. At each step h, the PLS
components are determined by the residuals of the regression models constructed at
the previous step as follows:

XXX ∗
h(s) = XXX ∗

h−1(s) − ph(s)ηh,

Y∗
h (t) = Y∗

h−1(t)ζh(t)ηh,

whereXXX ∗
0(s) = XXX ∗(s),Y∗

0 (t) = Y∗(t), ph(s) = E
[
XXX ∗

h−1(s)ηh
]

E
[
η2h

] , and ζh(t) = E
[
Y∗
h (t)ηh

]

E
[
η2h

] .

Then, the hth PLS component, ηh corresponds to the eigenvector of the largest
eigenvalue of the product of Escoufier’s operators computed at step h − 1 as fol-
lows:

WXXX ∗
h−1W

Y∗
h−1ηh = ληh .

Similarly to the first PLS component, the hth PLS component is obtained as fol-
lows:

ηh =
∫

S
κh(s)XXX ∗

h−1(s)ds,

where the weight function ηh is given by:

κh(s) =
∫
T E

[
Y∗
h−1(t)XXX ∗

h−1(s)
]
dt

√∫
S

(∫
T E

[
Y∗
h−1(t)XXX ∗

h−1(s)
]
dt

)2
ds

.

Finally, the ordinary linear regressions of XXX ∗
h−1(s) and Y∗

h−1(t) on ηh are conducted
to complete the PLS regression.

The observations of the functional response and functional predictors are intrin-
sically infinite-dimensional. However, in practice, they are observed in the sets of
discrete time points. In this case, the direct estimation of a functional PLS regres-
sion becomes an ill-posed problem since the Escoufier’s operators are needed to be
estimated using the discretely observed observations. To overcome this problem, we
consider the basis function expansions of the functional variables.

Let us now consider the basis expansions of Y∗(t) andX ∗X ∗X ∗(s) as follows:
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Y∗(t) =
KY∑

k=1

Ckφk(t) = C�(t)

XXX ∗(s) =
KX∑

j=1

CCC jψψψ j (s) = D�(s).

Denote by ��� = ∫
T ���(t)����(t)dt and ��� = ∫

S ���(s)����(s)ds the KY × KY and
KXXX ×KXXX dimensional symmetricmatrices of the inner products of the basis functions,
respectively. Also, let���1/2 and���1/2 denote the square roots of��� and���, respectively.
Then, we consider the PLS regression of CCC���1/2 on DDD���1/2 to approximate the PLS
regression of Y∗(t) onXXX ∗(s) as follows:

CCC���1/2 = DDD���1/2 + δδδ,

where and δδδ denote the regression coefficients and the residuals, respectively. Now

let ̂
h
denote the estimate of using the PLS regression at step h. Then we have,

CCC���1/2 = DDD���1/2̂
h
,

Ŷ∗(t) =
∫

S
XXX ∗(s)���h(s, t)ds,

where

���h(s, t) =
KY∑

k=1

KX∑

j=1

((
���1/2

)−1
̂

h
(
���1/2

)−1
)

ψψψ j (s)φk(t).

Herein, the term ���h(s, t) denotes the PLS approximation of the coefficient function
βββ(s, t) given in (2.7).

Throughout this paper, two main PLS algorithms were used to obtain the model
parameters: NIPALS and SIMPLS. While the NIPALS algorithm iteratively deflates
the functional predictor and functional response, the SIMPLS algorithm itera-
tively deflates the covariance operator. In our numerical analyses, the functions
plsreg2 and pls.regression of the R packages plsdepot (Sanchez 2012)
and plsgenomics (Boulesteix et al. 2018) were used to perform NIPALS and SIM-
PLS algorithms, respectively.

3 Simulation studies

VariousMonte-Carlo experiments were conducted under different scenarios to investi-
gate the finite-sample performances of the proposed PLS-based methods. Throughout
these experiments, MC = 1000 Monte-Carlo simulations were performed, and the
results were compared with LS, ML, MPL, and two available FFRM models: (1)
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penalized flexible functional regression (PFFR) from Ivanescu et al. (2015) [refer
to the R package “refund” from Goldsmith et al. (2018), for details] and (2) the
functional regression with functional response (FREG) from Ramsay and Silverman
(2006) (refer to the R package “fda.usc” from Febrero-Bande and Oviedo de la
Fuente (2012), for details].

Throughout the experiments, the following simple FFRM was considered:

Yi (t) = β0(t) +
∫

T
Xi (s)β1(s, t)ds + εi (t),

where s ∈ S, t ∈ T , and N = 100 and 200 individuals were considered. A comparison
was made using the average mean squared error (AMSE). For each experiment, the
generated data were divided into two parts: (1) The first half of the data were used to
build the FFRM, and the following AMSE was calculated:

AMSE = (N/2)−1
N/2∑

i=1

[
Yi (t) − Ŷi (t)

]2
,

where Ŷi (t) denotes the fitted function for i th individual. (2) The second part of the
data was used to evaluate the prediction performances of the methods based on the
constructed FFRMs using the first-half of the data:

AMSEp = (N/2)−1
N∑

i=N/2+1

[
Yi (t) − Ŷ∗

i (t)
]2

,

where Ŷ∗
i (t) denotes the predicted response function for i th individual. Also, we

applied the model confidence set (MCS) procedure proposed by Hansen et al. (2011)
[refer to the R package “MCS” from Barnardi and Catania (2018), for details] on the
prediction errors obtained by the FFRM procedures to determine superior method(s).
The MCS procedure was performed using 5000 bootstrap replications at a 95% con-
fidence level. Computations were performed using R Core Team (2019) on an Intel
Core i7 6700HQ 2.6 GHz PC.

The following process was used to generate functional variables:

• Generate the observations of the predictor variable X at discrete time points s j as
follows:

Xi j = κi (s j ) + εi j ,

where j = 1, . . . , 50, εi j ∼ N (0, 1), s j ∼ U (−1, 1), and κi (s) is generated as:

κi (s) = cos
[
exp

(
a1i s

)] + a2i s,

where a1i ∼ N(2, 0.022) and a2i ∼ N(−3, 0.042).
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Fig. 1 Plots of the generated N sets of discrete data (gray points) and fitted smooth functions (black lines)
when ρ = 1 and K = 20 numbers of basis functions were used in B-spline basis. The MPL, PFFR, FREG,
NIPALS, and SIMPLS were used to obtain fitted response functions

• Similarly, generate the data points of the response variable Y at time points t j
using the following process:

Yi j = ηi (t j ) + εi j ,

where t j ∼ U (−1, 1) and ηi (t) is generated as:

ηi (t) = ϑi (t) + εi (t),

where ϑi (t) = sin
[
exp

(
a1i t

)] + a2i t + 2t2, εi (t) = eee�
i ���(t), eeei s are iid mul-

tivariate Gaussian random errors with mean 0 and variance-covariance matrix
� = [(0.5|k−l|)ρ]k,l , and���(t) is the B-spline basis function. Throughout the sim-
ulations, four different variance parameters were considered: ρ = [0.5, 1, 2, 4].
The data generated at discrete time points were first converted into functions using

the B-spline basis with K = [10, 20, 30, 40] numbers of basis functions. An example
of the observed data with noise and the fitted smooth functions for the generated
response variable is presented in Fig. 1.

Before presenting our findings, we note that the results do not vary considerably
with different choices of N ; therefore, to save space, we only report the results for
N = 100. The LS and ML methods failed to provide an estimate for B because of the
singular matrix problem and degenerate structure of the generated data; thus, we only
report on the comparative studies with MPL, PFFR, FREG, NIPALS, and SIMPLS.
Our results obtained from the fitted and predicted models are presented in Figs. 2
and 3, respectively.
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Fig. 2 Fitted model performances: Computed AMSE values of the MPL, PFFR, FREG, NIPALS, and
SIMPLS methods. The data were generated based on the variance parameter ρ = [0.5, 1, 2, 4] and K =
[10, 20, 30, 40] numbers of basis functions were used to convert the data to smooth functions

They illustrate that, when K = 10, the proposed SIMPLS algorithm performed
considerably better than the other methods in terms of AMSE, AMSEp, and their
associated standard errors. Also, the NIPALS algorithm showed competitive perfor-
mance to other methods. We observed that the FREG and MPL failed to provide an
estimate for the model parameter when K ≥ 20 and K ≥ 30, respectively. For a small
to moderate variance parameter, the proposed NIPALS and SIMPLS performed better
than the PFFR,while all three estimationmethods tended to have similar performances
when ρ = 4.

The results for the MCS analysis are presented in Table 1. The values in this table
correspond to the percentages of the superiorities of the methods from 1000 Monte-
Carlo simulations. Our findings demonstrate that the proposed NIPALS and SIMPLS
algorithms produced significantly better prediction performances compared with their
competitors except when K = 20.

Furthermore, we examined the computing performances of the methods considered
in this study. Figure 4 represents the elapsed computational times for a different number
of basis functions obtained by a singleMonte-Carlo experiment. This figure illustrates
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Fig. 3 Predicted model performances: Computed AMSEp values of the MPL, PFFR, FREG, NIPALS,
and SIMPLS methods. Data were generated based on the variance parameter ρ = [0.5, 1, 2, 4] and K =
[10, 20, 30, 40] numbers of basis functions were used to convert the data to smooth functions

that both theNIPALS and SIMPLS algorithms had considerably shorter computational
times than other methods. The computational time of MPL increased exponentially
with increasing K ; therefore, we do not recommend its use when a large number of
basis functions are used in the FFRM.

4 Data analyses

In this section, we evaluate the performances of the proposed PLS-based methods
using an empirical data example: daily North Dakota weather data. The daily dataset
was collected from 70 stations across North Dakota (see Table 2), from January 2010
to December 2018 (dataset are available from the North Dakota Agricultural Weather
NetworkCenter: https://ndawn.ndsu.nodak.edu). The dataset has threemeteorological
variables: average temperature (◦C), averagewind speed (m/s), and total solar radiation
(MJ/m2).

123

https://ndawn.ndsu.nodak.edu


Environmental and Ecological Statistics (2020) 27:95–114 107

Table 1 MCS analysis results

ρ Method K = 10 (%) K = 20 K = 30 K = 40

0.5 MPL 0.090 0.532% – –

PFFR 0.000 0.000% 0.000% 0.000%

FREG 0.000 – – –

NIPALS 0.610 0.299% 0.547% 0.588%

SIMPLS 0.318 0.197% 0.467% 0.424%

1 MPL 0.183 0.603% – –

PFFR 0.000 0.000% 0.000% 0.000%

FREG 0.000 – – –

NIPALS 0.529 0.257% 0.485% 0.655%

SIMPLS 0.301 0.161% 0.528% 0.352%

2 MPL 0.001 0.517% – –

PFFR 0.000 0.000% 0.000% 0.004%

FREG 0.000 – – –

NIPALS 0.321 0.143% 0.478% 0.533%

SIMPLS 0.682 0.354% 0.526% 0.447%

4 MPL 0.644 0.803% – –

PFFR 0.000 0.000% 0.147% 0.163%

FREG 0.000 – – –

NIPALS 0.212 0.192% 0.410% 0.494%

SIMPLS 0.150 0.008% 0.450% 0.357%
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Fig. 4 Estimated computational times in second for the MPL, PFFR, FREG, NIPALS, and SIMPLS esti-
mators
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Table 2 Station names for the North Dakota weather data

Station Station Station Station Station Station Station

Ada Cavalier Fingal Hofflund Marion Perley Sidney

Baker Crary Forest River Humboldt Mavie Pillsbury Stephen

Beach Crosby Galesburg Inkster Mayville Plaza Streeter

Berthold Dazey Grafton Jamestown McHenry Prosper Thomas

Bottineau Dickinson Grand Forks Karlsruhe Michigan Robinson Tappen

Bowbells Dunn Greenbush Langdon Minot Rolla Turtle Lake

Bowman Edgeley Harvey Leonard Mohall Roseau Wahpeton

Brorson Ekre Hazen Linton Mooreton Ross Warren

Cando Eldred Hettinger Lisbon Mott Rugby Watford City

Carrington Fargo Hillsboro Mandan Oakes Sabin Williston
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Fig. 5 Plots of discrete data (first row) and their calculated smooth functions (second row) for daily weather
data

The data were averaged over the entire time, and B-spline basis function expansion
was used to convert the discretely observed data to functional forms. Using the GCV
criterion, the estimated numbers of basis functions of the temperature, wind speed,
and solar radiation variables were [147, 62, 150]. The plots of the observed dataset
and its computed functions are presented in Fig. 5.

For the dataset, we predicted total solar radiation using temperature and wind speed
variables. For this purpose, the datasetwas divided into the following twoparts: FFRMs
were constructed based on the variables of the first 50 stations to predict the total solar
radiation functions of the remaining 20 stations. However, FREG and PFFR do not
allow for more than one functional predictor in the FFRM. Therefore, to compare all
the methods considered in this study, we first constructed the FFRM using only one
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Fig. 6 Plots of observed and predicted solar radiation functions for the test stations. The FFRM was
constructed using one predictor (wind speed). The PFFR, NIPALS, and SIMPLS methods were used to
estimate the model parameter β1(s, t)

functional predictor as follows:

Yi (t) =
∫

S
Xi1(s)β1(s, t) + εi (t) i = 1, . . . , 50, (4.1)

where Yi (t) and Xi1(s) denote the i th function of the solar radiation and wind speed.
Then, we calculated the AMSEp as follows:

AMSEp = 1

20

70∑

i=51

[
Yi (t) − Ŷ∗

i (t)
]2

,

where Ŷ∗
i (t) denotes the predicted response function for i th station. The MPL and

FREG failed to provide an estimate for the regression parameter because of the sin-
gular matrix problem. The calculated AMSEp for the PFFR, NIPALS, and SIMPLS
were [275.0590, 100.4674, 100.2813]. The results show that, of all methods, the pro-
posed PLS-based methods were most effective. The observed and predicted total solar
radiation functions of the test stations using model (4.1) are presented in Fig. 6.

Next, we constructed the FFRM using more than one functional predictor as fol-
lows:

Yi (t) =
∫

S
Xi1(s)β1(s, t) +

∫

S
Xi2(s)β2(s, t) + εi (t), i = 1, . . . , 50, (4.2)

where Yi (t), Xi1(s), and Xi2(s) denote the i th function of the solar radiation, wind
speed, and temperature, respectively. In this case, we only compare theMPL,NIPALS,
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Fig. 7 Plots of observed and predicted solar radiation functions for the test stations: daily weather data. The
FFRM was constructed using two predictors (wind speed and temperature). The NIPALS, and SIMPLS
methods were used to estimate the model parameters β1(s, t) and β2(s, t)

and SIMPLS methods because the FREG and PFFR do not allow more than one
functional predictor in the model. For the data, the MPL failed to provide an estimate
for the regression parameter because of the singular matrix problem; therefore, we
only compared the proposed NIPALS and SIMPLS methods. The calculated AMSEp

values for the NIPALS and SIMPLS, respectively, were [56.93, 57.70]. The results
show that the NIPALS performed better than the SIMPLS. The observed and predicted
total solar radiation functions for model (4.2) are provided in Fig. 7.

In summary, our proposed PLSmethods tend to produce superior performances than
existing estimation methods and other available FFRMs. Additionally, the proposed
methods avoided common computing problems. Computational issues observed when
using the MPL and FREG are presented as follows:

These errors were attributable to the relatively large number of basis functions
estimated by the GCV. A possible solution for overcoming these problems is to use a
high-performance computer or a smaller number of basis functions in the modeling
phase. However, the proposed PLS-based methods can successfully provide estimates
for the model parameters in a few seconds without producing any errors listed above
(an example R code for the analysis of daily North Dakota weather data is available
at https://github.com/hanshang/FPLSR).

5 Conclusion

Analysis of the association between functional response and functional predictors
has received considerable attention in many research fields. For this purpose, several
FFRMs have been proposed, with their primary objective being to estimate the model
parameters accurately. Existing estimation methods work well when a small number
of predictors are used in the model. Existing estimation methods also work well when
a finite number basis functions are used to convert discretely observed data to smooth
functions. However, when the opposite occurs, estimation methods suffer from two
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key problems. First, they fail to provide estimates for the model parameters because
of the singular matrix problem. Second, they are computationally time-consuming.

In the present study, we integrated the PLS approach with an FFRM and used two
principal algorithms, NIPALS and SIMPLS, to estimate the parameter matrix. The
finite-sample performances of the proposed approaches were evaluated using Monte-
Carlo experiments and empirical data analysis. We compared our results with some
other estimation methods within an FFRM. Our findings illustrate that the proposed
approaches perform better than several existing estimation methods. They avoid the
singular matrix problem by decomposing the response and predictor variables into
orthogonal matrices. Additionally, they are computationally more efficient compared
with available estimation methods.

For the proposed methods, two points need to clarify: (1) Throughout this study, we
assume that the functional predictor variables are observed on the same domain [(see
model (1.1)]. However, there may be some cases where the dataset includes multiple
predictors observed on different domains (see, e.g., Happ and Greven 2018). In such
a case, the following FFRM can be considered:

Yi (t) = β0(t) +
M∑

m=1

∫

Sm
Xim(sm)βm(sm, t) + εi (t), (5.1)

where Sm denotes the domain ofmth functional predictor. All the functional predictor
matrices Xm , for m = 1, . . . , M , have the same row lengths, and they can be stacked
into a vector XXX . Our proposed method can also be used to estimate the variable-
domain FFRMgiven in (5.1). (2) In this study,we use the samefinite-dimensional basis
functions method (B-spline) to convert the discretely observed data points of predictor
variables into their functional forms. However, using different basis functionsmethods
for different predictors may be more useful in some cases; for example, B-spline and
Fourier bases can be used to approximate the functional variables having non-periodic
and periodic structures, respectively. In such a case, the basis coefficient matrices
produced by different basis expansion methods will have the same row lengths; and
thus, using different basis functions for different predictors does not interfere with the
use of our proposed method.

The present research can be extended in three directions: (1) We only considered
two fundamental algorithms, NIPALS and SIMPLS, to estimate the FFRM. However,
numerous algorithms, such as improved kernel PLS (Dayal and MacGregor 1997),
Bidiag2 (Golub and Kahan 1965), and non-orthogonalized scores (Martens and Naes
1989), are available in the PLS literature; and could be included for performance
comparison. (2) In the presence of outliers, it may be advantageous to consider a
robust PLS algorithm, such as the robust iteratively reweighted SIMPLS in Alin and
Agostinelli (2017). (3) In our numerical analyses, the finite sample performance of
the proposed method is evaluated using a fixed h = 5 number of PLS components.
However, its performance may depend on different choices of the number of PLS
components. Thus, a cross-validation approachofYao andTong (1998),Racine (2000),
and Antoniadis et al. (2009) may be proposed to determine the optimum number of
PLS components.
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