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We study the behaviour of trimmed likelihood estimators (TLEs) for lifetime models with exponential
or lognormal distributions possessing a linear or nonlinear link function. In particular, we investigate the
difference between two possible definitions for the TLE, one called original trimmed likelihood estimator
(OTLE) and one called modified trimmed likelihood estimator (MTLE) which is the finite sample version
of a form for location and linear regression used by Bednarski and Clarke [Trimmed likelihood estimation
of location and scale of the normal distribution. Aust J Statist. 1993;35:141–153, Asymptotics for an
adaptive trimmed likelihood location estimator. Statistics. 2002;36:1–8] and Bednarski et al. [Adaptive
trimmed likelihood estimation in regression. Discuss Math Probab Stat. 2010;30:203–219]. The OTLE is
always an MTLE but the MTLE may not be unique even in cases where the OLTE is unique. We compare
especially the functional forms of both types of estimators, characterize the difference with the implicit
function theorem and indicate situations where they coincide and where they do not coincide. Since the
functional form of the MTLE has a simpler form, we use it then for deriving the influence function, again
with the help of the implicit function theorem. The derivation of the influence function for the functional
form of the OTLE is similar but more complicated.

Keywords: outlier robustness; robust estimation; generalized linear model; lifetime distribution

AMS Subject Classification: Primary: 62F35; 62J02; 62J12; Secondary: 62N05; 62F10; 62G35

1. Introduction

In this article, we consider simple lifetime experiments, where the observations of the lifetimes
are independent and identically distributed, and accelerated lifetime experiments, where the life-
times are observed at different stress levels, typically at stress levels at higher values than in
practice to reduce the observation time. Usually maximum likelihood estimators are considered
for these experiments where typical lifetime distributions as exponential distributions, Weibull
distributions or lognormal distributions are used. However, maximum likelihood estimators are
very sensitive to outliers. Therefore, we consider here the trimmed likelihood estimators (TLEs)
proposed by Müller and Neykov [1] which are outlier robust modifications of maximum likeli-
hood estimators. The TLEs extend the least median of squares estimators and the least trimmed
squares estimators of Rousseeuw [2] and Rousseeuw and Leroy [3] by replacing the likelihood
functions of the normal distribution by likelihood functions of other distributions. Although the
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TLEs are constructed for a specific likelihood function, for example like the likelihood given by
the exponential distribution, the TLEs can be applied to data from any other distribution.

The principal robustness measure used for TLEs is the breakdown point, see [1,4–9]. Addi-
tionally, Ahmed et al. [10] provide a relative bias and a quadratic risk as robustness measures for
TLEs for the exponential distribution in the case of one stress level. They show in particular that
their estimator is asymptotically equivalent with the simple one-sided α-trimmed mean.

Another important robustness measure is the influence function introduced by Hampel.[11] It
is well known that the influence function is not only an important robustness measure but also
a useful tool for obtaining the asymptotic distribution of the estimator, see in particular Hampel
et al. [12] and Rieder.[13]

However, even the influence function for the one-sided α-trimmed mean is not easy to derive.
In [14], it is given via the influence function of quantiles and is not completely correct, see
p. 16. There is a vast literature on influence functions for many other robust estimators, also
for robust methods for lifetime distributions as that of Boudt et al.[15] However, the influence
function of TLEs is not treated. The only exception is that asymptotic expansions for TLEs are
derived by Bednarski and Clarke [16,17] for the location and scale case and by Bednarski et al.
[18] for the regression case. From these asymptotic expansions, the influence function can be
derived. However, mostly they consider only TLEs for the normal distribution which leads to
the least trimmed squares estimators. Moreover, they allow only symmetric distributions for the
asymptotic expansions and work with a modified version of the TLE.

This modified version of the TLE is not easy to calculate but its corresponding func-
tionals, the modified trimmed likelihood functional (MTLF) θ̃M , is given by a rather simple
equation. Since the influence function is defined for the corresponding functionals of the esti-
mators, a simple form of the functional is advantageous. However, this MTLF is not the
functional θ̃O corresponding to the original trimmed likelihood estimator (OTLE), which is
called here the original trimmed likelihood functional (OTLF). The definitions of the modified
and the OTLF are given in Section 2 together with the definition of the TLE and the influence
function.

It is not obvious that the modified functional θ̃M should coincide with the original functional
θ̃O. In Section 3, we compare the two versions for two likelihood functions, namely the likelihood
given by the exponential distribution (Section 3.1) and the likelihood given by the (log)normal
distribution (Section 3.2). We show that θ̃M and θ̃O coincide if only one stress level is used,
i.e. in the one-sample case. However, for regression, where several stress levels are used, this
is not satisfied in general and we quantify the difference between the defining equations of θ̃M

and θ̃O. This is done by using the implicit function theorem. Although we base the trimmed
likelihood functionals on the exponential distribution and the (log)normal distribution, we allow
quite general distributions P to which the functionals are applied. In particular, P can be the
empirical distribution PN and then θ̃M (PN ) (MTLE) and θ̃O(PN ) (OTLE) coincide under some
assumptions. This holds in particular when θ̃M (PN ) is uniquely defined. While a simple example
in Section 2 demonstrates that this is not satisfied in general, we show in Section 4 using a
real data set that this holds quite often for more realistic situations. This is important since the
OTLFs θ̃O are much easier to calculate at empirical distributions while the influence functions of
the MTLFs θ̃M show a much simpler form.

The influence functions of the MTLFs are derived in Section 5. Here again the implicit func-
tion theorem is an important tool since the functionals are given implicitly. The influence function
of the exponential regression TLF is treated in Section 5.1 and correspondingly the one for the
(log)normal regression TLF in Section 5.2. In both cases, the influence functions are derived
at quite general central distributions P. In particular, we do not assume symmetry as Bednarski
and Clarke [16,17] and Bednarski et al. [18] did for the modified trimmed likelihood estimator
(MTLE) based on the normal distribution. However, their results appear as special cases.
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We believe that the present approach can be used also for trimmed likelihood functionals
where the likelihood function is based on other distributions and for censored data.

Finally, we provide in Section 6 a discussion of the results.

2. Definitions

Let z1N , . . . , zNN be realizations of independent random variables Z1N , . . . , ZNN , zN =
(z1N , . . . , zNN ), and θ̂ (zN ) an estimate of a parameter θ ∈ � of the underlying distribution.
Typically it is difficult to measure the influence of an outlier z∗ on the estimate θ̂ (zN ). There-
fore, Hampel [11] proposed to consider the influence of an outlier z∗ on the asymptotic value
of θ̂ (ZN ). Usually, the estimator θ̂ (ZN ) converges for N → ∞ in probability or almost surely
to a value θ̃ (P), where P is the underlying distribution. If θ̃ (P) is defined for a class P of
distributions, then θ̃ : P → � is called a statistical functional. Usually, also the contaminated
distribution (1 − ε)P + εδz∗ , where δz∗ is the one-point (Dirac) measure on z∗, lies in P so that
θ̃ ((1 − ε)P + εδz∗) is defined. Then the influence function at z∗ is the directional derivative of θ̃

in the direction of (1 − ε)P + εδz∗ and measures the influence of an outlier z∗ on the asymptotic
value of the estimator.

Definition 2.1 (See [12]) The influence function IF(θ̂ , P, z∗) of a statistical functional θ̂ at a
probability measure P and an observation z∗ is defined as

IF(θ̃ , P, z∗) = lim
ε↓0

θ̃ ((1 − ε)P + εδz∗) − θ̃ (P)

ε
.

To take into account accelerated lifetime experiments, set z1N = (t1N , s1N ), . . . , zNN =
(tNN , sNN ), where tnN is the observed lifetime at stress level snN . Let fθ ,s be the density of the
lifetime distribution at stress s, then l given by l(θ , t, s) = log(fθ ,s(t)) denotes the loglikelihood
function.

Definition 2.2 (See [1]) The original h-trimmed likelihood estimator (OTLE) θ̂(zN ) at zN is
defined as

θ̂ (zN ) = arg max
θ∈�

N∑
n=h+1

l(n)(θ , zN ),

where

ln(θ , zN ) = l(θ , tnN , snN ) and l(1)(θ , zN ) ≤ l(2)(θ , zN ) ≤ . . . ≤ l(N)(θ , zN ). (1)

In an h-TLE the observations with the h smallest likelihood values are not used.
The functional form of this estimator is given in Definition 2.3. Thereby, we use α =

limN→∞(hN/N) with hN = h. Moreover, to model stress levels s given by an experimenter, the
distribution is given by P = PT |S ⊗ PS , where T is the random variable for the lifetime and S the
random variable for the stress. It should be noted that S could be any explanatory variable. How-
ever, since our main applications are accelerated lifetime experiments, we call S here a stress
variable. If fixed designs for the stress variables are used, then PS is the asymptotic distribution
of the stress variables and can be interpreted as a generalized design; see, e.g. [6].

Definition 2.3 The original α-trimmed likelihood functional (OTLF) θ̃O(P) at P = PT |S ⊗ PS

is given by

θ̃O(P) = arg max
θ∈�

∫ ∫
1I{l(θ , t, s) ≥ b(θ)}l(θ , t, s)PT |S=s(dt)PS(ds),
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where b(θ) satisfies

b(θ) = arg max

{
b;
∫ ∫

1I{l(θ , t, s) ≥ b}PT |S=s(dt)PS(ds) ≥ 1 − α

}
(2)

and 1I{x ∈ A} = 1IA(x) denotes the indicator function.

The functional form of the modified version used by Bednarski and Clarke [16,17] and
Bednarski et al. [18] is given in Definition 2.4.

Definition 2.4 The modified α-trimmed likelihood functional (MTLF) θ̃M = θ̃M (P) at P =
PT |S ⊗ PS is a solution of

0 =
∫ ∫

1I{l(θ̃M , t, s) ≥ b(θ̃M )}l̇(θ̃M , t, s)PT |S=s(dt)PS(ds).

where b(θ) is defined by Equation (2) and l̇(θ , t, s) = (∂/∂θ)l(θ , t, s).

Note that the empirical version of this definition, which is also called here the modified
h-trimmed likelihood estimator (MTLE), is a parameter estimate θ̂M (zN ) satisfying

0 =
N∑

n=h+1

l̇(n)(θ̂M (zN ), zN ), (3)

where l̇(n)(θ , zN ) = (∂/∂θ)l(n)(θ , zN ), l(n)(θ , zN ) is given by Equation (1).
The original h-TLE can be obtained by calculating the maximum likelihood estima-

tor θ̂Z of each subset Z of data points with N − h elements and defining Z0 as Z0 =
arg maxZ

∑N
n=h+1 l(n)(θ̂Z , zN ). Then it holds that θ̂ = θ̂Z0 . This implies that an h-TLE θ̂ sat-

isfies Equation (3). However, there could be many more solutions of Equation (3). This is in
particular the case when l(·, t, s) is not concave. However, it can also happen when l(·, t, s) is
concave as the following simple example shows. Thereby note that for calculating all solutions
of Equation (3), all solutions θZ of 0 = ∑

n∈Z l̇n(θZ , tnN , snN ) must be found for all subsets Z of
data points with N − h elements. If the N − h largest loglikelihood functions with respect to this
solution θZ provide the same subset Z from which the solution was obtained, i.e. the ordering
given by Equation (1) reproduces Z , then θZ is a solution of Equation (3).

Example 2.5 Let l(θ , t, s) be the loglikelihood function of the normal distribution in a simple
linear regression model with θ ∈ IR2, i.e. l(θ , t, s) = −(t − (1, s)θ)2 up to a constant, so that the
OTLE is the least trimmed squares estimator of Rousseeuw [2] and Rousseeuw and Leroy.[3]
Consider five data points given by (2, 0)
, (1, 1)
, (3, 1)
, (3.5, 1.5)
, (12, 10)
 and use
h = 1. Then θ̂1 = (−2, 1)
 obtained by the subset Z = {(2, 0)
, (3, 1)
, (3.5, 1.5)
, (12, 10)
}
is the OTLE and thus also an MTLE. The maximum likelihood estimator for the subsets
Z = {(2, 0)
, (1, 1)
, (3, 1)
, (12, 10)
}, Z = {(2, 0)
, (1, 1)
, (3.5, 1.5)
, (12, 10)
}, and Z =
{(1, 1)
, (3, 1)
, (3.5, 1.5)
, (12, 10)
}, do not reproduce these sets when regarding the N − h
largest loglikelihood functions. However this is done by the maximum likelihood estimator given
by θ̂2 = (0.2712274, 0.2542400)
 for Z = {(2, 0)
, (1, 1)
, (3, 1)
, (3.5, 1.5)
} so that θ̂2 is also
a solution of Equation (3) and thus another MTLE. Hence in this example, two MTLE exist, see
also Figure 1.
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Figure 1. Visualization of the two different MTLE in Example 2.5. θ̂1 is the maximum likelihood estimator, when the
point (1, 1)
 is trimmed and θ̂2 when (12, 10)
 is trimmed.

3. Comparison of MTLF and OTLF

To check under which conditions the MTLF given by Definition 2.4 and the OTLF given by
Definition 2.3 coincide, we have to check the equality of∫ ∫

1I{l(θ , t, s) ≥ b(θ)}l̇(θ , t, s)PT |S=s(dt)PS(ds) (4)

and
∂

∂θ

∫ ∫
1I{l(θ , t, s) ≥ b(θ)}l(θ , t, s)PT |S=s(dt)PS(ds). (5)

We will consider here only the case where b(θ) given by Equation (2) satisfies

1 − α =
∫

1I{l(θ , t, s) ≥ b(θ)}PT |S=s(dt)PS(ds) (6)

for all θ in a neighbourhood of θ̃M (P) and θ̃O(P), respectively. This is in particular the case for
continuous distributions PT |S=s but not restricted to them. Hence b(θ) is implicitly defined by
Equation (6).

3.1. Exponential regression TLFs

If the lifetimes at different stress levels have exponential distributions, then the loglikelihood
function is given by

l(θ , t, s) = log(λs(θ)) − λs(θ)t, (7)

where λs(θ) is the link function between the stress levels and the parameter of the exponential
distribution. Typical link functions in accelerated lifetime experiments are λs(θ) = θs with θ ∈
(0, ∞), λs(θ) = exp(ϑ0 + ϑ1s) with θ = (ϑ0, ϑ1)


 ∈ IR × (0, ∞), or λs(θ) = exp(−ϑ0 + ϑ1s −
ϑ2s−ϑ3) with θ = (ϑ0, ϑ1, ϑ2, ϑ3)


 ∈ [0, ∞)4, see, e.g. [19] or the real data example in Section 4.

Definition 3.1 The exponential regression OTLF and MTLF are the OTLF and the MTLF
where l(θ , t, s) is given by Equation (7).
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Then we have

l(θ , t, s) ≥ b(θ) ⇐⇒ t ≤ log(λs(θ)) − b(θ)

λs(θ)
.

Set

ηs(θ , b) := log(λs(θ)) − b

λs(θ)

and use l̇(θ , t, s) = (1/λs(θ) − t)λ̇s(θ) with λ̇s(θ) := (∂/∂θ)λs(θ). Then we obtain for expres-
sion (4) with partial integration of

∫
tPT |S=s(dt)

∫ ∫
1I{l(θ , t, s) ≥ b(θ)}l̇(θ , t, s)PT |S=s(dt)PS(ds)

=
∫ ∫ ηs(θ ,b(θ))

0

(
1

λs(θ)
− t

)
λ̇s(θ)PT |S=s(dt)PS(ds)

=
∫ [

Fs(ηs(θ , b(θ)))

(
1

λs(θ)
− ηs(θ , b(θ))

)
+ Fs(ηs(θ , b(θ)))

]
λ̇s(θ)PS(ds)

=: UM
P (θ), (8)

where Fs is the cumulative distribution function of an arbitrary lifetime distribution PT |S=s on
[0, ∞) and Fs is the antiderivative of Fs, i.e. (∂/∂t)Fs(t) = Fs(t). In particular, it is not necessary
to assume an exponential distribution for PT |S=s. Hence we arrive at the following lemma.

Lemma 3.2 The exponential regression MTLE θ̃M at P is given as a solution of 0 = UM
P (θ).

Similarly, the integral in Equation (5) is given by∫ ∫
1I{l(θ , t, s) ≥ b(θ)}l(θ , t, s)PT |S=s(dt)PS(ds)

=
∫ ∫ ηs(θ ,b(θ))

0
(log(λs(θ)) − λs(θ)t)PT |S=s(dt)PS(ds)

=
∫

[Fs(ηs(θ , b(θ)))[log(λs(θ)) − λs(θ)ηs(θ , b(θ))] + λs(θ)Fs(ηs(θ , b(θ)))]PS(ds). (9)

To calculate the derivative of Equation (9), we need the derivative of b(θ) which is implicitly
given by W1(θ , b(θ)) = 0, where

W1(θ , b) :=
∫ ∫ ηs(θ ,b)

0
PT |S=s(dt)PS(ds) − (1 − α) =

∫
Fs(ηs(θ , b))PS(ds) − (1 − α).

We assume here that

Fs is differentiable in a neighbourhood of ηs(θ , b(θ)) with derivative fs for all s

in the support of PS . (10)

Since
∂

∂θ
ηs(θ , b) = 1 + b − log(λs(θ))

λs(θ)2
λ̇s(θ)
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and
∂

∂b
ηs(θ , b) = − 1

λs(θ)
,

we have
∂

∂θ
W1(θ , b) =

∫
fs(ηs(θ , b))

1 + b − log(λs(θ))

λs(θ)2
λ̇s(θ)PS(ds)

and
∂

∂b
W1(θ , b) = −

∫
fs(ηs(θ , b))

1

λs(θ)
PS(ds).

If (∂/∂b)W1(θ , b)|b=b(θ) 
= 0, then the implicit function theorem (see [20,pp.210–211]) provides

ḃ(θ) := ∂

∂θ
b(θ) =

∫
fs(ηs(θ , b(θ)))[1 + b(θ) − log(λs(θ))]λs(θ)−2λ̇s(θ)PS(ds)∫

fs(ηs(θ , b(θ)))λs(θ)−1PS(ds)
.

If (∂/∂b)W1(θ , b)|b=b(θ) = 0, then fs(ηs(θ , b(θ))) = 0 for all s of the support of PS , so that
(∂/∂θ)W1(θ , b)|b=b(θ) = 0 holds as well. Hence we can use ḃ(θ) = 0 in this case.

Setting

η̇s(θ) := ∂

∂θ
ηs(θ , b(θ)) = 1 + b(θ) − log(λs(θ))

λs(θ)2
λ̇s(θ) − ḃ(θ)

λs(θ)

and using b(θ) = log(λs(θ)) − λs(θ)ηs(θ , b(θ)), the derivative of Equation (9) is

UO
P (θ) :=

∫ [
fs(ηs(θ , b(θ)))η̇s(θ)b(θ) + Fs(ηs(θ , b(θ)))

[
1

λs(θ)
− ηs(θ , b(θ))

]
λ̇s(θ)

+λ̇s(θ)Fs(ηs(θ , b(θ)))

]
PS(ds).

Hence we obtain the following lemma.

Lemma 3.3 Under the assumption (10), the exponential regression OTLE θ̃O at P is given as a
solution of 0 = UO

P (θ).

Corollary 3.4 The difference between Equations (4) and (5) for exponential regression
trimmed likelihood functionals is given by

∫
fs(ηs(θ , b(θ)))η̇s(θ)b(θ)PS(ds). (11)

The difference (11) is zero if η̇s(θ) = 0 or fs(ηs(θ , b(θ))) = 0 holds for all stress levels s in the
support of PS . In general, this will not be the case. However, if only one stress level s0 is used,
i.e. we have the one-sample case, and fs0(ηs(θ , b(θ))) 
= 0 is satisfied, then we obtain

ḃ(θ) = 1 + b(θ) − log(λs0(θ))

λs0(θ)
λ̇s0(θ)

and thus η̇s0(θ) = 0 which is also clear from the definition of ηs(θ).
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Example 3.5 (One-sample case) If PS is given by a one-point measure at s0, then the TLF
θ̃ := θ̃M (P) = θ̃O(P) can be given more explicitly. Setting η := ηs0(θ̃ , b(θ̃ )) and using Fs(η) =
ηFs(η) − ∫ η

0 t dPT |S=s(dt), we have Fs0(η) = 1 − α and the TLF at P satisfies

0 =
[

Fs0(η)

(
1

λs0(θ̃)
− η

)
+ Fs0(η)

]
λ̇s0(θ̃)

=
[
(1 − α)

1

λs0(θ̃)
−
∫ η

0
t dPT |S=s0(dt)

]
λ̇s0(θ̃)

⇐⇒ 1

λs0(θ̃)
= 1

1 − α

∫ η

0
t dPT |S=s0(dt).

Since (1/(1 − α))
∫ η

0 t dPT |S=s0(dt) is the functional of the one-sided trimmed mean, we see that
the TLF is given by the one-sided trimmed mean in the one-sample case. This corresponds to a
result of Ahmed et al. [10] who showed that the TLE for the exponential distribution behaves
asymptotically like a one-sided trimmed mean.

3.2. TLFs for (log)normal distribution

Another often used lifetime distribution is the lognormal distribution, where the logarithm
of the lifetime T has a normal distribution. For simplicity, we use here directly the normal
distribution, i.e. we work with Y = log(T). A typical link between the mean of the normal dis-
tribution and the stress level, is a linear link given by ms(θ) = x(s)
θ with e.g. x(s) = 1/s with
θ ∈ (0, ∞) or x(s) = (1, −s)
 with θ = (ϑ0, ϑ1)


 ∈ [0, ∞)2. However, also nonlinear links like
ms(θ) = ϑ0 + ϑ1(1/s)ϑ2 with θ = (ϑ0, ϑ1, ϑ2)


 ∈ [0, ∞)3 or ms(θ) = ϑ0 − ϑ1s + ϑ2s−ϑ3 with
θ = (ϑ0, ϑ1, ϑ2, ϑ3)


 ∈ [0, ∞)4 are used in accelerated lifetime experiments, see e.g. the real
data example in Section 4. The loglikelihood function is then given up to a constant by

l(θ , y, s) = −(y − ms(θ))2. (12)

Definition 3.6 The (log)normal regression OTLF and MTLF are the OTLF and the MTLF
where l(θ , t, s) is given by Equation (12).

Then we have

l(θ , y, s) ≥ b(θ) =: −a(θ)2

⇔ |y − ms(θ)| ≤ a(θ) ⇔ ms(θ) − a(θ) ≤ y ≤ ms(θ) + a(θ).

With partial integration of
∫

yPY |S=s(dy) and l̇(θ , y, s) = 2(y − ms(θ))ṁs(θ) where ṁs(θ) =
(∂/∂θ)ms(θ), we obtain for expression (4)∫ ∫

1I{l(θ , y, s) ≥ b(θ)}l̇(θ , y, s)PY |S=s(dt)PS(ds)

= 2
∫ ∫ ms(θ)+a(θ)

ms(θ)−a(θ)

(y − ms(θ))ṁs(θ)PY |S=s(dy)PS(ds)

= 2
∫ [

a(θ)[Fs(ms(θ) + a(θ)) + Fs(ms(θ) − a(θ))]

− Fs(ms(θ) + a(θ)) + Fs(ms(θ) − a(θ))
]
ṁs(θ)PS(ds)

=: V M
P (θ), (13)



Statistics 513

where Fs is again the cumulative distribution function of PY |S=s and Fs is the antiderivative of
Fs. Thereby Fs can be any distribution function on IR. Hence the following lemma is shown.

Lemma 3.7 The (log)normal regression MTLE θ̃M at P is given as a solution of 0 = V M
P (θ).

For the integral in Equation (5), we get using partial integration of
∫

yPY |S=s(dy) and∫
y2PY |S=s(dy)

∫ ∫
1I{l(θ , t, s) ≥ b(θ)}l(θ , t, s)PY |S=s(dy)PS(ds)

= −
∫ ∫ ms(θ)+a(θ)

ms(θ)−a(θ)

(y − ms(θ))2PY |S=s(dy)PS(ds)

= −
∫ {

a(θ)2[Fs(ms(θ) + a(θ)) − Fs(ms(θ) − a(θ))]

− 2[Hs(ms(θ) + a(θ)) − Hs(ms(θ) − a(θ))]

+ 2ms(θ)[Fs(ms(θ) + a(θ)) − Fs(ms(θ) − a(θ))]
}
PS(ds), (14)

where Hs is the antiderivative of Hs given by Hs(y) = yFs(y). To obtain the derivative of
Equation (14), we have to calculate the derivative of a(θ) which is implicitly given by
W1(θ , a(θ)) = 0, where

W1(θ , a) :=
∫ ∫ ms(θ)+a

ms(θ)−a
PY |S=s(dy)PS(ds) − (1 − α)

=
∫

[Fs(ms(θ) + a) − Fs(ms(θ) − a)]PS(ds) − (1 − α).

We assume here that

Fs is differentiable in a neighbourhood of ms(θ) + a(θ) and ms(θ) − a(θ)

with derivative fs for all s in the support of PS . (15)

Since
∂

∂a
W1(θ , a) =

∫
[fs(ms(θ) + a) + fs(ms(θ) − a)]PS(ds)

and
∂

∂θ
W1(θ , a) =

∫
[fs(ms(θ) + a) − fs(ms(θ) − a)]ṁs(θ)PS(ds)

the implicit function theorem provides

ȧ(θ) := ∂

∂θ
a(θ)

= −
(∫

[fs(ms(θ) + a(θ)) + fs(ms(θ) − a(θ))]PS(ds)

)−1

·
∫

[fs(ms(θ) + a(θ)) − fs(ms(θ) − a(θ))]ṁs(θ)PS(ds)
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if (∂/∂a)W1(θ , a)|a=a(θ) 
= 0. If (∂/∂a)W1(θ , a)|a=a(θ) = 0, then also (∂/∂θ)W1(θ , a)|a=a(θ) = 0
so that we can set ȧ(θ) = 0 in this case. Hence the derivative of Equation (14) is

V O
P (θ) := −

∫
{a(θ)2[fs(ms(θ) + a(θ)) − fs(ms(θ) − a(θ))]ṁs(θ)

+ a(θ)2[fs(ms(θ) + a(θ)) + fs(ms(θ) − a(θ))]ȧ(θ)

− 2a(θ)[Fs(ms(θ) + a(θ)) + Fs(ms(θ) − a(θ))]ṁs(θ)

+ 2[Fs(ms(θ) + a(θ)) − Fs(ms(θ) − a(θ))]ṁs(θ)}PS(ds).

Lemma 3.8 Under the assumption (15), the (log)normal regression OTLE θ̃O at P is given as a
solution of 0 = V O

P (θ).

Corollary 3.9 The difference between Equations (4) and (5) for (log)normal regression
trimmed likelihood functionals is given by∫

{a(θ)2[fs(ms(θ) + a(θ)) − fs(ms(θ) − a(θ))]ṁs(θ)

+ a(θ)2[fs(ms(θ) + a(θ)) + fs(ms(θ) − a(θ))]ȧ(θ)}PS(ds). (16)

The difference (16) is zero if only one stress level s0 is used or if fs is symmetric around
ms(θ) for PS-almost all s. Bednarski et al. [18] considered symmetric distributions for the central
distribution. However, any neighbourhood around a central symmetric distribution contains also
asymmetric distributions.

4. Comparison of the OTLE and the MTLE using a real data set

As an example of the TLE, we consider accelerated lifetime experiments carried out on freerun-
ning pre-stressed steel within the SFB 823 at TU Dortmund University. In these experiments, 25
steel samples were exposed to cyclic loads with stress s from an interval of [300, 1050] N/mm2.
The recorded times t1, . . . , t25 describe the number of applied load cycles until the first tension
wire in the material broke. A parametric approach used within the SFB to model the influence of
s on t is given by the relation

g(θ , s) := ϑ0 − ϑ1s + ϑ2s−ϑ3 (θ = (ϑ0, ϑ1, ϑ2, ϑ3)

 ∈ [0, ∞)4). (17)

It combines a nonlinear influence of stress levels with a linear one and models the expectation
of the random variable T given S = s on the log scale, i.e. log(Eθ (T |S = s)) = g(θ , s).

At first we assume T |S = s ∼ Exp(λs(θ)). As Equation (17) is used to model the expectation
of T given S = s on the log scale, it must hold that

log(E(T |S = s)) = log

(
1

λs(θ)

)
= g(θ , s) = ϑ0 − ϑ1s + ϑ2s−ϑ3 .

Therefore, the link function λs(θ) is given by

λs(θ) = exp(−ϑ0 + ϑ1s − ϑ2s−ϑ3) = exp(−g(θ , s)).

When we assume a lognormal distribution for T given S = s, we have log(T)|S = s ∼
N (ms(θ), σ 2). Hence, the link function is directly given by ms(θ) = g(θ , s).
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The resulting loglikelihood functions can be maximized numerically for both distributions
for the N = 25 observations. For the computation of the OTLE, the Fast TLE algorithm from
Neykov and Müller [21] was used. In Figure 2, we compare the results for the untrimmed
likelihood estimator to the OTLE with h = 5 for both distributions. In the case of the exponen-
tial distribution, the shape of the fitted curve changes noticeably. When h = 5 observations are
trimmed, the fitted curve describes the remaining observations very well, whereas the untrimmed
fit is a straight line which does not fit well to the data at all. For the lognormal distribution, the
effect of trimming is not that large but the fit is also better. Moreover, using the trimmed esti-
mators, the fitted curves do not differ much if the likelihood is based on the exponential or the
lognormal distribution.

To determine the MTLE, the maximum likelihood estimator must be calculated for
(

25
5

)
sub-

sets which is not practicable. Therefore we checked only for the subsets used in the Fast TLE
algorithm whether the subsets reproduce the ordering of the loglikelihood function. It turned
out for the exponential distribution that there is no other subset satisfying this property so
that no other MTLE besides the OTLE were found. For the lognormal distribution, three sub-
sets which preserve the ordering of the likelihood were found via the Fast TLE algorithm.
These solutions are given in Table 1. The corresponding index sets of the trimmed observa-
tions are {4, 5, 13, 16, 18} for Solution 1, which coincides with the index set of the solution for
the exponential distribution, {4, 5, 13, 16, 19} for Solution 2, and {4, 5, 8, 13, 16} for Solution 3.

Since the three different MTLE are quite different from each other, the corresponding esti-
mated regression functions are depicted in Figure 3. All three functions are plausible solutions

Figure 2. Estimated regression function assuming exponential or lognormal distribution with 5 trimmed observations
and without trimming.

Table 1. Three MTLE for the (log)normal distribution with h = 5 trimmed observations. The solution with the highest
value of the loglikelihood is also the OTLE.

Solution 1 Solution 2 Solution 3

ϑ̂0 3.568 6.343 5.003
ϑ̂1 0.001 0.002 0.001
ϑ̂2 59.644 1.958×1020 44883.810
ϑ̂3 0.516 7.948 1.748
Loglikelihood 0.29 3.06 1.63
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Figure 3. Estimated regression function using the three different MTLE for the (log)normal distribution.

for the given data set although the OTLE which coincides with Solution 2 leads to the highest
value of the loglikelihood.

For h = 1, all
(

25
1

)
subsets can be checked. In this case, there is no other MTLE besides the

OTLE for the exponential distribution as well as for the lognormal distribution.

5. The influence function of TLFs

Although we have seen that the MTLF of Definition 2.4 does not coincide in general with the
OTLF of Definition 2.3, we will derive the influence function for the MTLF since its form is
simpler. That the treatment of the MTLF instead of the OTLF makes sense is due to the fact that
any OTLE is also an MTLE. Although Example 2.5 provides a simple example where the MTLE
is not unique, the application in Section 4 also indicates that in many more realistic situations the
MTLE is unique. Moreover, if the MTLE is not unique, one can restrict oneself to the solution
which coincides with the OTLE. Hence it makes sense to derive the influence function only
for the MTLF although the estimator which is used is the OTLE. This is important since only
the OTLE can be calculated efficiently. While for very small sample sizes, the OTLEs and the
MTLEs can be obtained by calculating the maximum likelihood estimator for all subsamples
with N − h elements, special methods for larger sample sizes have been developed only for the
OTLE, see, e.g. [21] or [22].

Since the stress levels are given by the experimenter, only contamination with respect to PT |S

is considered. Set Pε = PT |S
ε ⊗ PS with

PT |S=s
ε = (1 − ε)PT |S=s + εQT |S=s

and corresponding distribution function

Fs,ε = (1 − ε)Fs + εGs.

We will derive

lim
ε↓0

θ̃M (Pε) − θ̃M (P)

ε
= ∂

∂ε
θ̃M (Pε)

∣∣∣∣
ε=0

,
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which provides for the special case of QT |S=s∗ = δt∗ and QT |S=s = PT |S=s for s 
= s∗ the influence
function at P and z∗ = (t∗, s∗) of Definition 2.1. Thereby, θ̃M (Pε) is implicitly given by

W2(ε, θ̃M (Pε)) = 0,

where

W2(ε, θ) =
∫ ∫

1I{l(θ , t, s) ≥ b(ε, θ)}l̇(θ , t, s)PT |S=s
ε (dt)PS(ds) (18)

and b(ε, θ) is implicitly given by

W1(ε, θ , b(ε, θ)) = 0

with

W1(ε, θ , b) =
∫ ∫

1I{l(θ , t, s) ≥ b}PT |S=s
ε (dt)PS(ds) − (1 − α). (19)

5.1. The influence function of the exponential regression MTLF

Here, Equation (18) becomes according to Equation (8)

W2(ε, θ) =
∫ [

Fs,ε(ηs(θ , b(ε, θ)))

(
1

λs(θ)
− ηs(θ , b(ε, θ))

)

+ Fs,ε(ηs(θ , b(ε, θ)))

]
λ̇s(θ)PS(ds),

and W1 of Equation (19) is given by, see Section 3.1,

W1(ε, θ , b) =
∫

Fs,ε(ηs(θ , b))PS(ds) − (1 − α).

As in Section 3.1, we have

∂

∂θ
W1(ε, θ , b) =

∫
fs,ε(ηs(θ , b))

1 + b − log(λs(θ))

λs(θ)2
λ̇s(θ)PS(ds)

and
∂

∂b
W1(ε, θ , b) = −

∫
fs,ε(ηs(θ , b))

1

λs(θ)
PS(ds).

Additionally, we use here

∂

∂ε
W1(ε, θ , b)

∣∣∣∣
ε=0

=
∫

(Gs − Fs)(ηs(θ , b))PS(ds).

Setting θ0 = θ̃M (P0) = θ̃M (P), b0 = b(0, θ0), we make the following assumption:

Fs and Gs are differentiable in a neighbourhood of ηs(θ0, b0) for all s in the support of PS .
(20)

Clearly this is satisfied for Fs since the central distribution Ps should be a continuous distribution.
However, Gs could be also the distribution function of a one-point measure so that the differen-
tiability is not everywhere satisfied. We consider here only the cases where the differentiability
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is satisfied though. Then the implicit function theorem provides

ḃθ (0) := ∂

∂θ
b(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

=
∫

fs(ηs(θ0, b0))[1 + b0 − log(λs(θ0))]λs(θ0)
−2λ̇s(θ0)PS(ds)∫

fs(ηs(θ0, b0))λs(θ0)−1PS(ds)

and

ḃε(0) := ∂

∂ε
b(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

=
∫
(Gs − Fs)(ηs(θ0, b0))PS(ds)∫
fs(ηs(θ0, b0))λs(θ0)−1PS(ds)

.

Using this notation, we obtain for the derivatives of ηs(θ , b(ε, θ)) = (log(λs(θ)) − b(ε, θ))/λs(θ)

η̇s,θ (0) := ∂

∂θ
ηs(θ , b(ε, θ))

∣∣∣∣
(ε,θ)=(0,θ0)

= 1 + b0 − log(λs(θ0))

λs(θ0)2
λ̇s(θ0) − ḃθ (0)

λs(θ0)

and

η̇s,ε(0) := ∂

∂ε
ηs(θ , b(ε, θ))

∣∣∣∣
(ε,θ)=(0,θ0)

= − ḃε(0)

λs(θ0)
.

Let here Gs be the antiderivative of Gs so that Fs,ε = (1 − ε)Fs + εGs = Fs + ε(Gs − Fs) and
set λ̈s(θ) = (∂/∂θ)λ̇s(θ)
. Now, we can calculate the derivatives of W2(ε, θ)
:

∂

∂θ
W2(ε, θ)


∣∣∣∣
(ε,θ)=(0,θ0)

=
∫ [

fs(ηs(θ0, b0))η̇s,θ (0)

(
1

λs(θ0)
− ηs(θ0, b0)

)
− Fs(ηs(θ0, b0))

λ̇s(θ0)

λs(θ0)2

]
λ̇s(θ0)


PS(ds)

+
∫ [

Fs(ηs(θ0, b0))

(
1

λs(θ0)
− ηs(θ0, b0)

)
+ Fs(ηs(θ0, b0))

]
λ̈s(θ0)P

S(ds)

=: A(P)

and

∂

∂ε
W2(ε, θ)


∣∣∣∣
(ε,θ)=(0,θ0)

= −B(P)

∫
(Gs − Fs)(ηs(θ0, b0))P

S(ds)

+
∫ [

(Gs − Fs)(ηs(θ0, b0))as(P) +
∫ ηs(θ0,b0)

0
(Gs − Fs)(t) dt

]
λ̇s(θ0)


PS(ds),

where

as(P) :=
(

1

λs(θ0)
− ηs(θ0, b0)

)
and

B(P) :=
∫

fs(ηs(θ0, b0))λs(θ0)
−1∫

fs̃(ηs̃(θ0, b0))λs̃(θ0)−1PS(ds̃)
as(P)λ̇s(θ0)


PS(ds).

Hence with the implicit function theorem, we obtain the following theorem.
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Theorem 5.1 Under the assumption (20), the exponential regression MTLF θ̃M of Definition 7
satisfies

lim
ε↓0

θ̃M (Pε) − θ̃M (P)

ε
= −A(P)−1

[
−B(P)

∫
(Gs − Fs)(ηs(θ0, b0))P

S(ds)

+
∫ [

(Gs − Fs)(ηs(θ0, b0))as(P) +
∫ ηs(θ0,b0)

0
(Gs − Fs)(t) dt

]
λ̇s(θ0)


PS(ds)

]
.

Using Gs∗(t) = 1I[t∗,∞)(t) if QT |S=s∗ = δt∗ and Gs(t) = Fs(t) for s 
= s∗, assumption (20) is
satisfied if t∗ 
= ηs∗(θ0, b0). Hence we get at once the following influence function.

Corollary 5.2 If PS has finite support and t∗ 
= η∗ := ηs∗(θ0, b0), then the influence function
of the exponential regression MTLF θ̃M at z∗ = (t∗, s∗) ∈ [0, ∞)2 is given by

IF(θ̃M , P, z∗) = −A(P)−1

[{
(η∗ − t∗)1I[0,η∗](t∗) −

∫ η∗

0
Fs∗(t) dt

}
λ̇s∗(θ0)


PS({s∗})

+ (1I[0,η∗](t∗) − Fs∗(η∗))(as∗(P)λ̇s∗(θ0)

 − B(P))PS({s∗})

]
.

Obviously, this influence function is a bounded function in t∗ so that outliers t∗ at s∗ have a
bounded influence on the TLE.

Example 5.3 (One-sample case) If PS is given by a one-point measure at s0, then the results of
Theorem 5.1 and Corollary 5.2 concern also the original trimmed likelihood function as shown
in Section 3.1. In this case, we have as in Section 3.1 η̇s,θ (0) = 0. Moreover, θ should be one-
dimensional and reasonable choices for λs(θ) are λs(θ) = θs or λs(θ) = θ . Then it holds λ̈s(θ) =
0 so that A(P) becomes

A(P) = −Fs0(ηs0(θ0, b0))
λ̇s0(θ0)

2

λs0(θ0)2
= −(1 − α)θ−2

0 .

With B(P) = as0(P)λ̇s0(θ0) and setting η∗ = ηs0(θ0, b0), θ̃ = θ0 = θ̃M (P) = θ̃O(P) we obtain

lim
ε↓0

θ̃M (Pε) − θ̃M (P)

ε
= θ̃2

1 − α

∫ η∗

0
(Gs0 − Fs0)(t) dtλ̇s0(θ̃).

Using partial integration of
∫ η∗

0 Fs0(t) dt, the influence function is given by

IF(θ̃M , P, z∗) = IF(θ̃O, P, z∗)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ̃2

(
η∗α − t∗

1 − α
+ 1

λs0(θ̃)

)
λ̇s0(θ̃) if t∗ < η∗,

θ̃2

(
−η∗ + 1

λs0(θ̃)

)
λ̇s0(θ̃) if t∗ > η∗,

(21)

since according to Example 3.5 Fs0(η∗) = 1 − α and

1

λs0(θ̃)
= 1

1 − α

∫ η∗

0
t dPT |S=s0(dt). (22)
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Note that the influence function of the one-sided trimmed mean μ̃ = μ̃(P) = (1/(1 − α))∫ η∗
0 t dP(dt) is given by, see, e.g.,[14,p.55]

IF(μ̃, P, t∗) =
{ t∗ − η∗ α

1 − α
− μ̃ if t∗ < η∗,

η∗ − μ̃ if t∗ > η∗.

This coincides with Equation (21) using Equation (22) and λs(μ) = 1/μ. Note that in contrast
to the result of Staudte and Sheather,[14] it holds IF(μ̃, P, t∗) = t∗/(1 − α) − μ̃ for t∗ = η∗ so
that IF(μ̃, P, t∗) is not continuous in t∗, see [23,pp.43–45]. However, this cannot be shown with
the implicit function theorem since differentiability at t∗ is not given for G = 1I[t∗,∞). This can
only be obtained by studying the influence function of quantiles.

5.2. The influence function of the (log)normal regression MTLF

Here, Equation (18) becomes according to Equation (13)

W2(ε, θ) = 2
∫

[a(ε, θ)[Fs,ε(ms(θ) + a(ε, θ)) + Fs,ε(ms(θ) − a(ε, θ))]

− Fs,ε(ms(θ) + a(ε, θ)) + Fs,ε(ms(θ) − a(ε, θ))]ṁs(θ)PS(ds)

and W1 of Equation (19) is given by, see Section 3.2,

W1(ε, θ , a) =
∫

[Fs,ε(ms(θ) + a) − Fs,ε(ms(θ) − a)]PS(ds) − (1 − α).

As in Section 3.2, we have

∂

∂θ
W1(ε, θ , a) =

∫
[fs,ε(ms(θ) + a) − fs,ε(ms(θ) − a)]ṁs(θ)PS(ds)

and
∂

∂a
W1(ε, θ , a) =

∫
[fs,ε(ms(θ) + a) + fs,ε(ms(θ) − a)]PS(ds).

Additionally, we use here

∂

∂ε
W1(ε, θ , a)

∣∣∣∣
ε=0

=
∫

[(Gs − Fs)(ms(θ) + a) − (Gs − Fs)(ms(θ) − a)]PS(ds).

Setting θ0 = θ̃M (P0) = θ̃M (P), a0 = a(0, θ0), we make the following assumption:

Fs and Gs are differentiable in a neighbourhood of ms(θ0) + a0 and ms(θ0) − a0 for all s

in the support of PS . (23)

Under this assumption, the implicit function theorem provides

ȧθ (0) := ∂

∂θ
a(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

= −
(∫

[fs(ms(θ0) + a0) + fs(ms(θ0) − a0)]P
S(ds)

)−1

·
∫

[fs(ms(θ0) + a0) − fs(ms(θ0) − a0)]ṁs(θ0)P
S(ds)
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and

ȧε(0) := ∂

∂ε
a(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

= −
(∫

[fs(ms(θ0) + a0) + fs(ms(θ0) − a0)]P
S(ds)

)−1

∫
[(Gs − Fs)(ms(θ0) + a0) − (Gs − Fs)(ms(θ0) − a0)]P

S(ds).

Let here Gs be the antiderivative of Gs so that Fs,ε = (1 − ε)Fs + εGs = Fs + ε(Gs − Fs) and
set m̈s(θ) = (∂/∂θ)ṁs(θ)
. Now, we can calculate the derivatives of W2(ε, θ)
:

∂

∂θ
W2(ε, θ)


∣∣∣∣
(ε,θ)=(0,θ0)

= 2
∫ {

a0
[
fs(ms(θ0) + a0)(ṁs(θ0) + ȧθ (0))

+ fs(ms(θ0) − a0)(ṁs(θ0) − ȧθ (0))
]

− [
Fs(ms(θ0) + a0) − Fs(ms(θ0) − a0)

]
ṁs(θ0)

}
ṁs(θ0)


PS(ds)

+ 2
∫ {

a0
[
Fs(ms(θ0) + a0) + Fs(ms(θ0) − a0))

]− Fs(ms(θ0) + a0)

+ Fs(ms(θ0) − a0)
}

m̈s(θ0)P
S(ds)

=: C(P)

and

∂

∂ε
W2(ε, θ)


∣∣∣∣
(ε,θ)=(0,θ0)

= D(P)

+ 2a0

∫ [
(Gs − Fs)(ms(θ0) + a0)

+ (Gs − Fs)(ms(θ0) − a0)
]
ṁs(θ0)


PS(ds)

− 2
∫ ∫ ms(θ0)+a0

ms(θ0)−a0

(Gs − Fs)(y) dy ṁs(θ0)

PS(ds)

where

D(P) := 2
∫

{a0ȧε(0)[fs(ms(θ0) + a0) − fs(ms(θ0) − a0)]}ṁs(θ)
PS(ds).

As before, the implicit function theorem provides the following theorem.

Theorem 5.4 Under the assumption (23), the (log)normal regression MTLF θ̃M of
Definition 3.6 satisfies

lim
ε↓0

θ̃M (Pε) − θ̃M (P)

ε
= −C(P)−1

{
D(P)

+ 2a0

∫ [
(Gs − Fs)(ms(θ0) + a0)

+ (Gs − Fs)(ms(θ0) − a0)
]
ṁs(θ0)P

S(ds)

−2
∫ ∫ ms(θ0)+a0

ms(θ0)−a0

(Gs − Fs)(y) dy ṁs(θ0)

PS(ds)

}
.
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Using here Gs∗(y) = 1I[y∗,∞)(y) if QY |S=s∗ = δy∗ and Gs(y) = Fs(y) for s 
= s∗, assumption (23)
is satisfied if y∗ 
= ms∗(θ0) + a0 and y∗ 
= ms∗(θ0) − a0. Hence we get at once the following
influence function.

Corollary 5.5 If PS has finite support and ms∗(θ0) − a0 
= y∗ 
= ms∗(θ0) + a0, then the
influence function of the (log)normal regression MTLF θ̃M at z∗ = (y∗, s∗) is given by

IF(θ̃M , P, z∗) = −C(P)−1

{
D(P) + 2

(
(y∗ − ms∗(θ0))1I(ms∗ (θ0)−a0,ms∗ (θ0)+a0](y∗)

− a0[Fs∗(ms∗(θ0) + a0) + Fs∗(ms∗(θ0) − a0)]

+
∫ ms∗ (θ0)+a0

ms∗ (θ0)−a0

Fs∗(y) dy

)
ṁs∗(θ0)


PS({s∗})
}

.

Obviously, this influence function is again a bounded function in y∗.

Example 5.6 (Symmetric case) If fs is symmetric about ms(θ0) for all s of the support of PS , then
the results of Theorem 5.4 and Corollary 5.5 concern also the OTLF θ̃O as shown in Section 3.2.
In this case, fs(ms(θ0) + a) = fs(ms(θ0) − a) and Fs(ms(θ0) − a) = 1 − Fs(ms(θ0) + a) for any
a > 0 so that with partial integration

Fs(ms(θ0) + a) − Fs(ms(θ0) − a) = aFs(ms(θ0) + a) + a(1 − Fs(ms(θ0) + a)) = a

implying

a[Fs(ms(θ0) + a) + Fs(ms(θ0) − a)] − Fs(ms(θ0) + a) + Fs(ms(θ0) − a) = 0 (24)

for any a > 0. The equality (24) provides at once W2(0, θ0) = 0 for any a0 := a(0, θ0) given by

W1(0, θ0, a0) = 2
∫

Fs(ms(θ0) + a0)P
S(ds) − 2 + α = 0. (25)

Hence we obtain D(P) = 0, ȧθ (0) = 0, and

C(P) = 2
∫

{a02fs(ms(θ0) + a0) − [2Fs(ms(θ0) + a0) − 1]}ṁs(θ0)ṁs(θ0)

PS(ds),

so that the influence function at y∗ with ms∗(θ0) − a0 
= y∗ 
= ms∗(θ0) + a0 is given by

IF(θ̃M , P, z∗) = IF(θ̃O, P, z∗)

= −C(P)−1{2(y∗ − ms∗(θ0))1I(ms∗ (θ0)−a0,ms∗ (θ0)+a0](y∗)ṁs∗(θ0)P
S({s∗})}.

If we additionally assume fs(y) = f∗(y − ms(θ0)) for all s of the support of PS , where f∗ is
symmetric about 0, then equality (25) is equivalent to

F∗(a0) = 1 − α

2
,

so that a0 = F−1
∗ (1 − α/2) is the 1 − α/2-quantile of the distribution given by F∗. In this case

we get

C(P) = 2{2a0f∗(a0) − (1 − α)}
∫

ṁs(θ0)ṁs(θ0)

PS(ds)



Statistics 523

so that the influence function is given by

IF(θ̃M , P, z∗) = IF(θ̃O, P, z∗)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫
ṁs(θ0)ṁs(θ0)


PS(ds)

)−1

·ṁs∗(θ0)
y∗−ms∗ (θ0)

1−α−2a0f∗(a0)
PS({s∗})

if y∗ ∈ (ms∗(θ0) − a0, ms∗(θ0) + a0),

0 if y∗ /∈ [ms∗(θ0) − a0, ms∗(θ0) + a0].

For the special case of ms(θ) = x(s)
θ , this influence function appears in the expansion which
Bednarski et al.,[18,p.212] derived for the least trimmed squares estimator for linear regression.
The matrix

∫
IF(θ̃M , P, z)IF(θ̃M , P, z)
PY |S ⊗ PS(dz) is also the asymptotic covariance matrix of

the least trimmed squares estimator which Víšek [24] derived for linear regression and Čížek
[25] for nonlinear regression.

6. Discussion

Since the influence function is defined for the functional defining an estimator, we considered
at first two versions of the functional of a TLE, one, called the OTLF, which corresponds to
the OTLE, and a modified version, called MTLF, used by Bednarski and Clarke [16,17] and
by Bednarski et al.[18] We showed that these two versions do not coincide in general and
indicated situations for coincidence. Since we used the implicit function theorem, we could
not show the coincidence at any empirical distribution. For empirical distributions, the OTLF
is always an MTLF but a simple example demonstrated that the MTLF may not be unique
while the OTLF is unique. However, the application to a real data set indicates that for real-
istic situations the MTLF for finite samples is often unique. Therefore, we derived the influence
function only for the modified version using again the implicit function theorem. However,
the influence function could be derived similarly for the original version. On the other hand,
the results will be more complicated since then additionally derivatives of the densities of the
central distribution are necessary. The approach was only demonstrated for trimmed likelihood
functionals based on the exponential and the (log)normal distribution in regression models with
linear and nonlinear link function. However, it can similarly be used also for other distribu-
tions. In particular a unified derivation can be used for some parts of the derivation. We expect
that censoring, an important issue in lifetime experiments, can be treated with this approach
as well. Another extension of the presented work will be to derive tests, confidence intervals
and prediction intervals using the asymptotic distribution. In this context, it would be impor-
tant to know whether the trimmed estimators are asymptotically linear in the derived influence
functions. For that it is useful to note that the presented results show Gâteaux differentia-
bility of the MTLFs. A question is whether stronger differentiability notions like Hadamard
differentiability can be shown. A problem in this context is that the exponential regression
MTLF is not Fisher consistent at the exponential distribution so that a bias correction would be
necessary.
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