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Abstract In this paper and after introducing a new model along with its properties, we estimate the unknown parameter
of the new model using the maximum likelihood method, Cramér-Von-Mises method, bootstrapping method, least square
method and weighted least square method. We assess the performance of all estimation method employing simulations.
All methods perform well but bootstrapping method is the best in modeling relief times whereas the maximum likelihood
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1. Introduction

Let the random variable (rv) X follows a Exponentiated Exponential (EE) distribution (see Gupta et al. [5]) with
probability density function (pdf) and cumulative distribution function (cdf), given below

π
(a,b)
EE (x) = ab e−bx

(
1− e−bx

)a−1
, (1)

and
Π

(a,b)
EE (x) =

(
1− e−bx

)a
, (2)

respectively. In this work we introduce the the first extension of (1) and (2) using the Burr XII-G (BrXII-G) family,
introduced by Cordeiro et al. [4]. The cdf of the BrXII-G family of distributions is defined by

F
(α,β,ψ)
BrXII-G (x) = 1−

{
1 +

[
Π(ψ) (x)

1−Π(ψ) (x)

]α}−β

. (3)

The pdf corresponding to (3) is given by

f
(α,β,ψ)
BrXII-G (x) = αβπ(ψ) (x)

[
Π(ψ) (x)

]α−1[
1−Π(ψ) (x)

]α+1

{
1 +

[
Π(ψ) (x)

1−Π(ψ) (x)

]α}−β−1

, (4)
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where π(ψ) (x) is the baseline density. The hazard rate function (hrf) of X is

τ
(α,β,ψ)
BrXII-G (x) = αβπ(ψ) (x)

[
Π(ψ) (x)

]α−1[
1−Π(ψ) (x)

]α+1

{
1 +

[
Π(ψ) (x)

1−Π(ψ) (x)

]α}−1

.

Modeling different characteristics of lifetime data sets are important issue and yet researchers have introduced
sophisticated lifetime models to remove the drawbacks of existing models such as new Odd Log-Logistic Half-
Logistic by Alizadeh et al. [1], Zografos-Balakrishnan odd log-logistic generalized half-normal distribution by
Mozafari et al. [13] and Altun et al. [2], Topp-Leone generated Burr XII by Yousof et al. [16] and odd log-logistic
Marshal-Olkin generalized half-normal by Korkmaz et al. [10] and among others. Now, we introduce a new lifetime
model to create a new opportunity in modeling the different characteristics of lifetime data sets. By inserting (2)
into (3) we obtain the cdf of the BrXIIEE as

F
(α,β,a,b)
BrXIIEE (x) =

1−

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−β , (5)

the pdf corresponding to (3) is given by

f
(α,β,a,b)
BrXIIEE (x) = αβab e−bx

(
1− e−bx

)aα−1[
1− (1− e−bx)

a]α+1

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−β−1

(6)

The hazard rate function hrf of (6) reduces to

τ
(α,β,a,b)
BrXIIEE (x) = αβab e−bx

(
1− e−bx

)aα−1[
1− (1− e−bx)

a]α+1

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−1

.

For more details about the BrXII-G see Cordeiro et al. [4]. For more detail about properties of EE model see
Gupta and Kundu [6], Gupta and Kundu [7] and Nadarajah [14]. Following Cordeiro et al. [4], we provide a
transformation to generate the random variables from the BrXIIEE distribution. Let U be a U (0, 1) random variable

and W =
[
−1 + (1− U)

− 1
β

] 1
α

. Then, we have

X = − ln

[
−
(

W

1 +W

) 1
a

+ 1

]
b−1

has cdf (5). Again following Cordeiro et al. [4], the physical interpretation of the BrXIIEE distribution is given.
Let Y be rv following the EE density. The odds ratio that an individual having the rv Y will die (failure) at time x
is

ζ (X) =

(
1− e−bx

)a
1− (1− e−bx)

a

Note that the function ζ (X) is monotonic and non-decreasing. Then, if the researcher wants to calculate the
randomness of the odds by the rv T following the BrXIIEE density , given in (5), we can write

Pr

[ (
1− e−bx

)a
1− (1− e−bx)

a ≥ T

]
= 1−

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−β

= F
(α,β,a,b)
BrXIIEE (x)

which is identical to (2). Consequently, if X has the BrXIIEE model, then T = ζ (X) has the BrXIIEE cdf given
by (5). The cdf (5) of X can be expressed as

F
(α,β,a,b)
BrXIIEE (x) = 1−

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−β

︸ ︷︷ ︸
A

. (7)
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First, we consider two power series

(z + 1)
−θ

=

∞∑
k=0

2−θ−k
(
−θ

k

)
(z − 1)

k (8)

and

(−z + 1)
−θ

=

∞∑
j=0

Γ(θ + j)

j! Γ(θ)
zj |

[
( θ>0)
(|z|<1)

]
, (9)

Applying (8) for A in (7) we obtain

F
(α,β,a,b)
BrXIIEE (x) = 1−

∞∑
k=0

2−β−k
(
−β

k

) {[ (
1− e−bx

)a
1− (1− e−bx)

a

]α
− 1

}k

.

Second, using the binomial expansion, the last equation can be expressed as

F
(α,β,a,b)
BrXIIEE (x) = 1−

∞∑
k=0

k∑
i=0

(−1)
i (k
i

)(−β
k

)
2β+k

[
(1− e−bx)

a]−(k−i)α

[
1−

(
1− e−bx

)a]−(k−i)α

︸ ︷︷ ︸
B

.

Third, applying (9) for B in the last equation gives

F
(α,β,a,b)
BrXIIEE (x) = 1−

∞∑
j,k=0

k∑
i=0

ci,j,k Π
{a[(k−i)α+j],b}
EE (x), (10)

where

ci,j,k =
(−1)

i
Γ ([k − i]α+ j)

2β+k j! Γ ([k − i]α)

(
k

i

)(
−β

k

)
.

By differentiating (10), we obtain

f
(α,β,a,b)
BrXIIEE (x) =

∞∑
j,k=0

j+k≥1

k∑
i=0

ζi,j,k π
{a[(k−i)α+j],b}
EE (x), (11)

where ζi,j,k = −ci,j,k. Equation (11) is the main result of this section. It reveals that the BrXIIEE density is a linear
combination of EE density. So, some of its mathematical properties can be easily determined from those of the EE
density. Figure 1 displays the some possible shapes of BrXIEE distribution. As seen from Figure 1, the proposed
distribution is good choice for modeling the right skewed and symmetric data sets. Moreover, BrXIIEE distribution
provides very flexible treatment for lifetime modeling since its hrf contains constant, increasing, decreasing, upside-
down and bathtub shapes.

The rest of the paper is outlined as follows. Some properties of the new model are derived in Section 2. Five
methods of estimation are described in Section 3. Simulation studies are carried out to compare the performance
of the five methods for the proposed model in Section 4. A new regression model for censored data is presented in
Section 5. Empirical results for univariate data modeling and censored data modeling with covariates are addressed
in Section 6. Section 7 offers some concluding remarks.
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Figure 1. The pdf and hrf plots of BrXIIEE distribution for some selected parameter values.

2. Mathematical properties

2.1. Moments and generating function

The r(th) ordinary moment of X say µ′
r = E(Xr), is determined from (11) as

µ′
r =

Γ (1 + r)

br

∞∑
j,k,w=0

j+k≥1

k∑
i=0

C
{a[(k−i)α+j],r}
i,j,k,w |(r>−1),

where
C

{a[(k−i)α+j],r}
i,j,k,w = a [(k − i)α+ j] ζi,j,kC

{a[(k−i)α+j],r}
w ,

C{a,r}
w =

τ (a,w)

(1 + w)
1+r

and
τ (a,w) = (−1)

w Γ (a)

Γ (a− w)

The r(th) incomplete moment of X , say φr(t), can be determined from (11) as

φr(t) =

∫ t

−∞
xr f(x)dx =

γ (1 + r, tb)

br

∞∑
j,k,w=0

j+k≥1

k∑
i=0

C
{a[(k−i)α+j],r}
i,j,k,w |(r>−1). (12)

where

γ (δ, q) =

∫ q

0

[exp (−t)] tδ−1dt =

∞∑
m=0

(−1)
m

m! (δ +m)
qδ+m,

The moment generating function M(t) = E(et X) of X follows from (11) as

M(t) =
Γ (1 + r)

br

∞∑
j,k,w,r=0

j+k≥1

k∑
i=0

C
{a[(k−i)α+j],r}
i,j,k,w,r |(r>−1),
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where

C
{a[(k−i)α+j],r}
i,j,k,w,r = a [(k − i)α+ j]

(
tt/r!

)
ζi,j,kC

{a[(k−i)α+j],r}
w

2.2. Probability weighted moments

The probability weighted moments (PWMs) are used to estimate unknown model parameters. This approach
produces better results than the standard method of moments estimation. The (s, r)(th) PWM of X denoted by
ρs,r is formally defined by

ρs,r = E
{
Xs

[
F

(α,β,a,b)
BrXIIEE (x)

]r}
=

∫ ∞

−∞
xs

[
F

(α,β,a,b)
BrXIIEE (x)

]r
f
(α,β,a,b)
BrXIIEE (x) dx.

Using (5), we have

F (x)r =

1−

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−βr

.

Using the Taylor series for zλ, we have

zλ =

∞∑
h=0

(λ)h
h!

(z − 1)
h
=

∞∑
i=0

fi(λ) z
i, (13)

where (λ)h = λ(λ− 1) . . . (λ− h+ 1) and

fi(λ) =

∞∑
h=i

(−1)h−i (λ)h
h!

(
h

i

)
.

Firstly, we apply the Taylor series of zλ in
[
F

(α,β,a,b)
BrXIIEE (x)

]r
, we obtain

[
F

(α,β,a,b)
BrXIIEE (x)

]r
=

∞∑
i=0

(−1)
i
fi (r)

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−iβ

.

Secondly, using (6) and the above equation, we have

f
(α,β,a,b)
BrXIIEE (x)

[
F

(α,β,a,b)
BrXIIEE (x)

]r
= αβab e−bx

(
1− e−bx

)a−1

[(
1− e−bx

)a]α−1[
1− (1− e−bx)

a]α+1

×
∞∑
i=0

(−1)
i
fi (r)

{
1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}−(i+1)β−1

︸ ︷︷ ︸
C

.

Applying (8) for C in the last equation, we obtain

Stat., Optim. Inf. Comput. Vol. 8, June 2020



M. IBRAHIM, E. ALTUN AND H.M. YOUSOF 615

f
(α,β,a,b)
BrXIIEE (x)

[
F

(α,β,a,b)
BrXIIEE (x)

]r
= αβ

∞∑
i,k=0

(−1)
i
2−(i+1)β−k−1fi (r)

×ab e−bx
(
1− e−bx

)a−1

[(
1− e−bx

)a]α−1[
1− (1− e−bx)

a]α+1

×

{
−1 +

[ (
1− e−bx

)a
1− (1− e−bx)

a

]α}k

︸ ︷︷ ︸
D

(
− (i+ 1)β − 1

k

)
.

Thirdly, using the binomial expansion for D, the above equation can be rewritten as

f
(α,β,a,b)
BrXIIEE (x)

[
F

(α,β,a,b)
BrXIIEE (x)

]r
= αβab e−bx

(
1− e−bx

)a−1
∞∑

i,k=0

k∑
j=0

(−1)
i+j

(
k

j

)(
− [1 + (i+ 1)β]

k

)
×fi (r)

[(
1− e−bx

)a](k−j+1)α−1

2−(i+1)β−k−1

×
[
1−

(
1− e−bx

)a]−[(k−j+1)α+1]

︸ ︷︷ ︸
E

.

Applying (9) for E in the last equation gives

f
(α,β,a,b)
BrXIIEE (x)

[
F

(α,β,a,b)
BrXIIEE (x)

]r
=

∞∑
i,k,m=0

k∑
j=0

αβ (−1)
i+j

Γ ([k − j + 1]α+m+ 1)

2(i+1)β+k+1 m! Γ ([k − j + 1]α+ 1)

× fi (r)

[(k − j + 1)α+m]

(
k

j

)(
−(i+ 1)β − 1

k

)
×
(
a [(k − j + 1)α+m] b e−bx

(
1− e−bx

)a[(k−j+1)α+m]−1
)

︸ ︷︷ ︸
π
{a[(k−j+1)α+m],b}
EE (x)

and then

f
(α,β,a,b)
BrXIIEE (x)

[
F

(α,β,a,b)
BrXIIEE (x)

]r
=

∞∑
k,m=0

k∑
j=0

w
(r)
j,k,mπ

{a[(k−j+1)α+m],b}
EE (x)|(j≤k),

where w
(r)
j,k,m = αβ vj,k,m fi(r), fi(r) is defined in (13) and

vj,k,m =

∞∑
i=0

(−1)i+j ([k − j + 1]α+ 1)
(m) (k

j

) (−(i+1)β−1
k

)
2(i+1)β+k+1m! [(k − j + 1)α+m]

,

where
a(m) = Γ(a+m)/Γ(a).

So, the (s, r)(th) PWM of X is obtained as

ρs,r =
Γ (1 + s)

bs

∞∑
k,m,w=0

k∑
j=0

a [(k − j + 1)α+m]w
(r)
j,k,mC{a[(k−j+1)α+m],s}

w |
[
(j≤k)
(s>−1)

]
.
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2.3. Residual life and reversed residual life functions

The n(th) moment of the residual life of X is given by

mn(t) =

∫∞
t

(x− t)ndF
(α,β,a,b)
BrXIIEE (x)

R
(α,β,a,b)
BrXIIEE (t)

,

where R
(α,β,a,b)
BrXIIEE (t) = 1− F

(α,β,a,b)
BrXIIEE (t). Therefore,

mn(t) =
Γ (1 + n, tb)

R
(α,β,a,b)
BrXIIEE (t)

∞∑
j,k,w=0

j+k≥1

k∑
i=0

a [(k − i)α+ j] b⋆i,j,kC
(a[(k−i)α+j],n)
w |(n>−1),

where
b⋆i,j,k = bi,j,k (1− t)n.

The mean residual life (MRL) function is given by

m1(t) = E
{
(X − t) |

[
(n=1)
(X>t)

]}
which represents the expected residual life for an individual which is live at age t. The MRL of X can be obtained
by putting n = 1 in the equation of the moment of residual life. The n(th) moment of the reversed residual life, say

Mn(t) = E
{
(t−X)n |

[
(n=1,2,...)
(X≤t, t>0)

]}
,

which is equal to

Mn(t) =

∫ t
0
(t− x)ndF

(α,β,a,b)
BrXIIEE (x)

F
(α,β,a,b)
BrXIIEE (t)

.

Then, the n(th) moment of the reversed residual life of X is

Mn(t) =
γ (1 + n, tb)

F (t)bn

∞∑
j,k,w=0

j+k≥1

k∑
i=0

a [(k − i)α+ j] b⋆⋆i,j,kC
(a[(k−i)α+j],n)
w |(n>−1),

where

b⋆⋆i,j,k = bi,j,k

n∑
r=0

(−1)
r

(
n

r

)
tn−r

The mean inactivity time (MIT), known as the mean reversed residual life function can be obtained by putting
n = 1 in the equation of the moment of the reserved residual life.

3. Methods of estimation

3.1. Maximum likelihood method

In this work, we estimate the unknown parameters (α, β, a, b) of the BrXIIEE model from the complete samples by
maximum likelihood (ML) method. Suppose that x1, · · · , xn be a random sample from the BrXIIEE model with
parameter vector Φ =(α, βa, b)ᵀ. The log-likelihood function (ℓn(Φ)) for Φ is given by

ℓn(Φ) = n logα+ n log β + n log a+ n log b− b

n∑
n=0

xi + (aα− 1)

n∑
n=0

log
(
1− e−bxi

)
− (α+ 1)

n∑
n=0

log
[
1−

(
1− e−bxi

)a]− (β + 1)

n∑
n=0

log si,

Stat., Optim. Inf. Comput. Vol. 8, June 2020



M. IBRAHIM, E. ALTUN AND H.M. YOUSOF 617

where

si = 1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α
.

The above ℓn(Φ) can be maximized numerically via SAS (PROC NLMIXED) or R (optim) or Ox program (via
sub-routine MaxBFGS), among others. The components of the score vector

I(Θ) =
∂ℓ

∂Θ
=

(
∂ℓn(Φ)

∂α
,
∂ℓn(Φ)

∂β
,
∂ℓn(Φ)

∂a

∂ℓn(Φ)

∂b

)ᵀ

are

Iα =
n

α
+ a

n∑
n=0

log
(
1− e−bxi

)
−

n∑
n=0

log
[
1−

(
1− e−bxi

)a]− (β + 1)

n∑
n=0

mi

si
,

Iβ =
n

β
−

n∑
n=0

log si,

Ia =
n

a
+ α

n∑
n=0

log
(
1− e−bxi

)
+ (α+ 1)

n∑
n=0

(
1− e−bxi

)a
log

(
1− e−bxi

)
1− (1− e−bxi)

a − (β + 1)

n∑
n=0

qi
si
,

and

Ib =
n

b
−

n∑
n=0

xi + (aα− 1)

n∑
n=0

xie
−bxi

1− e−bxi
+ (α+ 1)

n∑
n=0

axie
−bxi

(
1− e−bxi

)a−1

1− (1− e−bxi)
a − (β + 1)

n∑
n=0

pi
si
,

where

mi =

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α
log

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]

qi = α

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α−1 (
1− e−bxi

)a
log

(
1− e−bxi

)[
1− (1− e−bxi)

a]2
and

pi = α

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α−1
axie

−bxi
(
1− e−bxi

)a−1[
1− (1− e−bxi)

a]2 .

3.2. Method of Least Square and Weighted Least Square Estimation(WLSE)

The theory of LSE and WLSE was firstly proposed by Swain et al. [15] to estimate the parameters of Beta
distribution. It is based on the minimization of the sum of the square of differences of theoretical cumulative
distribution function and empirical distribution function. Suppose F (Xi:n, α, β, a, b) denotes the cdf of BrXIIEE
model and if x1 < x2 < · · · < xn be the n ordered random sample. The LSEs are obtained upon minimizing

Ls(α, β, a, b) =

n∑
i=1

[
F

(α,β,a,b)
BrXIIEE (xi:n)−

i

n+ 1

]2
.

Using (5), we have

Ls(α, β, a, b) =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

2

.
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The LSEs are obtained via solving the following non-linear equations

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξα(xi, α, β, a, b),

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξβ(xi, α, β, a, b),

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξa(xi, α, β, a, b),

and

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξb(xi, α, β, a, b),

where ξα (xi, α, β, a, b) , ξβ (xi, α, β, a, b) , ξa(xi, α, β, a, b) and ηb(xi, α, β, a, b) are the values of 1st derivatives
with recpect to (w.r.t.) parameter of the cdf of the BrXIIEE distribution.
The LSEs of the parameters α, β, a and b are obtained by solving the above simultenious equations by using
any numerical approximation technique. The WLSE are obtained by minimizing the given form of equation with
respect to the parameters.

WLs(α, β, a, b =

n∑
i=1

wi

[
F

(α,β,a,b)
BrXIIEE (xi:n)−

i

n+ 1

]2
.

The WLSE of the parameters are obtained by solving the following non-linear equations

0 =

n∑
i=1

wi

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξα(xi, α, β, a, b),

0 =

n∑
i=1

wi

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξβ(xi, α, β, a, b),

0 =

n∑
i=1

wi

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξa(xi, α, β, a, b),

and

0 =

n∑
i=1

wi

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− i

n+ 1

 ξb(xi, α, β, a, b),

where

wi =
[
(n+ 1)2(n+ 2)

]
/ [i(n− i+ 1)] .
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3.3. Method of Cramér-Von-Mises estimation (CVME)

The CVME of the parameter is based on the theory of minimum distance estimation (MDE). It was firstly proposed
by MacDonald [11] and justified that the bias of the estimator is smaller than the other MD estimators. So, the
CVME of the parameter α, β, a and b are obtained by minimizing the following expression w.r.t. the parameter
α, β, a and b respectively, then we have

CVM(α, β, a, b) =
1

12n
+

n∑
i=1

[
F

(α,β,a,b)
BrXIIEE (xi:n)−

2i− 1

2n

]2
,

and

CVM(α, β, a, b) =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− 2i− 1

2n

2

.

The, Cramér-Von-Mises estimators (CVME) of the parameters are obtained by solving the following non-linear
equations

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− 2i− 1

2n

 ξα(xi, α, β, a, b),

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− 2i− 1

2n

 ξβ(xi, α, β, a, b),

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− 2i− 1

2n

 ξa(xi, α, β, a, b),

and

0 =

n∑
i=1

1−

{
1 +

[ (
1− e−bxi

)a
1− (1− e−bxi)

a

]α}−β− 2i− 1

2n

 ξb(xi, α, β, a, b).

3.4. Bootstraping method

Bootstrapping is a widely used estimation method as a bias reduction. This method is preferred when the sample
size is small, approximately less than 40. The detail information on bootstrap method can be found in Hesterberg
[9].

4. Simulation studies

Here, a simulation study is given to compare the finite sample performance of estimation methods, presented
in Section 3. The simulation results are interpreted based on the average of estimates and mean square errors
(MSEs). We expect to see that when the sample size is sufficiently large, the MSEs is near the zero and average
of estimates is near the true parameter value. We generate 1000 samples of the BrXIIEE distribution, where n =
(20, 50, 100, 200, 300, 500) and by choosing (α, β, a, b) =(1.2, 0.6, 0.8, 1.1) , (1.8, 1.6, 1.4, 2) and (0.8, 1.2, 0.9, 2.2).
The average values of estimates and MSEs of MLEs, LSEs, WLSEs, CVMs and Bootstrap are obtained and
reported in in Tables 1-5.

From Tables 1–5, we observe that all the estimates for all selected methods show the property of consistency
i.e., the MSEs decrease as n increase. Upon comparing the different, the results show that the MLE produces the
best results for estimating the parameters α, β, a and b, in terms of MSEs in thee most of cases. The ordering of
performance of estimators in term of MSEs (from the best to the worst) for α is MSE, Bootstrap, WLSE, and LSE.
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Table 1. Average values of estimates and the corresponding MSEs (in parentheses) for n=20.

Parameters MLE LS WLS CVM Bootstrap

α = 1.2 1.205 (0.0636) 1.6838 (9.6687) 1.6577 (16.2981) 1.6340 (16.0421) 1.1950 (0.0452)
β = 0.6 0.6302 (0.0223) 0.6303 (0.0312) 0.6194 (0.0290) 0.6256 (0.2598) 0.5893 (0.0150)
a = 0.8 0.8457 (0.0619) 0.8603 (0.0942) 0.8864 (0.1398) 0.8732 (0.1676) 0.9465 (0.0970)
b = 1.1 1.1618 (0.0797) 1.1519 (0.1154) 1.1264 (0.0859) 1.1360 (0.0907) 1.0840 (0.0549)
α = 1.8 1.7125 (0.1488) 2.0719 (4.2170) 2.3246 (5.0520) 2.0753 (3.5479) 1.6054 (0.2332)
β = 1.6 1.6393 (0.1574) 1.6930 (0.2749) 1.7182 (0.2786) 1.6834 (0.2424) 2.0361 (0.4599)
a = 1.4 1.4187 (0.0297) 1.4080 (0.0302) 1.4031 (0.0333) 1.4155 (0.0342) 1.2758 (0.0383)
b = 2 2.0058 (0.0488) 2.0270 (0.0597) 2.0384 (0.0666) 2.0209 (0.0611) 2.2124 (0.1077)
α = 0.8 0.8067 (0.0246) 0.8902 (4.1534) 1.1287 (10.9709) 0.9211 (0.7252) 0.7878 (0.0418)
β = 1.2 1.2218 (0.0777) 1.2945 (0.1635) 1.3266 (0.2196) 1.2797 (0.1688) 1.6554 (0.4768)
a = 0.9 0.9871 (0.0837) 2.4319 (1.0030) 0.9387 (0.0953) 0.9649 (0.1063) 0.8396 (0.0958)
b = 2.2 2.4111 (0.5623) 0.9388 (0.0819) 2.5355 (1.5613) 2.4253 (1.0981) 3.0933 (1.3243)

Table 2. Average values of estimates and the corresponding MSEs (in parentheses) for n=50.

Parameters MLE LS WLS CVM Bootstrap

α = 1.2 1.2042 (0.0273) 1.4592 (2.0832) 1.5937 (10.8875) 1.5090 (2.9900) 1.2131 (0.0241)
β = 0.6 0.6117 (0.0079) 0.6061 (0.0109) 0.6113 (0.0111) 0.6123 (0.0117) 0.6259 (0.0078)
a = 0.8 0.8164 (0.0254) 0.8343 (0.0321) 0.8290 (0.0323) 0.8267 (0.0323) 0.7826 (0.0190)
b = 1.1 1.1238 (0.0276) 1.1092 (0.0346) 1.1174 (0.0337) 1.1199 (0.0368) 1.1495 (0.0270)
α = 1.8 1.7668 (0.0592) 2.2802 (3.0566) 2.2953 (2.8850) 2.2363 (3.0149) 2.0004 (0.1177)
β = 1.6 1.6131 (0.0621) 1.6206 (0.0797) 1.6158 (0.0630) 1.6295 (0.0775) 1.6055 (0.0449)
a = 1.4 1.4109 (0.0124) 1.4101 (0.0129) 1.4091 (0.0109) 1.4059 (0.0125) 1.4230 (0.0095)
b = 2 2.00003 (0.0208) 2.0023 (0.0228) 2.0011 (0.0189) 2.0074 (0.02210 1.9926 (0.0149)
α = 0.8 0.8069 (0.0087) 0.9559 (0.9830) 1.1545 (3.3969) 0.9579 (0.8225) 0.6474 (0.0308)
β = 1.2 1.2135 (0.0308) 1.2227 (0.0514) 1.2318 (0.0529) 1.2354 (0.0481) 0.9792 (0.0911)
a = 0.9 0.9417 (0.0239) 0.9245 (0.0287) 0.9199 (0.0280) 0.9134 (0.0261) 0.8230 (0.0232)
b = 2.2 2.2972 (0.1853) 2.2603 (0.3006) 2.2795 (0.3121) 2.2929 (0.2893) 1.7801 (0.3391)

Table 3. Average values of estimates and the corresponding MSEs (in parentheses) for n=100.

Parameters MLE LS WLS CVM Bootstrap

α = 1.2 1.2042 (0.0133) 1.3112 (0.4565) 1.3427 (3.3153) 1.3474 (3.3089) 1.1085 (0.0196)
β = 0.6 0.6063 (0.0038) 0.6027 (0.0052) 0.6036 (0.0047) 0.6041 (0.0051) 0.6437 (0.0063)
a = 0.8 0.8076 (0.0110) 0.8173 (0.0145) 0.8155 (0.0140) 0.8149 (0.0141) 0.6723 (0.0264)
b = 1.1 1.1126 (0.0129) 1.1041 (0.0169) 1.1059 (0.0153) 1.1067 (0.0165) 1.1757 (0.0189)
α = 1.8 1.7791 (0.0287) 2.0468 (1.2940) 2.0205 (0.9254) 2.0895 (1.3182) 1.8144 (0.0268)
β = 1.6 1.6139 (0.0299) 1.6087 (0.0384) 1.6263 (0.0347) 1.6095 (0.0395) 1.6545 (0.0326)
a = 1.4 1.4017 (0.0058) 1.4057 (0.0064) 1.3977 (0.0058) 1.4057 (0.0066) 1.3900 (0.0051)
b = 2 2.0050 (0.0101) 2.0003 (0.0113) 2.0104 (0.0105) 2.0006 (0.0117) 2.0250 (0.0101)
α = 0.8 0.8033 (0.0046) 0.9820 (1.3958) 0.9387 (0.6976) 0.8988 (0.4836) 0.7602 (0.0069)
β = 1.2 1.2112 (0.0149) 1.2099 (0.0234) 1.2211 (0.0205) 1.2219 (0.0233) 1.3875 (0.0649)
a = 0.9 0.9171 (0.0106) 0.9134 (0.0137) 0.9045 (0.0105) 0.9039 (0.0123) 0.8074 (0.0183)
b = 2.2 2.2553 (0.0806) 2.2261 (0.1349) 2.2495 (0.1109) 2.2559 (0.1371) 2.5770 (0.2648)
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Table 4. Average values of estimates and the corresponding MSEs (in parentheses) for n=200.

Parameters MLE LS WLS CVM Bootstrap

α = 1.2 1.1988 (0.0071) 1.2413 (0.0846) 1.2450 (0.1075) 1.2515 (0.09711) 1.1998 (0.0070)
β = 0.6 0.6019 (0.0019) 0.6021 (0.0025) 0.6033 (0.0022) 0.6039 (0.0024) 0.5887 (0.0017)
a = 0.8 0.8048 (0.0058) 0.8069 (0.0064) 0.8057 (0.0060) 0.8039 (0.0063) 0.8499 (0.0084)
b = 1.1 1.1042 (0.0064) 1.1034 (0.0080) 1.1056 (0.0073) 1.1067 (0.0080) 1.0792 (0.0061)
α = 1.8 1.7864 (0.0164) 1.8974 (0.3654) 1.9183 (0.2583) 1.9240 (0.3553) 1.8055 (0.0159)
β = 1.6 1.6058 (0.0152) 1.6064 (0.0182) 1.6020 (0.0177) 1.6002 (0.0181) 1.6678 (0.0210)
a = 1.4 1.4012 (0.0031) 1.4018 (0.0030) 1.4038 (0.0031) 1.4045 (0.0031) 1.3801 (0.0031)
b = 2 2.0016 (0.0053) 2.0014 (0.0054) 1.9988 (0.0055) 1.9980 (0.0055) 2.0350 (0.0065)
α = 0.8 0.7989 (0.0023) 0.8901 (0.5495) 0.8744 (0.3441) 0.8893 (0.3673) 0.7934 (0.0016)
β = 1.2 1.2023 (0.0074) 1.2019 (0.0107) 1.2048 (0.0108) 1.2040 (0.0112) 1.1888 (0.0069)
a = 0.9 0.9066 (0.0053) 0.9086 (0.0065) 0.9073 (0.0058) 0.9082 (0.0067) 0.9045 (0.0040)
b = 2.2 2.2189 (0.0375) 2.2052 (0.0617) 2.2113 (0.0581) 2.2114 (0.0660) 2.1848 (0.0321)

Table 5. Average values of estimates and the corresponding MSEs (in parentheses) for n=500.

Parameters MLE LS WLS CVM Bootstrap

α = 1.2 1.2004 (0.0028) 1.2124 (0.0177) 1.2054 (0.0113) 1.2134 (0.0178) 1.1578 (0.0045)
β = 0.6 0.6002 (0.0007) 0.6006 (0.0009) 0.5993 (0.0008) 0.6008 (0.0009) 0.5727 (0.0014)
a = 0.8 0.8038 (0.0021) 0.8030 (0.0025) 0.8054 (0.0024) 0.8028 (0.0025) 0.8629 (0.0066)
b = 1.1 1.1006 (0.0023) 1.1010 (0.0032) 1.0985 (0.0028) 1.1013 (0.0032) 1.0491 (0.0048)
α = 1.8 1.8021 (0.0063) 1.8304 (0.0457) 1.8448 (0.0485) 1.8306 (0.0456) 1.8709 (0.0113)
β = 1.6 1.5988 (0.0055) 1.6022 (0.0073) 1.5981 (0.0064) 1.6022 (0.0073) 1.5094 (0.0135)
a = 1.4 1.4022 (0.0011) 1.4009 (0.0012) 1.4025 (0.0012) 1.4009 (0.0012) 1.4458 (0.0035)
b = 2 1.9985 (0.0019) 2.0003 (0.0022) 1.9981 (0.0020) 2.0004 (0.0022) 1.9443 (0.0051)
α = 0.8 0.8019 (0.0009) 0.8119 (0.0495) 0.8030 (0.0020) 0.8040 (0.0040) 0.8055 (0.0009)
β = 1.2 1.2005 (0.0027) 1.2025 (0.0043) 1.2024 (0.0040) 1.2015 (0.0040) 1.2751 (0.0088)
a = 0.9 0.9060 (0.0019) 0.9020 (0.0025) 0.9018 (0.0021) 0.9026 (0.0023) 0.8816 (0.0021)
b = 2.2 2.2081 (0.0137) 2.2060 (0.0248) 2.2056 (0.0214) 2.2039 (0.0233) 2.3679 (0.0446)

The ordering of performance for β is MLE, CVME, WLSE, LSE and Bootstrap, for a is MSE, WLSE, Bootstrap,
CVME and LSE and MLE, WLSE, CVME, LSE and Bootstrap for the parameter b.

5. The log-BrXIIEE regression model for censored data

Let the random variable X follow a BrXIIEE distribution. The density function of Y = log(X) with location and
scale parameters is

f (y) = αβab
σ exp

(
−b exp

(
y−µ
σ

)) (
1− exp

(
−b exp

(
y−µ
σ

)))a−1

{(1−exp( −b exp( y−µ
σ )))

a}α−1

(1−{(1−exp( −b exp( y−µ
σ )))

a})α+1

{
1 +

{
{(1−exp( −b exp( y−µ

σ )))
a}

1−{(1−exp( −b exp( y−µ
σ )))

a}

}α}−β−1

, y ∈ ℜ,
(14)

where µ ∈ ℜ and σ > 0 are the location and scale parameters respectively. Hereafter, (14) is referred as the log-
BrXIIEE (LBrXIIEE) distribution and denoted as Y ∼ LBrXIIEE(α, β, a, b, σ, µ). The possible shapes of the pdf
of LBrXIIE are plotted in Figure 2. As seen from Figure 2, the LBrXIIEE distribution can be used to model
symmetric, left and right skewed data sets.
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Figure 2. Plots of the LBrXIIEE density for selected parameter values.

The corresponding survival function to (14) is

S (y) = 1−

{
1 +

{ (
1− exp

(
−b exp

(
y−µ
σ

)))a
1−

(
1− exp

(
−b exp

(
y−µ
σ

)))a
}α}−β

. (15)

Using the LBrXIIEE density given in (14), a location-scale regression model, linking the explanatory variable
vector, v⊤

i = (vi1, ..., vip), to mean of the response variable, yi, is

yi = v⊤
i β + σzi, i = 1, . . . , n, (16)

where the random variable yi follow a LBrXIIEE distribution. Let F and C be the sets of individuals for which
yi is the log-lifetime or log-censoring, respectively. Assume that the observed lifetimes and censoring times are
independent. The log-likelihood function of LBrXIIEE regression model is given by

ℓ (τττ) = r ln
(
αβab
σ

)
− b

∑
i∈F

ui + (a− 1)
∑
i∈F

ln (1− exp ( −bui))

+ (a− 1)
∑
i∈F

ln {(1− exp ( −bui))
a}+ (a+ 1)

∑
i∈F

ln (1− {(1− exp ( −bui))
a})

− (β + 1)
∑
i∈F

ln
{
1 +

{
{(1−exp( −bui))

a}
1−{(1−exp( −bui))

a}

}α}
+

∑
i∈C

ln

(
1−

{
1 +

{
(1−exp( −bui))

a

1−(1−exp( −bui))
a

}α}−β)
, (17)

where τττ = (α, β, a, b, σ,β⊤)⊤ is the parameter vector, ui = exp(zi), zi = (yi − v⊤i β)/σ and r is the number of
uncensored observations (failures), n− r is the number of censored observations and n is the total number of
observations. Note that when the parameter a = 0, LBrXIIEE regression model reduces to LBrXIIE regression
model. The MLE of τ̂ττ , say ̂̂τ̂τ̂τ , can be obtained by maximizing the log-likelihood (17). Under regularity conditions,
the asymptotic distribution of (τ̂ττ − τττ) is multivariate normal Np+5(0,K(τττ)−1), where K(τττ) is the expected
information matrix. The asymptotic covariance matrix K(τττ)−1 of τ̂ττ can be replaced by the inverse of the
(p+ 5)× (p+ 5) observed information matrix −Ł̈(τττ).

5.1. Residual analysis

Residual analysis is an essential part of any regression model. It is important to check the assumption on
error distribution. Here, two types of residuals are considered: martingale and modified deviance residuals. The
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martingale residual for LBrXIIEE model is

rMi =

 1 + log
(
exp ( −λui) (1 + λui)

−1
)

ifi ∈ F,

log
(
exp ( −λui) (1 + λui)

−1
)

ifi ∈ C,
(18)

where ui = exp(zi) and zi = (yi − v⊤i β)/σ. The modified deviance residual for LBrXIIEE model is

rDi =

{
sign (rMi) { −2 [rMi + log (1− rMi)]}

1/2
, if i ∈ F

sign (rMi) { −2rMi}
1/2

, if i ∈ C,
(19)

where r̂Mi is the martingale residual.

6. Empirical Results

6.1. Univariate data modeling

In this section, we compare the BrXIIEE with some competitive models to demonstrate its usefulness in data
modeling. The MLE method is used to estimate the parameters of the fitted models. The below model selection
criteria and goodness-of-fit tests are used to select best model.

Cramér-Von Mises (W⋆):
W⋆ = (1 + 1/2n)

[
[1/ (12n)] +

∑n

j=1
sj

]
,

Anderson-Darling (A⋆):
A⋆ = c(n)

(
n+ n−1

∑n

j=1
cj

)
,

where
sj = [zi − (2j − 1) / (2n)]

2
, c(n) = 1 +

9

4
n−2 +

3

4
n−1,

and
cj = (2j − 1) log [zi (1− zn−j+1)] ,

where zi = F (yj) and the yj’s values are the ordered observations. Akaike Information Criterion (AIC):

AIC = −2ℓ̂+ 2p,

Consistent Akaike Information Criterion (CAIC):

CAIC = −2ℓ̂+ 2pn/ (n− p− 1) ,

Hannan-Quinn Information Criterion (HQIC):

HQIC = −2ℓ̂+ 2p log [log (n)] ,

Bayesian Information Criterion (BIC):

BIC = −2ℓ̂+ p log (n) ,

where p is the number of parameters, n is the sample size and ℓ̂ is the maximized log-likelihood, moreover, we
consider the Kolmogorov-Smirnov (KS) statistic ( (with its p-value).

Two real data sets are analyzed with BrXIIEE and competitive models. The first data set represents the lifetime
data relating to relief times (in minutes) of patients receiving an analgesic (see Gross and Clark [8]). The
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second data set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli,
reported by Bjerkedal [3]. We shall compare the fits of the BrXEE distribution with those of other competitive
models, namely: Exponential (E), Odd Lindley Exponential (OLiE), Marshall-Olkin Exponential (MOE),
Moment Exponential (MomE), The Logarithmic Burr-Hatke Exponential (Log BrHE), Generalized Marshall-
Olkin Exponential (GMOE), Beta Exponential (BE), Marshall-Olkin Kumaraswamy Exponential (MOKwE),
Kumaraswamy Exponential (KwE), Burr X-E (BrXE) and Kumaraswamy Marshall-Olkin Exponential (KwMOE).
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Figure 3. Estimated pdf, estimated hrf, estimated cdf and P-P plot for the 1(st) data.

Figure 4. Estimated pdf, estimated hrf, estimated cdf and P-P plot for the 2(nd) data
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Table 6. MLEs, SEs, C.I.s (in parentheses) values for the relief times data.

Models Estimates
E(b) 0.526

(0.117)
(0.29, 0.75)

OLiE(b) 0.6044
(0.0535)
(0.5, 0.7)

MomE(b) 0.950
(0.150)

(0.66, 1.24)

Log BrHE(b) 0.5263
(0.118)

(0.43; 0.63)

MOE(α, β) 54.474, 2.316
(35.582), (0.374)

0, 124.21), (1.58, 3.04)

GMOE(λ, α, b) 0.519, 89.462, 3.169
(0.256), (66.278), (0.772)

(0.02, 1.02), (0, 219.37), (1.66, 4.68)

KwE(α, β, b) 83.756, 0.568, 3.330
(42.361), (0.326), (1.188)

(0.73, 166.78), (0, 1.21), (1.00, 5.66)

BE(α, β, b) 81.633, 0.542, 3.514
(120.41), (0.327), (1.410)

(0, 317.63), (0, 1.18), (0.75, 6.28)

MOKwE(α, a, β, b) 0.133, 33.232, 0.571, 1.669
(0.332), (57.837), (0.721), (1.814)

(0, 0.78), (0, 146.59), (0, 1.98), (0, 5.22)

KwMOE(α, a, β, b) 8.868, 34.826, 0.299, 4.899
(9.146), (22.312), (0.239), (3.176)

(10.94, 46.79), (0, 78.56), (0, 0.76), (0, 11.12)

BrXE(θ, b) 1.1635, 0.3207
(0.33), (0.03)

(0.5, 1.82 ), (0.26,0.38)

BrXIIEE(α, β, a, b) 3.911, 0.273, 3.777, 1.298
(22.6), (0.194), (51.75), (9.07)

(0, 49), (0, 0.7), (0, 109), (0, 19.4)
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Table 7. AIC, BIC, CAIC, HQIC,
{
A⋆}

,
{
W⋆}

, K.S. and (p-value) for the relief times data.

Models AIC, BIC, CAIC, HQIC A⋆, W⋆, K.S. and (p-value)
E(b) 67.67, 68.67, 67.89, 67.87 {4.60}, {0.96, } 0.44, (0.004)

OLiE(b) 49.1, 50.1, 49.3, 49.3 1.3, 0.22, 0.85, (6.231e-13)

MomE(β) 54.32, 55.31, 54.54, 54.50 2.76,0.53, 0.32, (0.07)

Log BrHE(b) 67.67,68.67,67.89,67.87 {0.62}, {0.105}, 0.44 , (0.0009)

MOE(α, b) 43.51, 45.51, 44.22, 43.90 {0.8}, {0.14}, 0.18, (0.55)

GMOE(λ, α, b) 42.75, 45.74, 44.25, 43.34 0.51, 0.08, 0.15, (0.78)

KwE(α, β, b) 41.78, 44.75, 43.28, 42.32 0.45, 0.07, 0.14, (0.86)

BE(α, β, b) 43.48, 46.45, 44.98, 44.02 {0.70}, {0.12}, 0.16, (0.80)

MOKwE(α, a, β, b) 41.58, 45.54, 44.25, 42.30 0.60, 0.11, 0.14, (0.87)

KwMOExp(α, a, β, b) 42.8, 46.84, 45.55, 43.60, 1.08, 0.19, 0.15, (0.86)

BrXE(θ, b) 48.1, 50.1, 8.8, 48.5, {1.39} 0.24, 0.248, (0.1705)

BrXIIEE(α, β, a, b) 38.9, 42.9, 41.6, 39.7 0.15, 0.027, 0.09, (0.9969)

Based on values obtained in Tables 6-9 along with Figures 3 and 4, the proposed lifetime model is much better
than the above mentioned extensions of the exponential model so the new lifetime model is a good alternative
to these models in modeling relief times and survival times data sets. Then, the estimation methods presented in
Section 3 are compared via these two data sets and results are reported in Tables 10 and 11. From these results, we
conclude that the bootstrap and MLE methods produce better parameter estimates than other methods.

From Tables 10 and 11 and based on the W ∗ and A∗ statistics, we recommend to use the Bootstrapping method
to estimate the parameters of the BrXIIEE distribution for data set I though all methods of estimation performed
well and the ML method for data set II.

6.2. Censored data modeling with covariates

The data set, reported in McGilchrist and Aisbett [12], consist of times to the first and second recurrences of
infection in 38 kidney patients using a portable dialysis machine. The data set can be also found in R package
survival. The LBrXIIEE regression model is used to analyze this dataset. The variables involved in the study
are: yi - time to infection since insertion of the catheter; censi - censoring indicator (1=uncensored, 0=censored),
xi1(1 = male, 0 = female) is the sex of each patient. The following regression structure is fitted by LBrXIIEE and
LBrXIIE models.

yi = β0 + β1xi1 + σzi.
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Table 8. MLEs, SEs, C.I.s (in parentheses) values for the survival times data.

Models Estimates
E(b) 0.540

(0.063)
(0.42, 0.66)

OLiE(b) 0.38145
(0.0209)

(0.34, 0.42)

MomE(b) 0.925
(0.077)

(0.62, 1.08)

Log BrHE(b) 0.54
(0.064)

(0.412, 0.668)

MOE(α, β) 8.778, 1.379
(3.555), (0.193)

(1.81,15.74), (1.00,1.75)

GMOE(λ, α, b) 0.179, 47.635, 4.465
(0.070), (44.901), (1.327)

(0.04, 0.32), (0, 135.64), (1.86. 7.07)

KwE(α, β, b) 3.304, 1.100, 1.037
(1.106), (0.764), (0.614)

(1.13,5.47), (0, 2.59), (0, 2.24)

BE(α, β, b) 0.807, 3.461, 1.331
(0.696), (1.003), (0.855)

(0, 2.17), (1.49,5.42), (0, 3.01)

MOKwE(α, a, β, b) 0.008, 2.716, 1.986, 0.099
(0.002), (1.316), (0.784), (0.048)

(0.004,0.01), (0.14, 5.29), (0.449, 3.52), (0, 0.19)

KwMOE(α, a, β, b) 0.373, 3.478, 3.306, 0.299
(0.136), (0.861), (0.779), (1.112)

(0.11, 0.64), (1.79, 5.17), (1.78, 4.83), (0, 2.48)

BrXE(θ, b) 0.475, 0.2055
(0.06), (0.012)

(0.355, 0.494), (0.18, 0.23)

BrXIIEE(α, β, a, b) 3.493, 0.594, 0.564, 0.2801
(3.102), (0.303), (0.703), (0.549)
(0, 9.7), (0, 1.2), (0, 2), (0, 1.3)
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Table 9. AIC, BIC, CAIC, HQIC,
{
A⋆}

,
{
W⋆}

, K.S. and (p-value) for survival times data.

Models AIC, BIC, CAIC, HQIC A⋆, W⋆, K.S. and (p-value)
E(b) 234.63, 236.91, 234.68, 235.54 6.53, 1.25, 0.27, (0.06)

OLiE(b) 229.1, 231.4, 229.2, 230 1.94, 0.33, 0.49, (9.992e-16)

MomE(b) 210.40, 212.68, 210.45, 211.30 1.52, 0.25, 0.14, (0.13)

Log BrHE(b) 234.63, 236.9, 234.7, 235.5 {0.71}, {0.115}, 0.28, (2.382e−5)

MOE(α, b) 210.36, 214.92, 210.53, 212.16 {1.18}, {0.17}, 0.10, (0.43)

GMOE(λ, α, b) 210.54, 217.38, 210.89, 213.24 {1.02}, {0.16}, 0.09, (0.51)

KwE(α, β, b) 209.42, 216.24, 209.77, 212.12 0.74, 0.11, 0.09, (0.50)

BE(a, b, β) 207.38, 214.22, 207.73, 210.08 0.98, 0.15, 0.11, (0.34)

MOKwE(α, a, β, b) 209.44, 218.56, 210.04, 213.04 0.79, 0.12, 0.10, (0.44)

KwMOE(α, a, β, b) 207.82, 216.94, 208.42, 211.42 0.61, 0.11, 0.09, (0.53)

BrXE(θ, b) 235.3, 239.9, 235.5, 237.1 2.9, 0.52, 0.22, (0.002)

BrXIIEE(α, β, a, b) 203.8, 212.9, 204.4, 207.4 0.29, 0.046, 0.07, (0.899)

Table 10. The values of estimators, W ∗ and A∗ for the relief times data

Method α̂ β̂ â b̂ W∗ A∗

ML 3.911 0.273 3.777 1.298 0.027 0.15
LS 2.238 0.347 10.948 1.989 0.029 0.17

WLS 1.992 0.316 16.291 2.319 0.031 0.18
CVM 2.591 0.363 8.502 1.775 0.028 0.16

Bootstrap 3.92 0.277 3.922 1.287 0.025 0.15

Table 11. The values of estimators, W ∗ and A∗ for the survival times data

Method α̂ β̂ â b̂ W∗ A∗

ML 3.493 0.594 0.564 0.2801 0.046 0.29
LS 7.516 0.356 0.314 0.115 0.074 0.56

WLS 3.047 0.396 0.92 0.608 0.053 0.39
CVM 7.835 0.348 0.312 0.113 0.077 0.58

Bootstrap 3.699 0.626 0.557 0.286 0.051 0.34

Maximum Likelihood Estimation The MLE method is to obtain unknown parameters of the of LBrXIIEE and
LBrXIIE regression models and the results are listed in Table 12. Based on the reported AIC and BIC statistics, the
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LBrXIIEE provides better fit than the LBrXIIE regression model since it has lower values of these statistics than
those of the LBrXIIE regression model. Also, regarding the estimated regression parameters, we conclude that the
parameters β0 and β1 are statistically significant at 5% significance level.

Table 12. The estimated parameters of the fitted regression models.

LBrXIIEE regression model LBrXIIE regression model

Parameters Estimate S.E. p-value Estimate S.E. p-value

α 2.017 1.248 - 2.610 0.831 -
β 0.131 0.089 - 0.127 0.079 -
a 1.648 2.011 - - - -
b 5.437 1.919 - 0.596 9.406 -
σ 1.477 0.361 - 1.389 0.254 -
β0 1.201 0.365 0.001 -0.039 19.125 0.998
β1 0.234 0.093 0.012 0.513 5.480 0.925

−ℓ 98.64854 104.68539
AIC 211.297 221.370
BIC 227.612 235.355

Likelihood Ratio (LR) test is used to compare the LBrXIIEE and LBrXIIE regression models. Table 13 shows
the LR statistic and the corresponding p-value for the used data set. Based on the figures in Table 13, the computed
p-value is smaller than 0.05, so the null hypotheses is rejected in favour of LBrXIIEE regression model. Therefore,
we conclude that the LBrXIIEE regression model provides better fits than its sub-model according to the LR test
results.

Table 13. The LR test results for kidney patients data set.

Models Hypotheses LR p-value
LBrXIIEE versus LBrXIIE H0 : α = 1 6.03685 0.01401

Residual Analysis The modified deviance residuals of the LBrXIIEE regression model are calculated and plotted
in Figure 5 with its quantile-quantile (QQ) plot. These figures reveal that the LBrXIIEE regression model provides
adequate fit to the used data set and there is no observation can be evaluated as a potential outlier.
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Figure 5. The results of the residuals analysis for the LBrXIIEE regression model.
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7. Concluding remarks

This paper introduces a new extension of the exponentiated-exponential distribution by using the BrXI-G family.
The new model is shortly denoted as BrXIIEE. The properties of the BrXIIEE distribution are obtained and
discussed in great detail. Five estimation methods are considered to estimate the parameters of the BrXIIEE
distribution, and the finite sample performance of these estimation methods are compared with simulation studies
under different scenarios. Three data sets are analyzed to convince the readers and researchers in favour of the
BrXIIEE against the competitive models.
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