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Abstract: We consider a new kind of helicoidal surface for natural numbers (m, n) in the
three-dimensional Euclidean space. We study a helicoidal surface of value (m, n), which is locally
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operator of the rotational surface of value (0, 1).

Keywords: euclidean three-space; helicoidal surface of value (m, n); rotational surface of value (m, n);
mean curvature; Gaussian curvature; Gauss map

1. Introduction

The notion of the finite-type immersion of submanifolds of a Euclidean space has been used in
classifying and characterizing well-known Riemannian submanifolds [1]. Chen posed the problem of
classifying the finite-type surfaces in the three-dimensional Euclidean space E3. Then, the theory of
submanifolds of a finite type was studied by many geometers [1–21].

Lawson [22] gave the general definition of the Laplace–Beltrami operator in his lecture notes.
Takahashi [23] stated that minimal surfaces and spheres are the only surfaces in E3 satisfying the
condition ∆r = λr, λ ∈ R. Ferrandez, Garay and Lucas [10] proved that the surfaces of E3 satisfying
∆H = AH, A ∈ Mat(3, 3) are either minimal, or an open piece of a sphere, or of a right circular
cylinder. Choi and Kim [5] characterized the minimal helicoid in terms of a pointwise one-type Gauss
map of the first kind.

Dillen, Pas and Verstraelen [7] proved that the only surfaces in E3 satisfying ∆r = Ar + B,
A ∈ Mat(3, 3), B ∈ Mat(3, 1) are the minimal surfaces, the spheres and the circular cylinders. Senoussi
and Bekkar [24] studied helicoidal surfaces M2 in E3, which are of the finite type in the sense of Chen
with respect to the fundamental forms I, I I and I I I.

The right helicoid (resp. catenoid) is the only ruled (resp. rotational) surface that is minimal in
classical surface geometry in Euclidean space. If we focus on the ruled (helicoid) and rotational
characters, we see Bour’s theorem in [25]. The French mathematician Edmond Bour used the
semi-geodesic coordinates and found a number of new cases of the deformation of surfaces in 1862.
He also gave in [25] a well-known theorem about the helicoidal and rotational surfaces.

Kenmotsu [26] focused on the surfaces of revolution with the prescribed mean curvature.
Regarding helicoidal surfaces, do Carmo and Dajczer [3] proved that, by using a result of Bour [25],
there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface. Hitt
and Roussos [27] also studied the helicoidal surfaces with constant mean curvature. Ikawa [14,15]
determined pairs of surfaces by Bour’s theorem. Güler [28] also studied the isometric helicoidal and
rotational surfaces of value m. Güler and Yaylı [12] focused on the generalized Bour’s theorem in
three-space.

We consider a new kind of helicoidal surface of value (m, n) in Euclidean three-space E3 in this
paper. We give some basic notions of the three-dimensional Euclidean geometry in Section 2. In
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Section 3, we give the definition of a helicoidal surface of value (m, n) and obtain isometric helicoidal
and rotational surfaces of value (m, n) (resp. of value (0, 1) in Section 4) via Bour’s theorem. We also
calculate the mean curvature and the Gaussian curvature of the rotational surface of value (0, 1) in
Section 4. Moreover, in Section 5, we calculate the Laplace–Beltrami operator of the rotational surface
of value (0, 1). Finally, we give the rotational surface satisfying ∆R0,1 = AR0,1 in E3 in the last section.

2. Preliminaries

We shall identify a vector (a,b,c) with its transpose. In this section, we will obtain the rotational
and helicoidal surfaces in E3. The reader can find basic elements of differential geometry in [29,30].

We define the rotational surface and helicoidal surface in E3. For an open interval I ⊂ R, let
γ : I −→ Π be a curve in a plane Π, and let ` be a straight line in Π. A rotational surface in E3 is
defined as a surface rotating the curve γ around the line ` (these are called the profile curve and the
axis, respectively). Suppose that when a profile curve γ rotates around the axis `, it simultaneously
displaces parallel lines orthogonal to the axis `, so that the speed of displacement is proportional to
the speed of rotation. Then, the resulting surface is called the helicoidal surface with axis ` and pitch
a ∈ R+.

Let ` be the line spanned by the vector (0, 0, 1). The orthogonal matrix that fixes the above vector
is given by

M(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , θ ∈ R.

The matrix M is found by solving the following equations: M` = `, Mt M = MMt = I3,
det M = 1, simultaneously. When the axis of rotation is `, there is a Euclidean transformation by which
the axis is ` transformed to the z-axis of E3. The profile curve is given by γ(r) = (r, 0, ϕ (r)), where
ϕ (r) : I ⊂ R −→ R is a differentiable function for all r ∈ I. A helicoidal surface in three-dimensional
Euclidean space which is spanned by the vector (0, 0, 1) with pitch a is as follows

H(r, θ) = M(θ)γ(r) + aθ`.

When a = 0, the helicoidal surface is just a rotational surface.

3. Helicoidal Surfaces of Value (m, n)

We define a new type of helicoidal surface. Using Bour’s theorem on the helicoidal surface, we
obtain an isometric rotational surface in this section.

Definition 1. A helicoidal surface of value (m, n) is given by

Hm,n (r, θ) = H1
m (r, θ) + H2

m,n (r, θ) , (1)

where m, n ∈ N, H1
m (r, θ) = <1

m.γ1
m + 1

2 aθ`, H2
m,n (r, θ) = <2

m,n.γ2
m,n +

1
2 aθ`, the rotating matrices <1

m and
<2

m,n are

<1
m (θ) =

 cos [(m + 1) θ] sin [(m + 1) θ] 0
− sin [(m + 1) θ] cos [(m + 1) θ] 0

0 0 1


and

<2
m,n (θ) =

 cos [(m + 2n + 1) θ] − sin [(m + 2n + 1) θ] 0
sin [(m + 2n + 1) θ] cos [(m + 2n + 1) θ] 0

0 0 1

 .
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` = (0, 0, 1) is the rotating axis, and the profile curves are

γ1
m(r) =

(
rm+1

m + 1
, 0,

1
2

ϕ (r)
)

, γ2
m,n(r) =

(
− rm+2n+1

m + 2n + 1
, 0,

1
2

ϕ (r)
)

,

m ∈ R− {−1} in γ1
m, m ∈ R− {−1− 2n} in γ2

m,n, r ∈ R+, 0 ≤ θ ≤ 2π and the pitch a ∈ R+. Since
the helicoidal surface is given by rotating the profile curves γ around the axis ` and simultaneously displacing
parallel lines orthogonal to the axis `, the speed of displacement is proportional to the speed of rotation.

Next, we give a theorem about locally isometric helicoidal-rotational surfaces of value (m, n).

Theorem 1. A helicoidal surface of value (m, n)

Hm,n (r, θ) =

 rm+1

m+1 cos [(m + 1) θ]− rm+2n+1

m+2n+1 cos [(m + 2n + 1) θ]

− rm+1

m+1 sin [(m + 1) θ]− rm+2n+1

m+2n+1 sin [(m + 2n + 1) θ]

ϕ (r) + aθ

 (2)

is isometric to the rotational surface of value (m, n)

Rm,n(rR, θR) =


rm+1

R
m+1 cos [(m + 1) θR]−

rm+2n+1
R

m+2n+1 cos [(m + 2n + 1) θR]

− rm+1
R

m+1 sin [(m + 1) θR]−
rm+2n+1

R
m+2n+1 sin [(m + 2n + 1) θR]

ϕR (rR)

 (3)

by Bour’s theorem, where

ϕ′2R =

[
Gm+n−1{(m + 3n) G2n + 2 (m + 2n) Gn cos[2(m + n + 1)θ]

−2Gn sin[2(m + n + 1)θ] + m + n}

]2

det I[
r2m+2n{(2m + 6n) r4n−1 + (4m + 8n) r2n cos[2(m + n + 1)θ]

+ (2m + 2) r−1}

]2

G

+
4r4m+4n+2

R sin2[2(m + n + 1)θR]

r2m+2
R

(
r4n

R + 2r2n
R cos[2(m + n + 1)θR] + 1

)
−r2m

R

[
r4n

R − 2r2n
R cos (2 (m + n + 1) θR) + 1

]
,

rR =
√

G,

θR = θ +
∫ F

G
dr,

E = r2m
(

r4n − 2r2n cos[2(m + n + 1)θ] + 1
)
+ ϕ′2,

F = 2r2m+2n+1 sin[2(m + n + 1)θ] + aϕ′,

G = r2m+2
(

r4n + 2r2n cos[2(m + n + 1)θ] + 1
)
+ a2,

det I = EG− F2,

m ∈ R− {−1,−1− 2n} , n ∈ R, r ∈ R+, θ ∈ I ⊂ R and the pitch a ∈ R+.

Proof. The line element of the the helicoidal surface Hm,n(r, θ) is

ds2 = {r2m(r4n − 2r2n cos[2(m + n + 1)θ] + 1) + ϕ′2}dr2

+2{2r2m+2n+1 sin[2(m + n + 1)θ] + aϕ′}drdθ

+ {r2m+2 (r4n + 2r2n cos[2(m + n + 1)θ] + 1
)
+ a2}dθ2.

(4)
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Helices in Hm,n are curves defined by r = const. Therefore curves in Hm,n that are orthogonal to helices
supply the orthogonality condition F dr + G dθ = 0. Thus, we obtain θ = −

∫ F
G dr + c, where c is

constant. Hence, if we put θ = θ +
∫ F

G dr, then curves orthogonal to helices are given by θ = const.
Substituting the equation dθ = dθ − F

G dr into the line element (4), we have

ds2 =
Q
G

dr2 + G dθ
2
, (5)

where Q := det I. Setting r :=
√

Q
G dr, Ω(r) :=

√
G, (5) becomes

ds2 = dr2 + Ω2 (r) dθ
2
. (6)

The rotational surface (3) has the line element

ds2
R =

QR

GR
dr2

R + GR dθ
2
R, (7)

where

ER = r2m
R (r4n

R + 1− 2r2n
R cos[2(m + n + 1)θR]) + ϕ′2R ,

FR = 2r2m+2n+1
R sin[2(m + n + 1)θR],

GR = r2m+2
R

(
r4n

R + 1 + 2r2n
R cos[2(m + n + 1)θR]

)
.

Again, setting rR :=
√

QR
GR

drR, ΩR(rR) :=
√

GR, then (7) becomes

ds2
R = dr2

R + Ω2
R (rR) dθ

2
R. (8)

Comparing (6) with (8), if we take r = rR, θ = θR, Ω (r) = ΩR (rR) , then we have an isometry
between Hm,n(r, θ) and Rm,n(rR, θR). Therefore, it follows that√

Q
G

dr =

√
QR

GR
drR. (9)

Substituting the equation

drR =

√√√√GR [(G)r]
2

[(GR)r]
2 G

dr

into (9), we get the function ϕR.

4. Helicoidal Surface of Value (0, 1)

We give the helicoidal surface of value (0, 1) using Bour’s theorem in this section.

Proposition 1. A helicoidal surface of value (0, 1): (see Figure 1)

H0,1 (r, θ) =

 r cos (θ)− r3

3 cos (3θ)

−r sin (θ)− r3

3 sin (3θ)

ϕ (r) + aθ

 , (10)
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is isometric to the rotational surface of value (0, 1)

R0,1(rR, θR) =


√

G cos
[(

θ +
∫ F

G dr
)]
− 1

3

√
G3 cos

[
3
(

θ +
∫ F

G dr
)]

−
√

G sin
[(

θ +
∫ F

G dr
)]
− 1

3

√
G3 sin

[
3
(

θ +
∫ F

G dr
)]

ϕR (rR)

 , (11)

where

ϕ′2R =

[
{3G2 + 4G cos (4θ)− 2G sin (4θ) + 1}

]2 det I

[r2{6r3 + 8r2 cos (4θ) + 2r−1}]2 G

+
4G3 sin2

[
4
(

θ +
∫ F

G dr
)]

G
[

G2 + 2G cos
[
4
(

θ +
∫ F

G dr
)]

+ 1
]

−
[

G2 − 2G cos
[

4
(

θ +
∫ F

G
dr
)]

+ 1
]

,

E = r4 − 2r2 cos (4θ) + 1 + ϕ′2,

F = 2r3 sin (4θ) + aϕ′,

G = r2
[
r4 + 2r2 cos (4θ) + 1

]
+ a2,

det I = EG− F2, r, a ∈ R+, 0 ≤ θ ≤ 2π.

Proof. Taking m = 0, n = 1 in the previous theorem, we easily get the results.

Figure 1. Two views of the helicoidal surface of value (0, 1), ϕ (r) = r2.

Corollary 1. When a = 0, ϕ (r) = r in (10), we obtain a rotational surface of value (0, 1) (see Figure 2).
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Figure 2. Two views of the rotational surface of value (0, 1), ϕ (r) = r.

Corollary 2. When a = 0 and ϕ (r) = r2 cos (2θ) in (10) , we have Enneper’s minimal surface (see Figure 3).

Figure 3. Two views of the Enneper minimal surface of value (0, 1), a = 0, ϕ (r) = r2 cos (2θ).

Proposition 2. The mean curvature and the Gaussian curvature of (10) are as follows

H =
1

2 (det I)3/2 {r(r
4 − 1)(r6 + 2r4 cos(4θ) + r2 + a2)ϕ′′

+r2(3r4 + 2r2 cos (4θ)− 1)ϕ′3 − 6ar3 sin(4θ)ϕ′2

+[2r2(−5r6 + r2 − 3a2) cos (4θ) + r10 − 8r6 + 4a2r4

−r2 − 2a2]ϕ′ + 2ar
(

6r6 − 2r2 + a2
)

sin(4θ)}

and

K =
1

(det I)2 ({[3r11 + 2r5(r4 − 1) cos(4θ)− 4r7 + r3]ϕ′

−2ar5(r4 − 1) sin(4θ)}ϕ′′ + [−2r6(3r4 + 1)

−2r4(r6 − 1) cos(4θ)]ϕ′2 − 2ar3(3− 11r4) sin(4θ)]ϕ′

+4a2r2(3r4 − 1) cos(4θ)− a2
(

9r8 − 2r4 + 1
)

.

respectively, where det I = EG− F2, ϕ′ = dϕ
dr , r, a ∈ R+, 0 ≤ θ ≤ 2π.
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Proof. Taking the differential with respect to r, θ to H0,1, we have

(H0,1)r =

 cos (θ)− r2 cos (3θ)

− sin (θ)− r2 sin (3θ)

ϕ′

 .

and

(H0,1)θ =

 −r sin(θ) + r3 sin(3θ)

−r cos(θ)− r3 cos(3θ)

a

 ,

The coefficients of the first fundamental form of the surface are

E =
[
r4 − 2r2 cos (4θ) + 1

]
+ ϕ′2,

F = 2r3 sin (4θ) + aϕ′,

G = r2
[
r4 + 2r2 cos (4θ) + 1

]
+ a2,

Then, we get

det I = [r6 + 2r4 cos (4θ) + r2]ϕ′2 − 4ar3 sin (4θ) ϕ′

+r10 − 2r6 + a2r4 − 2a2r2 cos (4θ) + r2 + a2.

Using the second differentials

(H0,1)rr =

 −2r cos (3θ)

−2r sin (3θ)

ϕ′′

 , (H0,1)rθ =

 − sin(θ) + 3r2 sin(3θ)

− cos(θ)− 3r2 cos(3θ)

0

 ,

(H0,1)θθ =

 −r cos(θ) + 3r3 cos(3θ)

r sin(θ) + 3r3 sin(3θ)

0

 ,

and the Gauss map (the unit normal)

e =
1√

det I

 (r3 cos (3θ) + r cos (θ))ϕ′ − a(r2 sin (3θ) + sin (θ))

(r3 sin (3θ)− r sin (θ))ϕ′ + a(r2 cos (3θ)− cos (θ))
r5 − r


of the surface H0,1, we have the coefficients of the second fundamental form of the surface as follows

L =
1√

det I
[(r5 − r)ϕ′′ − r2(r2 + cos (4θ))ϕ′ − 2ar sin (4θ)],

M =
1√

det I
[2r3 sin (3θ) ϕ′ − 3ar4 + 2ar2 cos (4θ) + a],

N =
1√

det I
[(3r6 − r2 + 2r4 cos (4θ))ϕ′ − 2ar3 sin (4θ)].

Therefore, we can see the results easily.
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Corollary 3. If the helicoidal surface of value (0, 1) is minimal, then we get the differential equation as follows

r(r4 − 1)(r6 + 2r4 cos(4θ) + r2 + a2)ϕ′′

+r2(3r4 + 2r2 cos (4θ)− 1)ϕ′3 − 6ar3 sin(4θ)ϕ′2

+[2r2(−5r6 + r2 − 3a2) cos (4θ) + r10 − 8r6 + 4a2r4

−r2 − 2a2]ϕ′ + 2ar
(

6r6 − 2r2 + a2
)

sin(4θ) = 0.

The helicoidal surface of value (1, 1) is the same surface for value three in [28].

5. Laplace–Beltrami Operator

The Laplace–Beltrami operator of a smooth function φ = φ(r, θ) |D (D ⊂ R3) of class C2 with
respect to the first fundamental form of surface M is the operator ∆, which is defined as follows

∆φ =
1
√

g

2

∑
i,j=1

∂

∂xi

(
√

ggij ∂φ

∂xj

)
, (12)

where
(

gij) = (gkl)
−1 and g = det

(
gij
)

. Clearly, we write ∆φ as follows

∆φ =
1
√

g

 ∂
∂x1

(√
gg11 ∂φ

∂x1

)
− ∂

∂x1

(√
gg12 ∂φ

∂x2

)
− ∂

∂x2

(√
gg21 ∂φ

∂x1

)
+ ∂

∂x2

(√
gg22 ∂φ

∂x2

)  . (13)

Using a more transparent notation, we get

∆φ =
1√

det I

[
∂

∂u

(
Gφu − Fφv√

det I

)
− ∂

∂v

(
Fφu − Eφv√

det I

)]
, (14)

where g = det
(

gij
)
= det I.

Now, we consider the rotational surface

R0,1 (r, θ) =

 r cos (θ)− r3

3 cos (3θ)

−r sin (θ)− r3

3 sin (3θ)

ϕ (r)

 . (15)

The first fundamental matrix of the surface is as follows

I =

(
r4 − 2r2 cos (4θ) + 1 + ϕ′2 2r3 sin (4θ)

2r3 sin (4θ) r2(r4 + 2r2 cos (4θ) + 1)

)
.

The inverse matrix of I is as follows

(
I−1
)
=

1
det I

(
r2 (r4 + 2r2 cos 4θ + 1

)
−2r3 sin 4θ

−2r3 sin 4θ r4 − 2r2 cos 4θ + 1 + ϕ′2

)
,

where
det I = r2(

(
r4 − 2

)
r4 +

(
r4 + 2r2 cos 4θ + 1

)
ϕ′2 + 1).

The Laplace–Beltrami operator ∆R0,1 of a rotational surface R0,1 is given by

∆R =
1√

det I

(
∂

∂r
U− ∂

∂θ
V
)

,
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where
U =

GRr − FRθ√
det I

, V =
FRr − ERθ√

det I
.

Then, we obtain the following results

U =
1√

det I

 −r2 (r4 − 1
) (

cos θ + r2 cos 3θ
)

r2 (r4 − 1
) (

sin θ − r2 sin 3θ
)

r2 ϕ′(r4 + 2r2 cos (4θ) + 1)

 ,

V =
1√

det I

 r
((

1 + ϕ′2 − r4) sin θ + r2 (1− r4 − ϕ2′) sin 3θ
)

r
((

1 + ϕ2′ − r4) cos θ − r2 (1− r4 − ϕ′2
)

cos 3θ
)

2r3 ϕ′ sin (4θ)

 .

Using differentials of r, θ on U, V, respectively, we get

∆IR =
1√

det I

(
∂

∂r
(U)− ∂

∂θ
(V)

)

=
r3

(det I)2

 J1 ϕ′ϕ′′ + J2 ϕ′4 + J3 ϕ′2 + J4

T1 ϕ′ϕ′′ + T2 ϕ′4 + T3 ϕ′2 + T4

Q1 ϕ′3 ϕ′′ + Q2 ϕ′2 ϕ′′ + Q3 ϕ′ϕ′′ + Q4 ϕ′3 + Q5

 ,

where
J1 = r

(
1 + r4 − 2r8) cos θ + r3 (2− r4 − r8) cos 3θ + r3 (1− r4) cos 5θ + r5 (1− r4) cos 7θ,

J2 = − cos θ + 4r4 cos θ + 3r6 cos 3θ + r2 cos 5θ + r4 cos 7θ,
J3 =

(
−3 + r4 + 14r8) cos θ + r2 (−6 + 7r4 + 11r8) cos 3θ + r2 (1 + 3r4) cos 5θ +

r4 (−3 + 7r4) cos 7θ,
J4 = 2

(
−1 + 3r4 − 3r8 + r12) cos θ + 6r2 (−1 + 3r4 − 3r8 + r12) cos 3θ,

T1 = r
(
1− r8) sin θ + r3 (−1 + r8) sin 3θ + 2r3 (1− r4) cos 4θ sin θ + 2r5 (−1 + r4) sin 3θ cos 4θ,

T2 =
(
−1 + 4r4) cos θ + 3r6 cos 3θ + r2 cos 5θ + r4 cos 7θ,

T3 =
(
−2− 3r4 + 5r8) cos θ +

(
−1 + 6r4 + 3r8) sin θ + r2 (3− 6r4 − 5r8) sin 3θ +

3r2 (−1− r4 + 2r8) cos 3θ + r2 (1− r4) cos 5θ + 8r6 sin θ cos 4θ + 4r4 (1− 3r4) sin 3θ cos 4θ

+ r4 (−1 + r4) cos 7θ,
T4 =

(
−1 + 3r4 − 3r8 + r12) (cos θ + sin θ + cos 3θ − sin 3θ) ,

Q1 = r + 4r3 + 2r5 + r9 + 4r5 (r2 + cos2 4θ
)

cos 4θ,
Q2 = −r− 2r5 − r9 − 4r3 (1 + r4 + r2 cos 4θ

)
cos 4θ,

Q3 = r− r5 − r9 + r13 + 2r3 (1− 2r4 + r8) cos 4θ,
Q4 = 1− 4r4 + 3r8 − 2r2 (1− r4) cos 4θ,
Q5 = 1 + 7r4 − 9r8 + r12 + r2 (−2 + 12r4 − 10r8) cos 4θ.

Remark 1. When the rotational surface R0,1 has the equation ∆R0,1= 0, we have to solve the system of
equations as follows

J1 ϕ′ϕ′′ + J2 ϕ′4 + J3 ϕ′2 + J4 = 0,
T1 ϕ′ϕ′′ + T2 ϕ′4 + T3 ϕ′2 + T4 = 0,

Q1 ϕ′3 ϕ′′ + Q2 ϕ′2 ϕ′′ + Q3 ϕ′ϕ′′ + Q4 ϕ′3 + Q5 = 0.

here, finding the function ϕ is a problem.

Corollary 4. When ϕ = c = const., then we get

∆R0,1 =
−1 + 3r4 − 3r8 + r12

r2 [(r4 − 2) r4 + 1]

 2 cos θ + 6r2 cos 3θ

cos θ + sin θ + 3r2 (cos 3θ − sin 3θ)

0

 .
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6. Rotational Surface Satisfying ∆R0,1 = AR0,1 in E3

Theorem 2. Let R0,1 : M2 −→ E3 be an isometric immersion given by (15). Then, ∆R0,1 = AR0,1 if and
only if M2 has zero mean curvature.

Proof. The Gauss map of the rotational surface R0,1 is

e =
1

W

 (cos θ + r2 cos 3θ)ϕ′

(− sin θ + r2 sin 3θ)ϕ′

−1 + r4

 ,

where
W =

√
(r4 − 2) r4 + (r4 + 2r2 cos 4θ + 1) ϕ′2 + 1.

We use
− 2He = AR0,1, (16)

where A =
(
aij
)

is a 3× 3 matrix. The equation ∆R0,1 = AR0,1 by means of

I =

(
r4 − 2r2 cos (4θ) + 1 + ϕ′2 2r3 sin (4θ)

2r3 sin (4θ) r2(r4 + 2r2 cos (4θ) + 1)

)
.

and ∆R0,1 = −2He give rise to the following system of ODEs

Ω(cos θ + r2 cos 3θ)ϕ′ − a11

(
r cos (θ)− r3

3
cos (3θ)

)
− a12

(
−r sin (θ)− r3

3
sin (3θ)

)
= ϕa13,

Ω(− sin θ + r2 sin 3θ)ϕ′ − a21

(
r cos (θ)− r3

3
cos (3θ)

)
− a22

(
−r sin (θ)− r3

3
sin (3θ)

)
= ϕa23,

Ω
(
−1 + r4

)
= a31

(
r cos (θ)− r3

3
cos (3θ)

)
+ a32

(
−r sin (θ)− r3

3
sin (3θ)

)
+ ϕa33,

where Ω (r) = 2H
W . Differentiating the ODEs with respect to θ, we have

a13 = a23 = a33 = 0, Ω (r) = 0. (17)

From (17), we get

−a11

(
r cos (θ)− r3

3
cos (3θ)

)
− a12

(
−r sin (θ)− r3

3
sin (3θ)

)
= 0,

−a21

(
r cos (θ)− r3

3
cos (3θ)

)
− a22

(
−r sin (θ)− r3

3
sin (3θ)

)
= 0,

a31

(
r cos (θ)− r3

3
cos (3θ)

)
+ a32

(
−r sin (θ)− r3

3
sin (3θ)

)
= 0.

here, cos and sin are linearly independent functions of θ, then we have that aij = 0. From Ω (r) = 2H
W ,

we obtain H = 0. Finally, R0,1 is a minimal rotational hypersurface.
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21. Güler, E.; Hacısalihoğlu, H.H.; Kim, Y.H. The Gauss Map and the third Laplace–Beltrami operator of the

rotational hypersurface in 4-Space. Symmetry 2018, 10, 398. [CrossRef]
22. Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series, 9; Publish or Perish,

Inc.: Wilmington, NC, USA, 1980; Volume I.
23. Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [CrossRef]
24. Senoussi, B.; Bekkar, M. Helicoidal surfaces with ∆Jr = Ar in 3-dimensional Euclidean space. Stud. Univ.
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