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Abstract
In this paper, two-sided exponential–geometric (TSEG) distribution is proposed and 
its statistical properties are studied comprehensively. The proposed distribution is 
applied to the GJR-GARCH model to introduce a new conditional model in forecast-
ing Value-at-Risk (VaR). Nikkei-225 and BIST-100 indexes are analyzed to demon-
strate the VaR forecasting performance of GJR-GARCH-TSEG model against the 
GJR-GARCH models defined under normal, Student-t, skew-T and generalized error 
innovation distributions. The backtesting methodology is used to evaluate the out-
of-sample performance of VaR models. Empirical findings show that GJR-GARCH-
TSEG model produces more accurate VaR forecasts than other competitive models.

Keywords  GARCH · GJR-GARCH · Exponential–geometric distribution · Value-at-
risk · Volatility

1  Introduction

In the last decade, financial institutions have been exposed to unpredictable big 
losses because of the economic instability and political events. To minimize the 
effects of unexpected events on financial institutions, risk management is an impor-
tant tool to identify, measure and control the relevant risks that effect the business 
cycles. Value-at-Risk (VaR), plays an essential role in risk management systems and 
is a powerful risk measure. The common risk measure, VaR, is widely used to meas-
ure and quantify the level of risk for the single asset or portfolio under a given confi-
dence level and holding period. The VaR could be explained as a quantile estimation 
of financial return series. Therefore, true quantile estimation of the financial returns 
is a key point for increasing the accuracy of VaR forecasts. The financial economists 
and researchers have shown great interest to develop new models in forecasting 
VaR. The objective of this research is to introduce one potential risk management 

 *	 Emrah Altun 
	 emrahaltun123@gmail.com

1	 Department of Statistics, Bartin University, 74100 Bartin, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-019-00873-3&domain=pdf


1216	 E. Altun 

1 3

tool by proposing a flexible distribution to capture the non-normal characteristics of 
financial return series.

Cont (2001) summarized the stylized facts of the financial returns. It is an impor-
tant research to understand the properties of financial returns. According to Cont 
(2001) (it is also widely documented in literature), the financial return series exhibit 
significant skewness and excess kurtosis. Thus, alternative statistical distributions, 
enables to model both skewness and excess kurtosis, are needed to increase the 
modeling ability of financial returns. Forecasting VaR with inaccurate distribution 
causes to underestimation or overestimation of the real market risk. In recent years, 
researchers has showed a great interest to more flexible distributions for modeling 
and forecasting the financial risk. Angelidis et al. (2004) discussed the performance 
of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models 
with three innovation distributions: normal, Student-t and generalized error distribu-
tions and concluded that the leptokurtic distributions increase the accuracy of VaR 
forecasts. Dendramis et  al. (2014) suggested to use of parametric volatility mod-
els with skewed distributions to increase the accuracy of VaR forecasts. Lyu et al. 
(2017) examined the performance of GARCH model under eight innovation distri-
butions and concluded that the financial institutions should take into consideration 
the more flexible distributions in their internal risk management system to increase 
the accuracy of their internal risk system. Chen et al. (2012) applied the asymmetric 
Laplace distribution, introduced by Hinkley and Revankar (1977), to GARCH mod-
els and concluded that asymmetric Laplace distribution provides better VaR fore-
casts than normal and Student-t distributions. So and Yu studied the seven GARCH 
models in VaR estimation and concluded that it is important to consider a model 
with fat-tailed errors in forecasting VaR. Recently, Altun et  al. (2018, 2019) con-
cluded that the skewed and fat-tailed distributions have an essential role for increas-
ing the forecasting accuracy of VaR.

The goal of this study is to provide an alternative distribution to increase the mod-
eling accuracy of financial return series. To achieve this goal, two-sided exponen-
tial–geometric (TSEG) distribution is proposed and applied to GARCH models. The 
usefulness of proposed distribution is demonstrated in forecasting VaR. The pro-
posed distribution enables to model skewness and excess kurtosis simultaneously. 
This property of proposed distribution increases the accuracy of VaR forecasts.

The rest of the paper is organized as follows: in Sect. 2, the main statistical prop-
erties of TSEG distribution are obtained. GARCH models with different innovation 
distributions such as normal, Student-t, generalized error distribution and TSEG are 
presented in Sect. 3. Backtesting methodology is given in Sect. 4. Empirical find-
ings and model comparisons are presented in Sect. 5. Some concluding remarks are 
given in Sect. 6.

2 � Two‑sided exponential–geometric distribution

The exponential–geometric (EG) distribution, introduced by Adamidis and Loukas 
(1998), has been studied by many researchers such as Louzada et al. (2011, 2014, 
2016) and Bidram and Nadarajah (2016). The objective of these researches is to add 
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additional shape parameters to EG distribution for increasing the modeling ability of 
EG distribution especially in lifetime data modeling. The probability density func-
tion (pdf) of EG distribution is given by

where 𝛽 > 0 and p ∈ (0, 1) . The corresponding cumulative distribution function 
(cdf) to (1) is

The raw moments of EG distribution are given by

where L(p;r) =
∑∞

j=1
pjj−r is the generalization of Euler’s dilogarithm function of p, 

L(p;2) (see, Erdelyi et al. 1953, p. 31). This function is also known as polylogarithm 
function and available in copula package of R software. The quantile function (qf) is 
widely used to generate random variables from statistical distributions. The qf of EG 
distribution is given by

where 0 ≤ q ≤ 1 . TSEG distribution is introduced by means of EG distribution.

Proposition 1  Let X random variable follows TSEG distribution, denoted as 
X ∼ TSEG

(
x;�1, p

)
 , with pdf given below

where p ∈ (0, 1) is the scale parameter and 𝛽1 > 1 and 𝛽2 > 1 are the shape param-
eters. To ensure that the pdf (5) integrates to 1, the below constraint on parameters 
is required.

The above constraint allows to being free only for one parameter. The parameter �2 
is restricted by (6) and �2 =

�1

�1−1
 . Note that P(X < 0) = 1∕𝛽1 . Therefore, 𝛽1 > 1 . If 

𝛽1 > 2 , TSEG distribution is right skewed, otherwise, left skewed. If �1 = 2 , the dis-
tribution is symmetric around the zero.

Figure 1 displays the plots of density functions of the TSEG distribution. As seen in 
Fig. 1, the pdf of TSEG distribution can be symmetric, left-skewed and right skewed 
for several parameter values. As seen from Fig. 1, the proposed distribution is a good 
choice to capture the stylized facts of conditional distribution of return series such as 

(1)f (x;𝛽, p) = 𝛽(1 − p) exp (−𝛽x)(1 − p exp (−𝛽x))−2, x > 0

(2)F(x) = (1 − exp (−�x))(1 − p exp (−�x))−1.

(3)E(Xr) = (1 − p)r!(�rp)−1L(p;r).

(4)Q(q) = −
1

�
ln

(
q − 1

qp − 1

)

(5)f
(
x;𝛽1, p

)
=

{
(1 − p) exp

(
𝛽1x

)(
1 − p exp

(
𝛽1x

))−2
, x < 0

(1 − p) exp
(
−𝛽2x

)(
1 − p exp

(
−𝛽2x

))−2
, x ≥ 0

(6)
1

�1
+

1

�2
= 1
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fat-tail and skewness. Accurately modeling of the tails of conditional distribution is 
essential to increase the accuracy of VaR forecasts.

2.1 � Moments

Proposition 2  The moments of the TSEG distribution can be obtained from the 
moments of EG distribution. Let X ∼ TSEG

(
x;�1, p

)
 , then the rth moment of X is 

given by

The first four raw moments of the TSEG distribution are obtained using (7) as follows:

Using the first four moments of the TSEG distribution, skewness and kurtosis can be 
obtained easily by, respectively,

(7)E(Xr) =
1

�2
(1 − p)r!

(
�r
2
p
)−1

L(p;r) + (−1)r
1

�1
(1 − p)r!

(
�r
1
p
)−1

L(p;r)

(8)

E(X) = (1 − p)L(p;1)

(
1

�2
2
p
−

1

�2
1
p

)

E
(
X2

)
= 2(1 − p)L(p;2)

(
1

�3
2
p
+

1

�3
1
p

)

E
(
X3

)
= 6(1 − p)L(p;3)

(
1

�4
2
p
−

1

�4
1
p

)

E
(
X4

)
= 24(1 − p)L(p;4)

(
1
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p
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1
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1
p

)
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Fig. 1   Plots of density functions for the TSEG distribution for several parameter values
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where � = E(X) and � is given by,

Figure 2 displays skewness, and kurtosis of TSEG distribution for some parameter 
values. As seen from Fig. 2, TSEG distribution could be used to model skewed and 
leptokurtic data sets.

Proposition 3  Let �1 denotes the skewness of TSEG distribution. The range of �1 is 
given by,

The range of �1 is obtained by means of numerical calculation.

2.2 � Distribution function

Proposition 4  Let X ∼ TSEG
(
x;�1, p

)
 , then the cdf of X is given by

�1 =
E(X − �)3

�3
,

�2 =
E(X − �)4

�4
− 3,

(9)

� =

√√√√√2(1 − p)L(p;2)

(
1

�3
2
p
+

1

�3
1
p

)
−

{
(1 − p)L(p;1)

(
1

�2
2
p
−

1

�2
1
p

)}2

(10)− 2.612356 ≤ �1 ≤ 2.612356

(11)F(x) =

⎧⎪⎨⎪⎩

1

𝛽1

�
1 −

�
1 − exp

�
𝛽1x

���
1 − p exp

�
𝛽1x

��−1�
, x < 0

1

𝛽1
+

1

𝛽2

�
1 − exp

�
−𝛽2x

���
1 − p exp

�
−𝛽2x

��−1
, x ≥ 0
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Fig. 2   Plots of skewness, and kurtosis of the TSEG distribution
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2.3 � Quantile function

Proposition 5  Let X ∼ TSEG
(
x;�1, p

)
 , then the qf of X is given by

where 0 ≤ q ≤ 1.

Here, an algorithm is given for generating random variables from the TSEG 
distribution.

Proposition 6  (Inverse Transform Algorithm)

Let Q(q) denotes the qf of TSEG distribution. The below algorithm can be used to 
generate random observations from X ∼ TSEG

(
x;�1, p

)
.

1.	 Generate p ∼ uniform(0, 1),

2.	 If    0 < q < 1
/
𝛽1 , X =

1

�1
ln
(

1−(1−q�1)
1−p(1−q�1)

)
 ,    otherwise    X = −

1

�2
ln

(
1−

�2

�1
(q�1−1)

1−
�2

�1
p(q�1−1)

)
.

2.4 � Standardized TSEG distribution

The standardized TSEG distribution is obtained using the transformed random vari-
able � = (x − �)∕� where E(�) = 0 and var(�) = 1 . The random variable X with dis-
tribution given in (5) can be expressed as x = �� + � and �x∕�� = � . Thus, the pdf of 
standardized TSEG distribution is given by

where p ∈ (0, 1) , 𝛽1 > 1 and 𝛽2 > 1 . Note that � and � are mean and standard devia-
tion of TSEG distribution given in (7) and (9), respectively.

2.5 � Estimation and simulation study

2.5.1 � Estimation

Let x1, x2,… , xn be a random sample from X ∼ TSEG
(
x;�1, p

)
 distribution. Using 

Eq. (5), the log-likelihood function of TSEG distribution is given by

(12)Q(q) =

⎧
⎪⎨⎪⎩

1

𝛽1
ln
�

1−(1−q𝛽1)
1−p(1−q𝛽1)

�
, 0 < q < 1

�
𝛽1

−
1

𝛽2
ln

�
1−

𝛽2

𝛽1
(q𝛽1−1)

1−
𝛽2

𝛽1
p(q𝛽1−1)

�
, 1

�
𝛽1 ≤ q < 1

(13)

f
(
𝜀;𝛽1, p

)

=

{
𝜎(1 − p) exp

(
𝛽1(𝜀𝜎 + 𝜇)

)(
1 − p exp

(
𝛽1(𝜀𝜎 + 𝜇)

))−2
, 𝜀 < −𝜇

/
𝜎

𝜎(1 − p) exp
(
−𝛽2(𝜀𝜎 + 𝜇)

)(
1 − p exp

(
−𝛽2(𝜀𝜎 + 𝜇)

))−2
, 𝜀 ≥ −𝜇

/
𝜎
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where Θ =
(
�1, p

)
 denotes the parameter vector and I(⋅) is the indicator function. 

Since the parameter �2 is restricted by (6), there is no need to estimate this param-
eter. Taking partial derivatives from (14) with respect to parameters, the following 
normal equations are obtained as

The maximum likelihood estimates (MLEs) of 
(
�1, p

)
 , say, 

(
𝛽1, p̂

)
 , are the simultane-

ous solutions of the equations: ��
��1

= 0 , and ��
�p

= 0 . Since the likelihood equations 
contain non-linear functions, it is not possible to obtain explicit forms of the MLEs. 
Therefore, they have to be solved by using numerical methods. S-Plus, R or MAT-
LAB can be used for obtaining the MLEs of the parameters. Here, constrOptim 
function of R software is used to minimize the minus log-likelihood function of 
TSEG distribution. The observed information matrix, IF(Θ) evaluated at Θ̂ is used to 
obtain corresponding standard errors. The elements of IF(Θ) is upon request from 
the authors.

2.5.2 � Simulation study

In this subsection, Monte-Carlo simulation study is conducted to evaluate the 
performance of MLEs of TSEG distribution based on the N = 10,000 samples of 
sizes n = 50, 150 and 500 from TSEG distribution. Inverse transform algorithm 
given in Sect. 2.3 is used to generate random variables from TSEG distribution. 
The accuracy of the MLEs is discussed by means of the following measures: 
averages of the estimates (AEs), biases and mean square errors (MSEs). The sim-
ulation results are summarized in Table 1. Based on the results given in Table 1, 
the parameter estimates are quite stable and closed to their nominal values. The 

(14)

�(Θ) =

{
n ln (1 − p) +

n∑
i=1

𝛽1xi − 2

n∑
i=1

ln
(
1 − p exp

(
𝛽1xi

))}
I(xi<0)

+

{
n ln (1 − p) −

n∑
i=1

𝛽2xi − 2

n∑
i=1

ln
(
1 − p exp

(
−𝛽2xi

))}
I(xi≥0)

(15)

𝜕�

𝜕p
=

{
−

n

1 − p
− 2

n∑
i=1

exp
(
𝛽1xi

)

1 − p exp
(
𝛽1xi

)
}

I(xi<0)

+

{
−

n

1 − p
− 2

n∑
i=1

exp
(
−𝛽2xi

)

1 − p exp
(
−𝛽2xi

)
}

I(xi<0)

(16)
𝜕�

𝜕𝛽1
=

{
n∑
i=1

xi + 2

n∑
i=1

pxi exp
(
𝛽1xi

)

1 − pxi exp
(
𝛽1xi

)
}

I(xi<0)
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MSEs and biases approach to zero when the sample sizes increase. It is an evi-
dence that the asymptotic normal distribution provides an adequate approxima-
tion for the finite sample distribution of MLEs of the TSEG distribution. Figure 3 
displays the Q–Q plots of MLEs of TSEG distributions for n = 500 . Figure  3 
verifies the asymptotic normality property of MLE. It is clear that the MLEs of 
TSEG distribution are near to normal distribution.

3 � GARCH models in VaR forecast

Let rt = ln
(
pt
)
− ln

(
pt−1

)
 denotes the daily log-returns and pt is the closing price 

of asset at time t. The benchmark model, GARCH(1,1) introduced by Bollerslev 
(1986), is given by

where 𝜔 > 0 , 𝛾1 > 0 , 𝛾2 > 0 . Here, mt and h2
t
 are the conditional mean and variance, 

respectively, and �t is the sequence of independently and identically distributed ran-
dom variables with zero mean and unit variance. The mean process of log-returns are 
near the zero. Therefore, there is no need to use any autoregressive process for mean 
and it can be omitted or taken as a. The common choice is to take the mean process 

(17)

rt = mt + et,

et = �t ht, �t ∼ i.i.d.,

h2
t
= � + �1 e

2
t−1

+ �2h
2
t−1

,

Table 1   The AEs, biases and MSEs based on 10,000 simulations of the TSEG distribution for 
n = 50, 150 and 500

n Parameters �1 = 2   p = 0.5 MSE �1 = 1.3   p = 0.5 MSE

AE Bias AE Bias

50 �1 2.0153 0.0153 0.0530 1.2998 − 0.0002 0.0059
p 0.4892 − 0.0108 0.0168 0.4869 − 0.0131 0.0165

150 �1 2.0132 0.0132 0.0166 1.2983 − 0.0017 0.0020
p 0.4954 − 0.0046 0.0051 0.4973 − 0.0027 0.0048

500 �1 2.0015 0.0015 0.0049 1.3023 0.0023 0.0006
p 0.4994 − 0.0006 0.0015 0.4997 −  0.0003 0.0017

n Parameters �1 = 3   p = 0.3 MSE �1 = 4   p = 0.7 MSE

AE Bias AE Bias

50 �1 3.0851 0.0851 0.3317 4.1629 0.1629 0.8608
p 0.2927 − 0.0073 0.0250 0.6961 − 0.0039 0.0062

150 �1 3.0352 0.0352 0.2997 4.0918 0.0918 0.2772
p 0.2918 − 0.0082 0.0107 0.6947 − 0.0053 0.0018

500 �1 3.0147 0.0147 0.0692 4.0184 0.0184 0.0696
p 0.2997 − 0.0003 0.0032 0.6996 − 0.0004 0.0006
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as zero. The h2
t
 , conditional variance of et , is a time-varying, positive and measur-

able function of the information set at time t − 1 . When the 𝛾1 + 𝛾2 < 1 , the process 
of et is covariance stationary and the unconditional variance of et is �∕

(
1 − �1 − �2

)
 . 

The GARCH model is generalization of ARCH model introduced by Engle (1982). 
When the parameter �2 = 0 , GARCH model reduces to ARCH model.

ARCH and GARCH models do not enable to capture the asymmetric volatil-
ity dynamics in financial return series. For this reason, asymmetric GARCH models 
have been introduced. Here, the most used asymmetric volatility model, GJR-GARCH, 
introduced by Glosten et al. (1993), is used to model the asymmetric effects in volatility 
process. The GJR-GARCH(1,1) model is given by

where 𝜔 > 0, 𝛾1 > 0, 𝛾2 > 0 and 𝛾1 + 𝛾3 > 0 . When the innovation distribution is 
normal, 𝛾1 + 𝛾2 +

1

2
𝛾3 < 1 for covariance stationary. The parameter �3 represents 

the leverage effect. It−1 is an indicator function and It−1 = 1 for et−1 < 0 , otherwise, 
It−1 = 0 . The parameter �3 represents the asymmetry effect on volatility. The posi-
tive �3 parameter indicates that the bad news yields higher volatility than good news. 
Note that when �3 = 0 , GJR-GARCH model reduces to model of Bollerslev (1986). 
The unconditional variance of et for GJR-GARCH models is given by

where � is

It is easy to see that � = 1∕2 for standard normal distribution.
The distributional assumption on innovation process of volatility models directly 

affects the both accuracy of volatility and VaR forecasts. Therefore, the rest of this sec-
tion is devoted to present GJR-GARCH models with normal and skewed and fat-tailed 
distributions.

3.1 � Normal innovation distribution

The log-likelihood function of the rt specified under normal innovations can be given 
by

where � = (m,�, �1, �2, �3) denotes the parameter vector of the GJR-GARCH-nor-
mal (GJR-GARCH-N) model and h2

t
= � + �1e

2
t−1

+ �3It−1e
2
t−1

+ �2h
2
t−1

.

(18)h2
t
= � + �1e

2
t−1

+ �3It−1e
2
t−1

+ �2h
2
t−1

,

(19)Var
(
et
)
=

�

1 − �1 − �2 − ��3
,

(20)� = E
(
It−1e

2
t−1

) 0

∫
−∞

f (�)d�.

(21)�(�) = −0.5

(
T ln 2� +

T∑
t=1

ln h2
t
+

T∑
t=1

�2
t

)
,
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The one-day-ahead VaR forecast based on normal distribution is given by

where m̂t+1 and ĥt+1 are forecasts of mean and conditional standard deviation, respec-
tively. Fq

−1 is the quantile function (qf) of the normal distribution at the q level.

3.2 � Student‑t innovation distribution

Since financial return series have fatter tails than normal distribution, Bollerslev 
(1986, 1987) proposed the GARCH model with the Student-t innovations. GARCH 
model with the Student-t innovations enables to model both fat-tail and excess kurtosis 
observed in financial return series. The log-likelihood function of the GJR-GARCH-
Student-t (GJR-GARCH-T) model is given as

where � = (m,�, �1, �2, �3, �) denotes the parameter vector, Γ(�) is the gamma func-
tion and parameter � controls the tails of the distribution. The one-day-ahead VaR 
forecast based on the Student-t distribution is given by

where F−1
q
(�t, �) is the qf of the Student-t distribution at the q level. The qt function 

of R is used to obtain quantile estimation of standardized Student-t distribution.

3.3 � Skew‑T innovation distribution

Fernandez and Steel (1998) introduced the skew generalization of Student-t distribu-
tion, called as skew-T distribution. Lambert and Laurent (2001) applied the skew-T dis-
tribution to GARCH models. The log-likelihood function of the GJR-GARCH-skew-T 
(GJR-GARCH-ST) model is given as

(22)VaRt+1 = m̂t+1 + F−1
q
ĥt+1,

�(�) =T
[
lnΓ

(
� + 1

2

)
− lnΓ

(
�

2

)
−

1

2
ln [�(� − 2)]

]

−
1

2

T∑
t=1

[
ln h2

t
+ (1 + �) ln

(
1 +

�2
t

� − 2

)]

VaRt+1 = m̂t+1 + F−1
q
(𝜀t, 𝜐)ĥt+1,

(23)

�(�) =T
[
ln
(
Γ
(
� + 1

2

))
− ln

(
�

2

)
−

1

2
ln (�(� − 2))

+ ln

(
2

� + 1
/
�

)
+ ln (s)

]

−
1

2

T∑
i=1

[
ln
(
h2
t

)
+ (1 + �) ln

(
1 +

(
s�t + m

)2
� − 2

�−2It

)]
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where � = (m,�, �1, �2, �3, �, �) denotes the parameter vector, � is the skewness 
parameter and,

The one-day-ahead VaR forecast of GJR-GARCH-ST model is given by

where Fq
−1(�t, �, �) is the qf of skew-T distribution at q level. The qsstd function of 

R is used to obtain quantile estimation of standardized skew-T distribution.

3.4 � Generalized error innovation distribution

Nelson (1991) proposed the GED instead of assuming �t is normally distributed. Under 
this specification, the log-likelihood function of GJR-GARCH-GED model is given by

where � = (m,�, �1, �2, �3, �) denotes the parameter vector, � is tail-thickness 
parameter and,

When the parameter � = 2 , the GED reduces to standard normal distribution. When 
𝜅 < 2 , GED has heavier tails than Gaussian distribution. The one-day-ahead VaR 
forecast of GJR-GARCH-GED model is given by

where Fq
−1(�t, �) is the qf of GED at q level. The qged function of R is used to 

obtain quantile estimation of standardized GED distribution.

It =

�
1, if zt ≥ −

m

s

−1, if zt < −
m

s

m =
Γ
�
𝜐 + 1

�
2
�√

𝜐 − 2
√
𝜋Γ

�
𝜐
�
2
� �

𝜅 − 1
�
𝜅
�

s =

��
𝜅2 + 1

�
𝜅2 − 1

�
− m2

(24)VaRt+1 = m̂t+1 + Fq
−1(𝜀t, 𝜐, 𝜅)ĥt+1.

(25)�(�) =

T∑
t=1

[
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(
�

2

)
−

1

2

||||
�t

�

||||
�

− (1 + �−1) ln(2) − lnΓ
(
1
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)
−

1

2
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(
h2
t
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,
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Γ
�

1

�

�

2
2

� Γ
�

3

�

�
⎞
⎟⎟⎟⎠

1

2

,

(27)VaRt+1 = m̂t+1 + Fq
−1(𝜀t, 𝜅)ĥt+1.
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3.5 � Two‑sided exponential–geometric innovation distribution

In this subsection, GJR-GARCH-TSEG model is introduced by means of standardized 
TSEG distribution with zero mean and unit variance as given in (13). The log-likeli-
hood function of GJR-GARCH model with the TSEG innovation distribution is given 
by

where � = (m,�, �1, �2, �3, �1, p) . When the GJR-GARCH model is used, the defini-
tion of conditional variance is h2

t
= � + �1e

2
t−1

+ �3It−1e
2
t−1

+ �2h
2
t−1

 . The stationary 
condition of GJR-GARCH model under TSEG distribution is given by

where

It is easy to see that � =
1

2
 for symmetric distributions. The one-day-ahead VaR fore-

cast based on TSEG distribution is given by,

(28)

�(𝜓) =

{
T ln (𝜎(1 − p)) + T𝛽1𝜇 + 𝛽1𝜎

T∑
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−2
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ln
(
1 − p exp

(
𝛽1
(
𝜀t𝜎 + 𝜇

)))}

I𝜀t<−𝜇∕𝜎

+

{
T ln (𝜎(1 − p)) − T𝛽2𝜇 − 𝛽2𝜎

T∑
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𝜀t

−2

T∑
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(
𝜀t𝜎 + 𝜇
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(29)𝛾1 + 𝛾2 + 𝜅𝛾3 < 1
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where Fq
−1(�t, �1, p) is the qf of TSEG distribution at q level. The quantile estima-

tion of TSEG distribution is obtained by (12).

4 � Evaluation of VaR forecasts

Backtesting methodology is used to compare VaR forecast accuracy of the models 
introduced in Sect. 3. Statistical accuracy of the models is evaluated by backtests of 
Kupiec (1995), Christoffersen (1998) and Sarma et al. (2003).

4.1 � Unconditional coverage

Kupiec (1995) proposed a likelihood ratio (LR) test of unconditional coverage 
( LRuc ) to evaluate the model accuracy. The test examines whether the failure rate is 
equal to the expected value. The LR test statistic is given by

where 𝜋̂ = n1∕(n0 + n1) is the MLE of p, n1 represents the total violation and n0 
represents the total non-violations forecasts. Violation means that if VaRt > rt , vio-
lation occurs, opposite case indicates the non-violation. Under the null hypothesis 
(H0 ∶ p = 𝜋̂) , the LR statistic follows a chi-square distribution with one degree of 
freedom.

4.2 � Conditional coverage

The LRuc test fails to detect if violations are not randomly distributed. Christoffersen 
(1998) proposed a LR test of conditional coverage LRcc to remove the lack of Kupiec 
(1995) test. The LRcc test investigates both equality of failure rate and expected one 
and also independently distributed violations. The LRcc test statistic under the null 
hypothesis shows that the failures are independent and equal to the expected one. It 
is given by

where nij is the number of observations with value i followed by j for i, j = 0, 1 
and �ij = nij∕

∑
j nij are the probabilities, for i, j = 1 . It denotes that the violation 

occurred, otherwise indicates the opposite case. The LRcc statistic follows a chi-
square distribution with two degrees of freedom.

(31)VaRt+1 = m̂t+1 + Fq
−1(𝜀t, 𝛽1, p)ĥt+1,

LRuc = −2 ln

[
pn1 (1 − p)n0

𝜋̂n1 (1 − 𝜋)n0

]
∼ 𝜒2

1
,

LRcc = −2 ln

[
(1 − p)n0pn1(

1 − �01
)n00�01n01

(
1 − �11

)n10�11n11

]
∼ �2

2
,
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4.3 � Dynamic quantile test

Dynamic Quantile (DQ) test, proposed by Engle and Manganelli (2004) examines if 
the violations is uncorrelated with any variable that belongs to information set Ωt+1 
when the VaR is calculated. The main idea of DQ test is to regress the current viola-
tions on past violations in order to test for different restrictions on the parameters of 
the model. The estimated linear regression model is given by

where

This regression model tests whether the probability of violation depends on the level 
of the VaR. Here, p and q are used as 5 and 1, respectively, for illustrative purpose.

4.4 � Loss functions

In most instances, evaluating the performance of VaR models by means of LRuc , 
LRcc and DQ tests may not be sufficient to decide the most adequate model among 
others. For instance, some models may have the same violation number with dif-
ferent forecast errors. In this case, the forecast errors of all candidate VaR models 
should be compared by means of loss functions. Here, two widely used loss func-
tions are given to compare forecast errors of VaR models.

4.4.1 � Regulator’s loss function

Sarma et al. (2003) defined a test on the basis of regulator’s loss function (RLF) to 
take into account differences between realized returns and VaR forecasts. The RLF 
is given by

where VaRt+1 represents the one-day-ahead VaR forecast for a long position.

4.4.2 � Unexpected loss

The unexpected loss (UL) is equal to average value of differences between realized 
return and VaR forecasts. The one-day-ahead magnitude of the violation for long 
position is given by

(32)It = �0 +

p∑
i=1

�iIt−i +

q∑
i=1

�jXj + �t

(33)It =

{
1, rt < VaRt

0, rt ≥ VaRt

RLFt+1 =

{(
rt+1 − VaRt+1

)2
, if rt+1 < VaRt+1

0, if rt+1 ≥ VaRt+1
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Table 2   Summary statistics for 
the Nikkei-225 index

Descriptive statistics Nikkei-225 BIST-100

Number of observations 1031 1228
Minimum − 0.0825290 − 0.0734795
Maximum 0.0742620 0.0525509
Mean 0.0003440 0.0002808
Median 0.0005950 0.0007379
Std. devation 0.0128050 0.0129171
Skewness − 0.2294740 − 0.3304695
Kurtosis 5.8478530 4.7327860
Jarque–Bera 1486.800 (< 0.001) 175.980 (< 0.001)
ARCH-LM test 75.683 (< 0.001) 26.493 (0.009)
Ljung-box 6.537 (0.7683) 7.521 (0.6755)
ADF − 10.381 (< 0.001) − 11.445 (< 0.001)
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Fig. 4   Daily log-returns and corresponding histograms of Nikkei-225 (top) and BIST-100 (bottom) 
indexes
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5 � Empirical results

5.1 � Data description

To evaluate the performance of VaR models in forecasting daily VaR, the major 
indexes of Japan and Turkey, Nikkei-225 and BIST-100 indexes, respectively, are 
used. For two indexes, Nikkei-225 contains 1031 daily observations from 07.03.2014 
to 06.04.2018 and BIST-100 contains 1228 daily observations from 03.01.2014 to 
19.11.2018. The descriptive statistics for the log-returns of Nikkei-225 and BIST-
100 indexes are given in Table  2. Figure  4 displays the daily log-returns of Nik-
kei-225 an BIST-100 indexes and corresponding histograms.

Table 2 shows that the mean returns are closed to 0. The Jarque–Bera statistic also 
shows that the null hypothesis of normality is rejected at any level of significance 
for both indexes. It is an evidence for high excess kurtosis and negative skewness. 
Thus, it is clear that log return of Nikkei-225 and BIST-100 indexes have non-nor-
mal characteristics, excess kurtosis, and fat tails. According to result of Ljung-box 
test, the null hypothesis of no autocorrelation up to 10th order is not rejected at any 
significance level for both indexes. Therefore, the used data sets have no autocor-
relation problem. Finally, the result of Augmented Dickey–Fuller (ADF) test shows 
that the used time series are stationary.

The parameters of benchmark model, GJR-GARCH(1,1) specified under nor-
mal, Student-t, skew-T, GED and TSEG innovation distributions, are estimated 
by using the constrOptim function and rugarch package of R software. The 
textbfrugarch package is used to estimate parameters of GJR-GARCH-N, GJR-
GARCH-T, GJR-GARCH-ST and GJR-GARCH-GED models. The log-likelihood 
function of GJR-GARCH-TSEG model is maximized by constrOptim function 
of R software. The initial values of parameters for GJR-GARCH-TSEG model are 
�0 = (0.01, 0.1, 0.1, 0.89, 0.2, 2, 0.5) . Tables 3 and 4 list the estimated parameters 
of GJR-GARCH(1,1) models for both indexes.

Tables 3 and 4 show that GJR-GARCH-TSEG model has the lowest log-like-
lihood value among others. It is clear that the TSEG distribution provides supe-
rior fits to standardized residuals of GJR-GARCH model. Based on the estimated 
parameters of GJR-GARCH-TSEG model, the conditional variance parameters 
�2 and �3 are obtained statistically significant at any significance level for both 
indexes. The estimated �3 parameter confirms the asymmetry effect on volatility. 
Therefore, the bad news yields higher volatility than good news. Figure 5 displays 
the P–P plots of the standardized residuals of GJR-GARCH models under normal 
and TSEG innovation distributions for Nikkei-225 and BIST-100 indexes. Based 
on the Fig. 5, it is concluded that use of TSEG distribution as an innovation pro-
cess of GJR-GARCH yields more accurate modeling of the tails of conditional 
financial returns. The normal, Student-t, ST and GED innovation distributions fail 

ULt+1 =

{(
rt+1 − VaRt+1

)
, if rt+1 < VaRt+1

0, if rt+1 ≥ VaRt+1
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Table 3   Estimated parameters of GJR-GARCH(1, 1) model for the Nikkei-225 and assuming five differ-
ent distributions for the standardized residuals, the corresponding standard errors are in second line and 
p-values in third line

Parameters Nikkei-225

Normal Student-t GED ST TSEG

m 0.00039900 0.00061900 0.00050000 0.00031400 0.00012475
0.00029300 0.00025500 0.00030200 0.00028600 0.00042897
0.17395000 0.01526800 0.09743200 0.27271000 0.77118530

� 0.00000500 0.00000600 0.00000500 0.00000600 0.00000787
0.00000010 0.00000010 0.00000010 0.00000010 0.00000310
< 0.0001 < 0.0001 < 0.0001 < 0.0001 0.01121836

�1 0.00214700 0.00309100 0.00276500 0.00268600 0.00012201
0.00276500 0.00473700 0.00429900 0.00466200 0.01260354
0.43751000 0.51413600 0.52009600 0.56460000 0.99227580

�2 0.84968700 0.82620300 0.84383300 0.82970400 0.80177570
0.01289300 0.02147700 0.01816300 0.02035800 0.04260145
< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

�3 0.23316200 0.28652100 0.24258500 0.28157200 0.36789590
0.03318500 0.05613300 0.04554600 0.05361900 0.09518495
< 0.0001 < 0.0001 < 0.0001 < 0.0001 0.00011106

� – 4.38363500 – 4.51627100 –
0.60183800 0.65077700
< 0.0001 < 0.0001

� – – 1.18652100 0.90581900 –
0.06654400 0.03751500
< 0.0001 < 0.0001

�1 – – – – 1.83309000
0.02812546
<0.0001

p – – – – 0.00000025
0.00000003
< 0.0001

−� − 3190.607 − 3238.017 − 3235.915 − 3240.814 − 3241.483
Ljung-box test
 Lag [1] 0.6746 (0.4115) 0.7734 (0.3792) 0.7130 (0.3985) 0.8652 (0.3523) 1.3288 (0.2490)
 Lag [2] 0.7595 (0.5833) 0.8392 (0.5534) 0.7852 (0.5735) 0.9641 (0.5100) 1.5441 (0.4621)
 Lag [5] 1.0009 (0.8595) 1.1183 (0.8324) 1.0245 (0.8541) 1.2181 (0.8087) 2.0516 (0.8420)

ARCH LM test
 Lag [3] 0.3102 (0.5776) 0.5605 (0.4541) 0.3717 (0.5421) 0.5531 (0.4570) 1.5861 (0.6625)
 Lag [5] 1.5672 (0.5748) 1.9861 (0.4743) 1.6886 (0.5442) 1.9724 (0.4774) 4.2246 (0.5176)
 Lag [7] 2.5722 (0.5977) 3.0604 (0.5022) 2.7567 (0.5606) 3.0023 (0.5131) 5.5463 (0.5936)
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Table 4   Estimated parameters of GJR-GARCH (1, 1) model for the BIST-100 and assuming five differ-
ent distributions for the standardized residuals, the corresponding standard errors are in second line and p 
values in third line

Parameters BIST-100

Normal Student-t GED ST TSEG

m 0.000377 0.000522 0.00054 0.000334 0.000174116
0.000343 0.00033 0.000323 0.000343 0.000851712
0.272725 0.113675 0.094921 0.330182 0.838017012

� 0.0000020 0.0000030 0.0000020 0.0000030 0.0000030
0.0000010 0.0000010 0.0000010 0.0000001 0.0000047
0.0014210 0.0000190 0.0088770 < 0.0001 0.5168298

�1 0.0000001 0.0000010 0.0000020 0.0000010 0.0000001
0.0009170 0.0019160 0.0037660 0.0013710 0.0000015
0.9999140 0.9994760 0.9995360 0.9992900 0.9402600

�2 0.9714810 0.9589250 0.9660830 0.9588170 0.9594033
0.0099340 0.0047150 0.0043420 0.0045550 0.0438621
< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

�3 0.0343260 0.0464750 0.0392120 0.0465390 0.0586954
0.0100950 0.0112500 0.0081250 0.0115050 0.0149985
0.0006730 0.0000360 0.0000010 0.0000520 0.0000910

� – 7.5371780 – 7.649428 –
1.4136120 1.452825
< 0.0001 < 0.0001

� – – 1.4284380 0.923532 –
0.0771590 0.036545
< 0.0001 < 0.0001

�1 – – – – 1.8752540
0.0434074
< 0.0001

p – – – – 0.0000045
0.0000014
0.0011572

−� − 3621.802 − 3646.067 − 3642.371 − 3648.067 − 3650.033
Ljung-box test
 Lag [1] 0.1024 (0.7489) 0.2037 (0.6518) 0.08263 (0.7738) 0.05235 (0.8190) 0.392 (0.5314)
 Lag [2] 0.2430 (0.8283) 0.6967 (0.9235) 0.20637 (0.8503) 0.16700 (0.8749) 0.7469 (0.5881)
 Lag [5] 0.5675 (0.9468) 2.4029 (0.8519) 0.52885 (0.9531) 0.48670 (0.9597) 1.7306 (0.6833)

ARCH LM test
 Lag [3] 1.4450 (0.2293) 0.7622 (0.3826) 1.124 (0.2891) 0.7138 (0.3982) 0.6713 (0.4115)
 Lag [5] 1.5930 (0.5682) 0.8289 (0.7843) 1.219 (0.6693) 0.7880 (0.7967) 0.8341 (0.8021)
 Lag [7] 2.9880 (0.5158) 2.2938 (0.6553) 2.650 (0.5819) 2.2653 (0.6612) 2.5472 (0.6041)
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to represent the frequency of losses/gains and extreme events in tails of the con-
ditional return series. Therefore, it is expected that forecasting VaR under normal, 
Student-t, and GED distributions yield to underestimated VaR forecasts for left-
tail modeling. Figure 6 displays the estimated conditional standard deviations of 
GJR-GARCH-TSEG model for Nikkei-225 and BIST-100 indexes.

5.2 � Backtesting results of Nikkei‑225

Here, the out-of-sample performances of VaR models are compared based on the 
results of backtests and loss functions for Nikkei-225 index. The rolling window 
estimation method is used to estimate parameters of GJR-GARCH models and daily 
VaR forecasts. Rolling window estimation method gives an opportunity to Window 
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Fig. 5   P–P plots of GJR-GARCH-N and GJR-GARCH-TSEG models for Nikkei-225 (top) and BIST-100 
indexes (bottom)
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length is determined as 331 and next 700 daily returns are used to evaluate the out 
of sample performance of VaR models. The below strategy is used to decide best 
model.

1.	 The VaR forecasts of all candidate models are obtained.
2.	 LRuc , LRcc and DQ tests are applied to decide which model produce consistent 

VaR forecasts for given q level.
3.	 The forecasting errors of VaR models, achieved to pass stage 2, are compared by 

means of loss functions.
4.	 The lowest values of the loss functions represent the best model.

Tables 5, 6 and 7 show the backtesting results of VaR models for following three 
quantile value: 0.05%, 0.025% and 0.1%, respectively. Based on the figures in 
Table  5, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST, GJR-GARCH-GED 
and GJR-GARCH-TSEG models produce accurate VaR forecasts at 0.05% level on 
the basis of LRuc , LRcc and DQ results. Therefore, all VaR models achieve to pass 
stage 2. To decide the best model at 0.05% level, loss function results are investi-
gated. Since the GJR-GARCH-TSEG model has the lowest values of average RLF 
(ARLF) and UL results at 0.05% level, it is the best model at 0.05% level and pro-
duces the most accurate VaR forecasts among others at 0.05% level.

Based on the figures in Table 6, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-
ST, GJR-GARCH-GED and GJR-GARCH-TSEG produce accurate VaR forecasts at 
0.025% level on the basis of LRuc , LRcc and DQ results. Therefore, all VaR models 
also achieve to pass stage 2 for 0.025% level. The same strategy is used to decide 
best model. Since GJR-GARCH-TSEG model has the lowest forecasting error 
among others based on the ARLF and UL results, GJR-GARCH-TSEG model is 
chosen as the best model for 0.025% level.

Based on the figures in Table  7, all models produce underestimated VaR fore-
casts, except GJR-GARCH-TSEG model, at 0.01% level and fail to pass stage 2 on 
the basis of LRuc , LRcc and DQ results. GJR-GARCH model speficied under TSEG 
innovation distribution produce consistent VaR forecasts at 0.01% level. Moreover, 
GJR-GARCH-TSEG model has the lowest values of ARLF and UL results at 0.01% 
level. Therefore, GJR-GARCH-TSEG model is chosen as best model for 0.01% level. 
The reasons for success of TSEG distribution in modeling VaR can be summarized 
as follows: (i) TSEG distribution gives an opportunity for simultaneous modeling of 
skewness and excess kurtosis; (ii) provides more accurate representation for rare and 
extreme events; (iii) exhibits fat-tailed structure.

Figure  7 displays the VaR forecasts of GJR-GARCH models for Nikkei-225 
index. This figure reveals that GJR-GARCH model with TSEG innovation distribu-
tion exhibits great consistency for estimating the true quantile value of conditional 
return series.
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5.3 � Backtesting results of BIST‑100

Here, the results of out-of-sample performances of VaR models are compared for 
BIST-100 index. The same strategy with the Nikkei-225 index is used to decide the 
best VaR model for BIST-100 index. Tables 8, 9 and 10 show the backtesting results 
of VaR models for BIST-100 index. The following three quantile values are consid-
ered: 0.05%, 0.025% and 0.1%, respectively. Based on the figures in Table 8, as in 
Nikkei-225, all VaR models produce accurate VaR forecasts at 0.05% level on the 
basis of LRuc , LRcc and DQ results. So, all VaR models achieve to pass stage 2. It 
can be concluded that GJR-GARCH-TSEG model produce more accurate Var fore-
casts than other competitive models since it has the lowest values of ARLF and UL 
values at 0.05% level.

Based on the figures in Table  9, GJR-GARCH-T, GJR-GARCH-ST GJR-
GARCH-GED and GJR-GARCH-TSEG produce accurate VaR forecasts at 0.025% 
level. GJR-GARCH-N model produces under-estimated VaR forecasts. As seen from 
Table 9, GJR-GARCH-TSEG model has the lowest values of loss functions results. 
Therefore, GJR-GARCH-TSEG model can be chosen as the best model for 0.025% 
level.

Based on the figures in Table  10, only GJR-GARCH-TSEG model produces 
the accurate VaR forecasts at 0.01% level and achieve to pass stage 2. As in Nik-
kei-225, GJR-GARCH-TSEG model provides better VaR forecasts than other 
competitive models at all quantiles. The superiority of TSEG distribution as an 
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Fig. 7   Daily VaR forecasts of GJR-GARCH models for Nikkei-225 index
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innovation process of GJR-GARCH models comes from its ability to model skew-
ness and excess kurtosis simultaneously. The proposed distribution provides better 
representation for rare and extreme events than normal, Student-t, GED and skew-T 
distributions.

Figure 8 displays the VaR forecasts of GJR-GARCH models for BIST-100 index. 
As seen from Fig. 8, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-
GARCH-GED models produce under-estimated VaR models. GJR-GARCH model 
with TSEG innovation distribution responds the volatility dynamics better than 
other models.

6 � Conclusion

In this paper, a new skewed and fat-tailed distribution is proposed. The proposed 
distribution is applied to GJR-GARCH model as an innovation process. The com-
mon risk measure, VaR is modeled by GJR-GARCH-TSEG model. The usefulness 
of proposed financial risk model is demonstrated by means of real data applications 
on Nikkei-225 and BIST-100 indexes. The empirical findings of this study can be 
summarized as follows: Rolling window estimation method is used to obtain param-
eter estimation of GJR-GARCH model and VaR forecasts for in sample and out-of-
sample periods. Empirical results show that GJR-GARCH model with TSEG inno-
vation distribution produces more realistic VaR forecasts than normal, Student-t, 
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Fig. 8   Daily VaR forecasts of GJR-GARCH models for BIST-100 index
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skew-T and generalized error distributions for all confidence levels. Consequently, 
TSEG distribution opens new opportunities for modeling both skewness and excess 
kurtosis in financial return series. We hope that the results of this paper will be use-
ful for practitioners and financial institutions.
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