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1. Introduction
Leaf area index (LAI), defined as one-half of the total green 
leaf area (m2) per unit ground surface area (m2) (Chen 
and Black, 1992), affects several significant ecosystem 
processes, such as evapotranspiration, photosynthesis, 
interception, rainfall, surface albedo, and dry deposition. 
Therefore, it is a considerable structural characteristic 
of the forest ecosystem since these processes are greatly 
affected by the amount of leaf area, quantified as LAI 
(Maass et al., 1995; Buermann et al., 2001; Schleppi et al., 
2007; Bonan, 2008). LAI is also firmly linked with litterfall, 
microclimate, and productivity (Gower et al., 1999), and it 
is strongly affected by climate, the fertility of the soil, the 
availability of water, and tree density and species (Gholz, 
1982; Gower et al., 1995; Bond-Lamberty et al., 2002). 
When the LAI is low, plants absorb less solar radiation, 
and the overall surface albedo is largely that of the soil. The 
absorption of radiation increases with greater LAI values, 
and surface albedo responds more to the optical properties 
of foliage rather than soil (Buermann et al., 2001; Bonan, 
2008).

Light energy directly drives many fundamental plant 
and biophysical processes (photosynthesis, stomatal 
conductance, transpiration, and temperature of the leaves) 
(Baldocchi and Collineau, 1994). The structure of the 
forest canopy, topographic position, weather, type and 
distribution of clouds, and seasonal and diurnal variations 
in the sun’s position largely determine the light regimes 
in a forest’s understory (Canham, 1988; Rich et al., 1993). 
It is difficult to quantify the light environment in a plant 
canopy since the environment displays significant spatial 
and temporal variability. This variability is associated with 
structural and environmental heterogeneity on a variety 
of space and time scales. Therefore, the pattern of light 
transmission is affected by various factors, such as the 
spatial organization of the overstory’s stems, branches, and 
foliage, and the height and depth of structure of canopy 
(Baldocchi and Collineau, 1994; Beaudet and Messier, 
2002).

Gap fraction refers to the percentage of sky seen from 
beneath the canopy, whereas gap size is defined as the 
dimensions of a gap. For the same gap fraction, there can 

Abstract: In this study, leaf area index (LAI), light transmission, and gap were estimated by using the hemispherical photograph analysis 
technique with Hemisfer software version 1.5.3 for a temperate mixed deciduous forest. The height of the overall vegetation in the stand 
ranged from 15 to 20 m, and the diameters of the trees in the stand at breast height varied between 14 and 28 cm. This study showed 
that the mean value of LAI increased by 4% in the 5-year period from 2007 to 2012. LAI was significantly (P < 0.05) greater in 2012 than 
in 2007, whereas the mean percentage of light transmission was significantly lower in 2012 than it was in 2007. In addition, there was a 
significant (P < 0.01) correlation between LAI and light transmission, and there was also a statistically significant correlation between 
the gap and light transmission (P < 0.05). According to long-term meteorological data (1982–2012), this study also demonstrated that 
the mean air temperature rose approximately 1.0 °C between 2007 and 2012. Consequently, this study indicated that LAI varies with 
respect to time and the increase of LAI leads to a decrease in light transmission. Additionally, the air temperature and precipitation have 
a significant influence on the LAI.
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be different distributions of gap sizes (Chen et al., 1997). 
Small spaces in forest canopies (i.e. canopy gaps) form as 
a result of canopy level disturbances caused by the death 
of an individual tree or a small cluster of trees (Clinton, 
2003). It has been reported in the literature that canopy 
gaps modify the resources required for plant growth, such 
as light, water, and soil nutrients (Canham and Marks, 
1985; De Freitas and Enright, 1995; Promis et al., 2009). 
For example, the availability of light for the understory’s 
plants in a forest ecosystem can be increased suddenly by 
these openings. Such events must be taken into account, 
because they are necessary for the further growth of tree 
seedlings and thus for the generation of forests. These 
events also promote the rapid growth of plants, giving 
them competitive advantages over neighboring plants 
(Kursar and Coley, 1999; Oguchi et al., 2006). 

Therefore, knowledge about LAI, light transmission, 
and canopy gaps and their influence on the stand are 
of great importance for understanding the growth and 
generation processes in forest ecosystems. This study had 
four objectives: 1) to determine the short-term change 
of LAI; 2) to exhibit the effect of the air temperature and 
precipitation on the LAI; 3) to establish the short-term 
change of light transmission and gap; and 4) to determine 
the relationships among LAI, light transmission, and gap 
in the mixed forest ecosystem in Bartın, Turkey, between 
the years 2007 and 2012.

2. Materials and methods
2.1. Study area
The study area is within the Bartın watershed in 
northwestern Turkey (41°38′N, 32°20′E), and it covers an 
area of approximately 3.7 ha. The elevation of the forest 
land is approximately 100 m and the average slope is 55%, 
with a north-northeast aspect (Figure 1) (TGDF, 2011). 
According to the Thornthwaite method (Thornthwaite, 
1948), the study area has a humid, mesothermal climate 
with little or no deficiency of water, and it was characterized 
as being similar to oceanic climate conditions (B2B1’rb4’). 
Based on climatological data from the past 31 years 
(TSMS, 2012), the mean annual temperature in the study 
area was 12.6 °C and the mean annual precipitation was 
1045.6 mm, with about 35% of the rainfall occurring in 
the growing season between May and September. The 
mean temperature of the coldest month (January) was 4.1 
°C, and the mean temperature of the hottest month (July) 
was 22.3 °C. Both young and mature European hornbeams 
(Carpinus betulus L.), oaks (Quercus petraea (Matt.) 
Liebl.), and oriental beeches (Fagus orientalis Lipsky) exist 
at the study site constituting a mixed forest (i.e. GnMKn). 
The overall height of the vegetation varies between 15 and 
20 m, whereas the diameters of the trees at breast height 
range between 14 and 28 cm. The tree ages vary between 

50 and 60 years with an average of about 55 years. The 
percentage of closure of the canopy ranges between 70% 
and 100% (TGDF, 2011).
2.2. Canopy leaf area
The hemispherical photographing technique is a common 
methodology that is used by many researchers to determine 
the light transmission of forests (Dignan and Bren, 2003; 
Promis et al., 2009). The principle of the methodology 
depends upon the calculation of the percentage of light 
transmission through the canopy gaps. Consequently, 
it is based on distinguishing the sky from vegetation in 
photographs taken in the upwards direction from the 
floor of the forest (Schleppi et al., 2007). The study was 
performed in July of 2007 and July of 2012. In total, 60 
hemispherical photographs were taken systematically from 
the ten sites using a Sigma 8-mm fisheye lens mounted on a 
Canon EOS 5D digital SLR camera in 2007 and 2012 years 
(Figure 1). For the calculation of LAI, light transmission, 
and canopy gaps the digital photographs that were taken 
were analyzed using the hemispherical photograph 
analysis technique with Hemisfer software version 1.5.3 
(Swiss Federal Institute for Forest, Snow, and Landscape 
Research (Schleppi et al., 2007)). During the analyses of 
the digital photographs, automatic thresholding, based 
on the study of Nobis and Hunziker (2005), was used. 
Lang’s method (1987) was applied for the analysis of the 
LAI. Parts of the trees other than the leaves, such as stems 
and branches, influence the values of LAI, so corrections 
recommended by Schleppi et al. (2007) for nonlinearity 
and slope and by Chen and Cihlar (1995) for the clumping 
effect were integrated into the calculations. The exact dates 
and times of the photographs were determined taking 
weather conditions into account, e.g., photographs were 
not taken when it was raining or snowing or when there 
was direct sunlight. Therefore, during the analysis of 
the photographs, errors arose from the colors that were 
avoided.
2.3. Sampling and analyses of soils
Soil samples were collected from the same sites where 
the hemispherical photographs were taken with a metal 
cylinder that had a diameter and a length of 8.1 and 6.5 
cm, respectively. Samples were then transferred into 
labeled plastic bags. In total, 20 soil samples were taken 
to the laboratory for analysis. After all of the samples 
were air-dried, plant and root residues and stones were 
removed. The remaining soil samples were then ground, 
passed through a 2-mm sieve, and prepared for analysis. 
The hydrometer method was used to calculate the particle-
size distribution of the soil (Bouyoucos, 1962). The pH 
of the soil in a 1:2.5 soil:water suspension was measured 
using a pH meter, while the electrical conductivity of the 
soil was determined with an electrical conductivity meter 
using a 1:5 soil:water extract. The organic carbon content 
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of the soil was estimated using potassium dichromate 
oxidation, and the total nitrogen content was determined 
using Kjeldahl digestion (Rowell, 1994). The bulk density 
of the soil (g cm–3) was calculated using mass and volume 
(Blake and Hartge, 1986). The particle density of the soils 
(g cm–3) was measured using the pycnometer method, and 
the pore space was calculated using the bulk and particle 
densities (Brady, 1990).
2.4. Statistical analysis
The data presented are the means of two replicates, and they 
are expressed on an oven-dried weight basis. SPSS 16.00 
was used for evaluation of the data that were obtained in 
the study. The LAI data, physical characteristics data, and 
chemical characteristics data were subjected to paired-

samples t-tests to determine the significant differences 
between the forest’s conditions in 2007 and 2012. A 
95% confidence limit (P < 0.05) was chosen to indicate 
significant differences between samples. A correlation 
analysis was used to examine the relationships among LAI, 
air temperature, precipitation, gap, and light transmission.

3. Results and discussion
3.1. Soil characteristics
Except for the percentage of clay content and the Corg/Ntotal 
ratio of the soils, there were no significant differences (n = 
20, P > 0.05) in the physical and chemical properties of the 
soils between 2007 and 2012 (Table). The properties of the 
soil samples were almost the same for 2007 and 2012. On 

Figure 1. Study area within Bartın watershed, Turkey.
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the other hand, the percentage of clay content was higher in 
2012 (59.60 ± 8.54%) than it was in 2007 (39.20 ± 13.93%). 
The soil Corg/Ntotal ratio of the soil was greater in 2007 
(13.41 ± 1.06) than it was in 2012 (9.62 ± 1.21). High Corg/
Ntotal ratios (>20) in forest ecosystems result from the poor 
mineralization of N and C, while low Corg/Ntotal ratios (<20) 
occur as the result of intensive carbon mineralization and 
the rapid breakdown of nitrogen-containing compounds 
(Zeller et al., 2000).
3.2. Short-term changes of LAI, light transmission, and 
gap
The LAI values of the stand ranged from 2.04 to 2.90 m2 
m–2 in 2007 and from 2.06 to 2.95 m2 m–2 in 2012. The 
mean value of LAI increased from 2007 (2.40 ± 0.25 m2 
m–2) to 2012 (2.50 ± 0.33 m2 m–2), and this increase was 
significant (P < 0.05), as shown in Figures 2a and 2b. In 
this study, both temperature and precipitation increased 
evidently (Figures 3a and b), which prolonged the growing 
seasons and thus may have increased the mean LAI. This 
increase in LAI could also point out increases in primary 
productivity, biomass, and other biophysical properties in 
the forest ecosystem. It was stated in some studies (e.g., 
Bonan, 2008; Meier and Leuschner, 2008; Öztürk et al., 
2015) that air temperature is effective on leaf area and LAI 
development. It was also reported in the literature that 
there was a positive relationship between precipitation or 
soil water availability and LAI in mature stands (Bequet 
et al., 2012). Similarly, Buermann et al. (2001) concluded 
that reductions in precipitation and temperatures during 
the summer affected the LAI’s interannual variation. In 
this study, it was found that the mean air temperature 
between 1982 and 2007 was 12.5 °C, whereas the mean 
air temperature between 2008 and 2012 was 13.6 °C 

(Figure 3a). There were statistically significant (P < 0.05) 
differences between 1982–2007 and 2008–2012 in terms 
of the mean air temperature. Furthermore, the mean LAI 
showed strong positive (r = 0.96, P < 0.01) correlations 
both with the mean air temperature and precipitation. 
Although no statistically significant differences were found 
in the mean precipitation between 1982–2007 (1031.5 
mm) and 2008–2012 (1053.5 mm), a slight increase in the 
mean precipitation between 2008 and 2012 was observed 

Table. Physical and chemical properties of soils (0–6.5 cm depth).

Soil properties 2007 2012

Bulk density (g cm–3) 0.96 (±0.11) a 1.02 (±0.09) a 

Pore space (%) 59.70 (±4.08) a 59.50 (±3.46) a

Particle density (g cm–3) 2.51 (±0.02) a 2.51 (±0.08) a

Sand (%) 22.25 (±3.83) a 21.81 (±4.67) a

Clay (%) 39.20 (±13.93) a 59.60 (±8.54) b

Organic C (%) 4.14 (±0.21) a 3.47 (±0.92) a

Total N (%) 0.31 (±0.02) a 0.35 (±0.06) a

Soil pH (H2O) 5.19 (±0.39) a 5.60 (±0.75) a

Electrical conductivity (dS m–1) 0.08 (±0.02) a 0.10 (±0.05) a

Corg /Ntotal ratio 13.41 (±1.06) a 9.62 (±1.21) b

Values in the same row followed by different letters indicate a significant difference (P < 
0.05) between 2007 and 2012 (paired samples t-test).
Values represent the means of 20 samples (±SD).
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(Figure 3b). The initial sequence of stand development 
can be extended to another generation of trees. The 
literature indicates that LAI and other properties, such 
as decomposition rates and water use in the stand, may 
remain stable from one generation to another if the 
replacement process occurs slowly (Waring and Running, 
2007).

Breda and Granier (1996) reported that a high LAI is 
an indication of the high fertility of the site and the optimal 
health and productivity of the stand. The literature also 
indicates that LAI is a particularly important characteristic 
of an ecosystem, because it is a direct measure of the 
photosynthetically active surface area that can convert 
light energy into plant biomass. Therefore, it should not 
be surprising that there are strong relationships between 
LAI, climate, soil, biomass, and productivity in many 
terrestrial ecosystems (Grier and Running, 1977; Barnes 
et al., 1998; Jensen, 2002). Depending on site conditions, 
and especially water supply, soil fertility, and nutrients, the 
LAI changes and increases within ecosystems. Hence, LAI 
varies significantly among ecosystems, ranging from less 
than 1 m2 m–2 in arid ecosystems to 20 and as high as 23 m2 
m–2 in western juniper ecosystems (Maass et al., 1995; Perry 

et al., 2008). A typical LAI for a productive forest is 4–6 m2 
m–2 (Bonan, 2008). Barnes et al. (1998) reported that LAI 
values have been determined for a wide range of temperate 
forest ecosystems; they are typically greater than 5 m2 m–2 
during most of the growing season in deciduous forests 
or during all of the growing season in coniferous forests. 
Those values are greater than the LAI values obtained in 
our study. Some authors indicated that the LAI varies from 
0.5 to 8 m2 m–2 in temperate deciduous forests (Le Dantec 
et al., 2000) and from 5.6 to 9.5 m2 m–2 in European beech 
stands (Leuschner et al., 2006). These differences could be 
due to the type and age of the stand and the availability 
of water in the soil, which is determined by climate and 
the properties of the soil. Previous studies have confirmed 
this assertion (Breda and Granier, 1996; Leuschner et al., 
2006).

Maximum and minimum percentages of light 
transmission in the stand varied from 12.40% to 21.40% 
in 2007 and from 10.78% to 20.13% in 2012. The mean 
percentage of light transmission (16.38 ± 3.73%) in 
2012 was significantly lower than the percentage of light 
transmission (18.26 ± 2.77%) in 2007 (P < 0.05) (Figure 
4a). Canham et al. (1990) reported that light transmission 
values range from 0.3% to 3.8% for a northern hardwood 
site dominated by a uniform canopy of sugar maple and 
beech. Baldocchi and Collineau (1994) stated that, in some 
cases, 9% to 25% of incoming sunlight penetrates to the floor 
of a fully leafed deciduous forest at midday in temperate 
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broadleaf forests. Beaudet and Messier (2002) reported that 
plot-level mean light transmission varied from about 11% 
to 17% among the cuts and from 6.5% to 9.2% among the 
controls, while microsite-level light transmission ranged 
from 3.1% to 37.2% in the cuts and from 3.0% to 16.5% 
in the controls. Differences in the results could be due to 
structural and environmental heterogeneity on a variety of 
space and time scales, because several factors, such as tree 
species, branches, foliage, and canopy structure, influence 
light transmission. Several authors have implied that the 
structure of the forest canopy facilitates the transmission 
of light to leaves that are lower in the canopy (Baldocchi 
and Collineau, 1994; Hardy et al., 2004; Perry et al., 2008). 
In addition, hemispherical photography, similarly to 
methods based on the measurement of light transmission 
and gap fraction, is affected by ambient light conditions 
and is especially affected by the presence of the sun and 
clouds. This considerably limits the use of these methods 
across sites in large-scale studies (Schleppi et al., 2011).

Gap percentages in 2007 and 2012 in the stand were 
1.34%–4.67% and 2.32%–4.78%, respectively. There was no 
obvious difference (P > 0.05) in the mean gap percentage 
between 2007 (3.23 ± 0.96%) and 2012 (3.46 ± 0.94%) 
(Figure 4b). The gap is, quite literally, a physical opening in 
the canopy that allows light to reach seedlings in the forest 
understory, but it is also an opening in the social fabric. In 
addition, most tree species require gaps in order to reach 
maturity (Perry et al., 2008). Trichon et al. (1998) reported 
that microsite-level canopy openness values range from 
1.4% to 5.1% for building forests and mature phase forests 
and from 7.6% to 28.8% in gap-phase forests in a tropical 
rainforest in Sumatra. Frazer et al. (2000) observed stand-
level mean canopy openness (gaps) ranging from 2.2% to 
14.1% for immature, mature, and old-growth Douglas-fir - 
western hemlock - western red cedar forests on Vancouver 
Island. Beaudet and Messier (2002) indicated that the 
mean canopy openness varied from 7.9% to 12.1% among 
the cuts and from 4.5% to 6.2% among the controls. Those 
values are greater than the gap values obtained in our 
study. The differences could be due to the fact that gaps in a 
stand are influenced by several factors, such as tree species, 
canopy structure, applied silvicultural interventions, and 
the presence of the sun and clouds. Since gaps in the forest 
canopy are natural spacing irregularities formed by fires, 
wind, insect damage, and tree mortality, the gaps generated 
by the fall of one or more canopy trees are major factors 
that influence the structure of tropical, temperature, and 
boreal forests (Mariscal et al., 2004; Perry et al., 2008). 
A valuable alternative for the accurate quantification of 
canopy structure can be accomplished by analysis based on 
digital hemispherical photography, because the parameters 
of the canopy’s structure (such as gap fraction and canopy 
cover) can be extracted from the photographs (Jonckheere 

et al., 2005). The structure of the forest’s canopy (trees and 
gaps) strongly affects the interception and transmittance 
of solar radiation, and it changes with space and time, and 
depending on the species of trees, the sizes and locations of 
gaps in the canopy, and the angle of solar incidence (Hardy 
et al., 2004; Perry et al., 2008). The literature indicates that 
while the presence of gaps may increase the penetration of 
diffuse light into the lower canopy (Mariscal et al., 2004), 
more solar radiation is absorbed or reflected and less is 
transmitted deeper into the canopy as the canopy becomes 
denser with leaves (Bonan, 2008).
3.3. The relationships among LAI, light transmission, 
and gap
In the current study, there was a significant correlation (r 
= –0.883, P < 0.01) between LAI and light transmission 
(Figure 5a), but there was no correlation (r = –0.406, P = 
0.07 > 0.05) between LAI and gap (Figure 5b). Schleppi et 
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al. (2011) found that the LAI has a negative correlation with 
the light index of the ground vegetation. They explained 
this situation as a shading effect, because the availability of 
light for the ground vegetation is restricted by a denser tree 
canopy. It is well known that understory light availability 
decreases as overstory density increases (Newsome et 
al., 2010). Other studies also have indicated that there is 
a converse relationship between the amount of light that 
reaches the understory and canopy closure, and light 
index is often well correlated with other biotic and abiotic 
factors (Grant, 1997; Drever and Lertzman, 2003). The 
correlation between light transmission and the gap (Figure 
5c) was statistically significant and positive (r = 0.529, P < 
0.05) in this study. Some authors have demonstrated that 
variability in the light levels in the understory increases 
with the partial removal of the overstory (Coates et al., 
2003; Beaudet et al., 2011). Our findings are consistent 
with those of various authors (e.g., Mariscal et al., 2004; 
Perry et al., 2008) who have reported that the structure 
of the forest canopy facilitates the transmission of light to 
leaves that are lower in the canopy.

The causes of the spatial and temporal dynamics of the 
LAI are canopy closure and stand development (crown 
expansion). Canopy closure and stand development 
proceed depending upon the conditions of the habitat. 
An increment in the canopy closure leads to a decrease 
in the penetration of light beneath that canopy. Thus, 
the decrease in light transmission is an indicator for the 
increment of the canopy closure. Although the increase 

in the LAI can be influenced by many factors, it mostly 
changes according to habitat quality (availability of soil 
nutrients, precipitation, and appropriate temperatures) 
and shade tolerance. As indicated in this study, the overall 
LAI increased 4% from 2007 to 2012. In addition, there was 
a statistical difference between 2007 and 2012. Since there 
were almost no definite changes in the soil characteristics 
except for the percentage of clay content and the Corg/
Ntotal ratio (decomposition rate), the growth rate of the 
trees due to genetic and environmental factors (especially 
temperature and precipitation) can be declared as the cause 
for the change in the LAI. These LAI results are significant 
indicators of the closure, health, and productivity of the 
forest’s vegetation. Therefore, LAI values can be evaluated 
as a parameter in monitoring the biomass productivity 
in future studies. In addition, LAI values may be used in 
the calculation of the carbon budget. On the other hand, 
the increasing of air temperature by about 1 °C can be an 
indicator of predicting climate change.
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