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A NEW LIFETIME DISTRIBUTION
NOWY ROZKLAD CYKLU ZYCIA

The well-known statistical distributions such as Exponential, Weibull and Gamma distributions have been commonly used for
analysing the different types of lifetime data. In this paper, following the idea of the extension of T-X family of distributions, we
propose a new type of exponential distribution. We define the survival function, the hazard function and the mean time to failure
related to this new distribution. Type II censoring procedure is also considered for this distribution. Additionally, stress-strength
reliability and the maximum likelihood (ML) estimators of the unknown parameters are obtained. As an application, a real data
set is used to show that the proposed distribution gives best fit than the alternative ones.

Keywords: T-X family of distributions, Reliability Function, Hazard Rate, Type Il Censoring, Stress-Strength
Probability.

Powszechnie znane rozklady statystyczne, takie jak rozktad wyktadniczy, Weibulla czy rozktad Gamma znajdujq szerokie zasto-
sowanie w analizie roznych typow danych dotyczgcych cyklu zycia. W niniejszym artykule, zaproponowano nowy typ rozkladu
wyktadniczego, w oparciu o rozszerzenie rodziny rozktadow TX. Zdefiniowano funkcje przezycia, funkcje ryzyka (hazardu) oraz
Sredni czas do uszkodzenia w odniesieniu do proponowanego rozktadu. Rozpatrywano takze procedure ucinania typu Il dla no-
wego rozktadu. Dodatkowo okreslono niezawodnos¢ wytrzymalosciowg oraz estymatory najwigkszej wiarygodnosci nieznanych
parametrow. Sposob wykorzystania proponowanego rozkladu zilustrowano wykorzystujgc rzeczywisty zbior danych. Wykazano, ze
daje on lepsze dopasowanie niz modele alternatywne.

Stowa kluczowe: rodzina rozktadow TX, funkcja niezawodnosci, wspotczynnik ryzyka, ucinanie typu I1, prawdo-

podobienstwo wytrzymatosci.

1. Introduction

Exponential distribution has been broadly applied in the context
of reliability. One reason for the popularity of the exponential distri-
bution in reliability modeling is that it is the limiting lifetime distri-
bution of a series system of substantially similar components [18].
The exponential distribution is also important for its “memoryless”
property.

The probability density function (pdf) and the cumulative distri-
bution function (cdf) of the exponential distribution are given by:

f(x)z?te‘“,x>0 (1
F(x)=1-¢*,x>0 2)

respectively, where / is the shape parameter, which is also known as
the rate parameter (failure, death, arrival or transition). The reliability
function and the hazard function of the exponential distribution are
given by:

R(x)zl—F(x):e_}“x, x>0 (3)

~
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However, the exponential distribution does not provide a signifi-
cant fitting for some real life applications, where the failure rates are
not constant. In recent years, many authors have proposed different

types of generalization of the exponential distribution to overcome
this problem, see [1, 4, 5, 8 and 11]. Some of these proposed life-time
distributions have decreasing failure rate, which are common tools
in biology and engineering, while the others have increasing failure
rate which have been used in risk analysis. In this paper, we propose
a new generalization of exponential distribution, which includes both
increasing and decreasing failure rate. This property yields a great
flexibility to fit the life time data obtained by any field of subject.

In literature, there are various types of extensions of the expo-
nential distribution. [8-9] proposed an extension of the exponential
distribution, which is called the generalized exponential (GE) distri-
bution. Following the idea of the GE distribution, lots of extension
procedures for exponential distribution has been introduced, [3], [7],
[14] and [15].

Recently, [2] proposed a new technique to generate continuous
probability distributions. The methodology proceeds as follows; Let
X be arandom variable whose pdf is f{x) and cdf is F(x) and let T
be continuous random variable with pdf 4(x) defined on the interval
[a, b]. The cdf of new family of distribution can be obtained by:

WER)]
G(x)= I h(y)dy (%)

where W[F (x)] is differentiable and monotonically non-decreasing
on the interval [a,b]. It should be also noted that W[F (x)] —>a as

x — -0 and W[F(x)] —bas x— . The corresponding pdf of
X can be written as:
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g(x)= {%W[F(x)}}h PiFE)]} (6)

The random variable 7T is called “transformed” into a new cdf
G(x) through the function W[F (x)] known as “transformer”. So,
G(x) is called “Transformed-Transformer” or "7 — X" distribution.

We propose a new W[F (x)} described in (5) with additional

parameter . We define W[F (x)] as follows:

79F(x) ~1

WF(x)]=S—— (7
e —1
where 0 € R . It can be seen that W[F(x)] —0 as x > —oo and

W[F (x)] —1 as x — —o . Therefore, in order to use such a func-
tion defined in (6), it must be used a random variable, whose pdf is
defined on the interval [0,1] . We use uniform distribution whose pdf

is h(y)=1,0<y<l.

Definition: Let X (a <X< b) be a random variable, whose pdf
is f(x) and cdf F(x).Let Y bea uniform random variable defined

on the interval [0,1].Then:

—9F(x)_1
e 01 79F(x) ~1 8
G(X) = I dy = QT ( )
0 e 1

is a cdf of new family of "7 — X " distribution. The corresponding pd-
fof this new family can be defined as:

X —-0F(x)
()= 2L

ea ,a<x<b. )
l-e

In this paper, we propose a new life time distribution by using the
pdf and the cdf of the exponential distribution.
2. Uniform-Exponential Distribution

Consider the exponential distribution with parameter 4 and let

f(x) and F(x)be the pdf and the cdf of exponential distribution,
corresponding to the definition,

2 79(17[“)
g(x)ZQXe Te

is defined as uniform-exponential (UE) distribution. The cdf of X
can be written as:

, x>0 (10)

_ _efﬂ.x
) (11)

G(x):eeT,D»o.

Figure 1 shows the pdfs of the UE distributions for different 0
values. It can be seen that if 0 tends to 0, the pdf becomes the original
distribution. Additionally, if 6>0, then the pdf becomes more posi-
tively skewed and by the same way if 6<0, then the pdf becomes more
negatively skewed. From now on, we call 0 as the skewness param-
eter, since it determines the shape (skewness) of the distribution. It
should be also noted that, the location parameter p may be added to
the distribution.

The moment generating function (mgf) of the UE distribution can
be found as:

—AX
P S
X =

To solve (12) firstly, take u = —e™** , then the integral becomes

dx (12)

0 t
_0 16*9(1“4) (=) 7 du (13)

(3 0 3 3 3 % T 0 i 3 T3

The UE distribution with A=05 The UE distribution with A=1.0

r] ') 1 1% P ] 2%
The UE distribution with A=15

Fig. 1. The pdfs of UE distribution

By transforming 1+ u =w, (13) returns:

6 1. _
Ie_ Y(1-w) adw (14)

e

Using the below expansion:

- (_1)iti 15
e 75(:) i (15)
we get:
w (_ inil . t
0 z( 1) 0 w (1=w) 2 dw (16)
(1— 79)1’:0 oy

The integral in (16) is a typical beta function. Therefore, the mgf of
UE distribution can be obtained as:
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My(r)=r 03V B[i+1,—%+lj (17)
i=0

(1_8—9); il

The expected value of UE distribution can be obtained by differentiat-
ing the mgf and taking t=0.

2 3 4
_0 l—0.75€+0.319——0.099—+0.029—+0(9,/1) =L(0)
(17676) A A A A A 1(17679)
(18)

The W(0) values are given in Table 1. It can be noticed that

gim E (X ) %% which is the expected value of the exponential dis-
—0

tribution.

The quantile function Q(p) and the median Q(0.5) of the UE
distribution are defined as

-0
Q(p):—%ln 1+w (19)

Table 1. The ¥(6)values

lim R(t) — e* , which is the reliability function of standard expo-
0—0

nential distribution.
3.2. Hazard Function

The hazard rate means instantaneous rate of occurrence of the
event and is also known as the failure rate. The hazard function of UE

— o0 E—]
CE] hn ~d=d o

(=0.5) (=1.0)

(A=1.5)

Fig. 2. The reliability functions of the UE distribution

0 0 0.1 0.2 0.3 0.4 0.5 0.6
¥(6) 1.000 0.9280 0.8617 0.8006 0.7443 0.6924 0.6445 distribution can be determined as follows
0 0.7 0.8 0.9 1.0 1.5 2.0 2.5 .
-g(1-e
w(0) 0.6003 | 0.5594 | 0.5216 | 04867 | 03448 | 02344 | 0.1140 Ore e ( ¢ )
ht)=—r—n—— (22)
79(1—3 ) 9
e —e
| ln[l +0.5(e” 71)]
0(0.5)= —;ln 1+ — (20) Taking lim A() — A into account, we can obtain the failure rate
6—-0
of exponential distribution. Figure 3 shows the hazard functions of
UE distribution for some 6 values. It is clear from the figure, when the
respectively. parameter 0 is greater than 0, then the failure rate function has a de-

3. Reliability Analysis for UE distribution

In this section, the UE distribution is applied to the well-known
reliability procedures.

3.1. Reliability Function

The reliability function means, the probability over duration,
based on the time. The reliability function is also known as the sur-
vival function. The term reliability indicates the systems or devices in
the engineering problems whereas survival is a term used for humans
or animals in actuarial analysis. The reliability function is monotoni-
cally decreasing and right continuous.

The reliability function for UE distribution is defined by:

) —9(]—9_/“)

R(t):l—F(t)z%. @D

Figure 2 shows the reliability functions of UE distribution for
some representative O values. It should be also noted that

creasing form. On the other hand, if the parameter 0 is less than 0, then
the failure rate function becomes increasing.

3.3. Mean Time to Failure

Mean time to failure (MTTF) is a measure of the length of the
time a system is failed. It is usually used for nonrepairable systems.
MTTF of UE is defined

MTTF = th(t)dt = M. (23)

0 A(l—e*")

It should be remembered that the V() values are given in Table 1
for some representative § values.

3.4. Censoring

Censoring is a condition in which some data cannot be observed
precisely due to various reasons. There are many censoring schemes
in literature. The most frequently encountered censoring is Type II. In
the context of Type II censored data, the smallest » observations can-
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Fig. 3. The hazard functions of the UE distribution.

not be observed. Therefore, we have n —r observations, where n is

the number of observations. Let X, X,,...,X, be lifetimes of the

sample. By ordering the sample we get X(l),X(z),. . .,X(n) . In type 11

censoring, we only have X, (1),X Q) X ) ML estimation method is

based on maximizing the likelihood function. The likelihood function
of Type II censored data is:

el

The log-likelihood function can be obtained by taking natural
logarithm of (24) as:

InL=rin(0)+rin(2)-rin(1-e"

c ) 4 —AX;
)—/llélx, —Bizzl(l—e )
(25)

+(n - r)ln{ee - e_e(l_eihr )} - (n - r)ln(eie - 1).

By differentiating the log-likelihood function with respect to the
unknown parameters, we obtain the following likelihood equations

) 79(17671”) ax
olnL ! - - e ™
R DI AL
e (26)
=) e
l_ i
omL_r et (n-r) O—i(l_ -M) (n-7) ( e ) e
00 0 1—679 879—1 i=1 6797670(17(“’)

Because of the intractable functions in the likelihood equations, it
is not possible to find the closed form expressions for the ML estima-
tors. Therefore, we have to resort to iterative methods to solve them
numerically.

3.5. Stress-Strength Probability

The stress-strength probability R = P(Y < X) is a measure of the

system reliability with strength X and stress Y . In a stress-strength
model the system fails, when the applied stress to the system is greater
than its strength. Several distributions have been applied to the stress-
strength reliability models, see [6, 10, 13, 16 and 17].

Let X be the strength of a system distributed UE with the param-

eters (4,6;) and Y be the stress, whose distribution is UE with the
parameter (29,92) . Therefore, stress-strength probability can be de-

rived as:

P(Y<X)=[P(Y<X)fy(x)dx=Fy(x)fy(x)dx

(6—92(1—5-@*) ~ 1] n (1)
_ OJ(-) 91116_ 1xe dx
0

e %1 1-¢% @7

o (1-e2%) [91116 0 (1o )]

€ 1
= dx — .
'([ e 1(1 —e ) e %1
By taking u = —e 1% , we get:
6,(e%27%) o el
1 ( ) .[892(*14)].1 e—GIudu _ 1 . (28)
e —1(1—e79] ),1 e %21
Then taking ¢ = Ou , the integral becomes:
22
—0,—-6, | & Kzl
(™) o [ o ] g1 (29)
" = e e dt———.
e 2—l(l—e 1)_91 e 2 -1
Using the property,
22
7[&]11 < (-1 | (10, %"
PN =3 ) [f 2}1 (30)
i=0 i! 91
we get:
-6, " 0 22,
o IS I B
> j " eTdty-—; (31)
e _1(1_6*91)1.:0 i! 0, 8 e 2-1
I
and by the help of below expansion:
o k k
el = Z (_1) 4
o (32)
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we finally find the reliability as:

(8792791) - (—l)i 0, %i © (_l)k (_9)%141”1 1
> 2

e —l(l—e_e‘ )i=0 i o

A
(33)
If we take 41 =, we can find stress strength reliability as:
P(Y<X)=[P(Y < X)fy(x)dx=[Fy(x)fy (x)dx
(34)

0, 1 (976279') R

6—92_1(1_6—91) 91+92_ 0, +0, e -1

Let X1, X5,...,X, and I1,1,,....,Y, betwo independent random
samples from the UE distribution with parameters (4,6;) and

(%2,6,) respectively. Assuming 6, and 0, are known. To obtain the
ML estimatorsfor R, we have to find the ML estimators for 4; and
Ay . The ML estimators for A; and 4, can be obtained by using the
following formulas numerically.

A n

n oy M
=i T 9lzi:1xie !

(33)
X )

m n - ¥;
Zi:lyi +elzi:1yie 2

If 6, and 6, are not known, we can also find the ML estimators

of these parameter by:

n (1 et 9]6_01 )

0, (1 —eh )

n
= 21:(1 —e M )
i=1

(36)
ny (1 —e 02 926_62 )

0, (1 —e )

=
&)

_ (1 _ e M )
1

solving (36) iteratively. [17] proved that the ML estimators for this
reliability are more efficient than the UMVUE and Bayes estimators
with respect to MSE values. For this reason, we only obtain ML esti-
mators for stress-strength reliability. One can also find the UMVUE
and Bayes estimators. Table 2 shows the reliabilities and ML estima-
tors of these reliabilities calculated from some representative distribu-

tion parameters. The MLEs are considered according to the »; and

ny respectively. Table 2 shows stress-strength probabilities and their
ML estimations for some representative parameters.

It should be also noted that . This is also the

lim R=—72_
91 ,02 —0 A‘l + 12
stress-strength probability of the exponential distribution. Addition-
ally, if the other parameters remain stable the following remarks can

be obtained

Table 2. The stress-strength probabilities of UE distribution

Ay A &) s R MLE(R)
0.5 0.5000 0.5008
0.5 1.0 0.5 0.5 0.6593 0.6544
2.0 0.7901 0.7923
0.5 0.5438 0.5465
0.5 1.0 0.5 1.0 0.6928 0.6956
2.0 0.8132 0.8139
0.5 0.6139 0.6175
0.5 1.0 0.5 2.0 0.7530 0.7549
2.0 0.8539 0.8599
0.5 0.3407 0.3388
1.0 1.0 0.5 0.5 0.5000 0.5034
2.0 0.6593 0.6601
0.5 0.3814 0.3786
1.0 1.0 0.5 1.0 0.5408 0.5501
2.0 0.6928 0.7004
0.5 0.4609 0.4692
1.0 1.0 0.5 2.0 0.6169 0.6234
2.0 0.7530 0.7601
0.5 0.2099 0.1982
2.0 1.0 0.5 0.5 0.3407 0.3387
2.0 0.5000 0.5091
0.5 0.2432 0.2387
2.0 1.0 0.5 1.0 0.3814 0.3785
2.0 0.5408 0.5472
0.5 0.3114 0.3006
2.0 1.0 0.5 2.0 0.4609 0.4646
2.0 0.6169 0.6204
0.5 0.4592 0.4633
0.5 1.0 1.0 0.5 0.6186 0.6231
2.0 0.7568 0.7612
0.5 0.3831 0.3756
0.5 1.0 2.0 1.0 0.5391 0.5454
2.0 0.6886 0.6934
0.5 0.3072 0.2994
1.0 1.0 1.0 2.0 0.4592 0.4643
2.0 0.6186 0.6232
0.5 0.2470 0.2388
1.0 1.0 2.0 0.5 0.3831 0.3736
2.0 0.5391 0.5423
0.5 0.1868 0.1776
2.0 1.0 1.0 1.0 0.3072 0.2991
2.0 0.4592 0.4665
0.5 0.1461 0.1387
2.0 1.0 2.0 2.0 0.2470 0.2395
2.0 0.3831 0.3799

« If 6, increases the probability decreases,
« If 6, increases the reliability also increases,
« If A; increases the probability decreases,

* If A, increases the reliability also increases.

4. Numerical Example

In this section, we consider the data given by [12]. The data is
about the number of million revolutions before failure for each 23
ball bearings in the life test. [8] proposed the GE distribution and
subsequently compared this with Weibull and gamma distributions.
The data are as follows: 17.88; 28.92; 33; 41.52; 42.12; 45.60; 48.40;
51.84; 51.96; 54.12; 55.56; 67.80; 68.64; 68.64; 68.88; 84.12; 93.12;
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98.64; 105.12; 105.84; 127.92; 128.04; 173.40. We propose the UE
distribution for this data set. We obtain the ML estimators of the pa-
rameters and calculate the log-likelihood values and AIC statistics.
The results are:

2.=0.0147 0 =-1.5410 £ =25.998 InL=-112.428 and AIC =230.857

while the ML estimators, log-likelihood values and AIC statistics for
Weibull, gamma and generalized exponential distributions with three
parameters are obtained as:

a=15979 1=0.015677 =14.8479 InL =-112.976 and AIC =231.952

0 =4.1658 1 =0.0314 [1=148479 InL=-112.766 and AIC = 231.532.

The UE distribution has the largest log-likelihood value and the
smallest AIC statistics. This indicates that UE distribution provides
a much better fit and more reliable inferences than other proposed
distributions.

5. Conclusion

In this paper, we propose a new lifetime distribution with both
increasing and decreasing failure rates. We define the reliability func-
tion, hazard function and MTTF for this new distribution. Further-
more, Type II censoring procedure is also considered for this distribu-

a=27316 4. =0.0441 [1=10.2583 InL=-112.850 and AIC =231.700

tion. We obtain stress-strength probability and ML estimators of this
reliability for the proposed distribution. A real data example shows the

and proposed distribution gets better fit and more reliable solutions from
other alternatives.
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