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S\ (Z)-CONVERGENCE OF COMPLEX UNCERTAIN SEQUENCE

O. Kisi. Sy (Z)-convergence of complex uncertain sequence, Mat. Stud. 51 (2019), 183-194.

This study introduces the Az-statistically convergence concepts of complex uncertain se-
quences: \z-statistically convergence almost surely (Sx(Z).a.s.), Az-statistically convergence in
measure, Az-statistically convergence in mean, Az-statistically convergence in distribution and
Az-statistically convergence uniformly almost surely (Sx(Z).u.a.s.). In addition, decomposition
theorems and relationships among them are discussed.

1. Introduction and background. Freedman and Sember introduced the concept of a
lower asymptotic density and defined the concept of convergence in density, in [3]. Taki-
ng this definition, we can give the definition of statistical convergence which has been
formally introduced by Fast [1] and Steinhaus [21]. Schoenberg reintroduced this concept
independently [2]. A number sequence (xy) is statistically convergent to L provided that for
every € > 0, d{k € N: |z — L| > £} = 0 or equivalently there exists a subset K C N with
d(K) =1 and no(e) such that k > ng(¢) and k € K imply that |z — L| < e. In this case we
write st — lim x, = L. From the definition, we can easily show that any convergent sequence
is statistically convergent, but not conversely.

Let \ = (/\n) is a non-decreasing sequence of positive numbers tending to oo such that
A1 < A+ 1, Ay = 1. Mursaleen [29] defined A-statistical convergence by using the A
sequence. He denoted this new method by S). A number sequence z = (xk) is said to be
A-statistically convergent to the number L if for every € > 0,

1
lim —{k€l,: |z, —L| >} =0,
n—oo A\,

where I,, = [n -\ + 1,n}. It is denoted by st-limx, = L. Let A denote the set of all
non-decreasing sequences \ = ()\n) of positive numbers tending to oo such that \,,; < A\,
and A\ = 1.

The concept of Z-convergence of real sequences is a generalization of statistical conver-
gence which is based on the structure of the ideal Z of subsets of the set of natural numbers.
P. Kostyrko et al. [26] introduced the concept of Z-convergence of sequences in a metric space
and studied some properties of this convergence. Later, it was further studied by Saldt, Tri-
pathy and Ziman (|23], [24]) and many others. Recently, Das, Savas and Ghosal [6] introduced
new notions, namely Z-statistical convergence and Z-lacunary statistical convergence by usi-
ng ideal.
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However, in our daily life, we often encounter the case that there are lack of or no observed
data about the events, not only for economic reasons or technical difficulties, but also for
influence of unexpected events.

In order to deal with belief degree, an uncertainty theory was founded by Liu [10] in
2007, and refined by Liu [11] in 2010 which based on an uncertain measure which satisfies
normality, duality, subadditivity, and product axioms. Thereafter, a concept of uncertain
variable was proposed to represent the uncertain quantity and a concept of uncertainty
distribution to describe uncertain variables. Up to now, uncertainty theory has successfully
been applied to uncertain programming (Liu [12], Liu and Chen [13]), uncertain risk analysis
and uncertain reliability analysis (Liu [15]), uncertain logic (Liu [16]), uncertain differential
equation (Liu [17], Yao and Chen [19]), uncertain graphs (Gao and Gao [8], Zhang and
Peng [20]), uncertain calculus (Liu [14]) and uncertain finance (Chen [5|, Liu [14], Liu [18]),
ete.

In real life, uncertainty not only appears in real quantities but also in complex quanti-
ties. In order to model complex uncertain quantities, Peng [30] presented the concepts of
complex uncertain variable and complex uncertainty distribution, and also the expected value
was proposed to measure a complex uncertain variable in 2012. Since sequence convergence
plays an important role in the fundamental theory of mathematics, there are also many
convergence concepts in uncertainty theory. In 2007, Liu [10] first introduced convergence
in measure, convergence in mean, convergence almost surely (a.s.) and convergence in di-
stribution and their relationships were also discussed. You [31]| introduced another type
of convergence named convergence uniformly almost surely and showed the relationships
among those convergence concepts. Zhang [33| proved some theorems on the convergence of
a sequence of uncertain complex variables. After that, Guo and Xu [9] gave the concept of
convergence in mean square for a sequence of uncertain complex variables and showed that
an uncertain sequence converged in mean square if and only if it was a Cauchy sequence. Tri-
pathy and Kumar [32] introduced statistical convergence of complex uncertain sequence. Kisi
and Giiler [27]| defined A-statistically convergence of a sequence of uncertain complex vari-
ables. Inspired by these, we study the convergence concepts of Az-statistically convergence
of a sequence of uncertain complex variables by using ideal and discuss the relationships
among them in this paper.

2. Definitions and notations. In this section, some fundamental concepts in uncertainty
theory are introduced, which were used throughout the study.

Definition 1 ([26]). A family of sets Z C 2" is called an ideal if and only if
(i) @ €T,
(ii) for each A,B € Z we have AUB € Z,
(iii) for each A € 7 and each B C A we have B € 7.
Definition 2 ([10]). Let L be a o-algebra on a non-empty set I'. A set function M is called
an uncertain measure if it satisfies the following axioms:
Axiom 1. (Normality Axiom) M{T'} = 1;
Axiom 2. (Duality Axiom) M{A} + M{A°} =1 for any A € L;
Axiom 3. (Subadditivity Axiom) For every countable sequence of {)\j} € L, we have

M(QAj> < :01 M}
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The triplet (F, LM ) is called an uncertainty space, and each element A in L is called an
event.

Definition 3 (|10]). An uncertain variable £ is a measurable function from an uncertainty
space (F, L, M ) to the set of real numbers, i.e. for any Borel set B of real numbers, the set

{¢eB} ={yeT:&(y) € B}

1s an event.

A uncertainty distribution ® of uncertain variable £ is defined by @(:p) = M{f < :L‘},
Vr € R.

Considering the importance of the role of convergence of sequence in mathematics, some
concepts of convergence for uncertain sequences were introduced by Liu [10] as follows:

Definition 4 ([10]). The uncertain sequence {(,} is said to be convergent almost surely
(a.s.) to ¢ if there exists an event A with M (A) = 1 such that

Tim |G, (v) = ¢(v)] =0,
for every v € A. In this case we write (, — (, a.s.

Definition 5 (|10]). The uncertain sequence {Cn} is said to be convergent in measure to
if
lim M{|¢, —¢| > e} =0,

n—o0

for every ¢ > 0.

Definition 6 ([10]). The uncertain sequence {(,} is said to be convergent in mean to ¢ if
lim E[|¢, —¢|] = 0.
n—oo

Definition 7 (|10]). Let ®, @, @y, ... be the uncertainty distributions of uncertain variables
¢, (1, Coy ..., respectively. We say the sequence {Cn} converges in distribution to ¢ if

Jin [0, )| = (2
for all z at which CI>(:U) is continuous.

Definition 8 ([10]). The uncertain sequence {¢, } is said to be convergent uniformly almost
surely (u.a.s.) to € if there exists a sequence of events {Ek}, M{Ek} — 0 such that {Cn}
converges uniformly to ¢ in I' — F, for any fixed k.

3. Main results. In this study, we give new concepts and study their certain properties. In
addition, decomposition theorems and relationships among the concepts are discussed.

Let ¢1,(2,...,(n, ... be complex uncertain variables. The sequence {Cn} is said to be
Az-statistically convergent almost surely (S, (I) .a.s.) to ( if for every €, > 0 there exists an
event A with M (A) = 1 such that

{nem: Sl{ken: ) -~co)| 2l 2 6} .
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for every v € A. In this case we write (, — C <SA (Z).a.s.).

The sequence {Cn} is said to be Az-statistically convergent in measure to C if
[neN: |{ke L MG~ 22) 25} >0} e T,

for every e,0,19 > 0.
The sequence {Cn} is said to be Az-statistically convergent in mean to ( if

[nen: Fl{ker: B(lG ) >} 26} €T,

for every €,0 > 0.

Let ®,®,,P,,... be the complex uncertainty distributions of complex uncertain vari-
ables (, (1, (o, ..., respectively. We say the complex uncertain sequence {Cn} Az-statistically
converges in distribution to ( if for every £, > 0,

[nen: )\in}{k € I: |[u(e) = ®()| = <} > 6} e .

for all ¢ at which @(c) is continuous.
The sequence {(, } is said to be Az-statistically convergent uniformly almost surely (S\(T).
u. a. s.) to € if for every €,0 > 0, 36 > 0, Vo € R and a sequence of events {E,’C} such that

{neN: |{kel: |M(E) ~0] 2}| 20} e T=
— {neN: s |{ke e [G(@) (@) 2 9} 2o} €T
The sequence {(n} is said to be A\z-statistically convergent to ( if for every ¢ > 0,

{nem ke L () - o) 22} 2 6} €.

for every v € A.

4. Relationships between convergence concepts. In this section, we give the relati-
onships among the convergence concepts of a sequence of uncertain complex variables.

4.1. \z-statistically convergence in mean and A\z-statistically convergence in mea-
sure.

Proposition 1. If the sequence {Cn} of complex uncertain variables Ar-statistically conver-
ges in mean to (, then {Cn} Az-statistically converges in measure to (.

Proof. Tt follows from the Markov inequality that for any given €, 4,19 > 0, we have
[nen: (ke r: M(la - 22) =5} 29}
{k cl,: <M) > 5}‘ > 19} e

1
Q{nEN:—
€

An

Thus {Qn} Az-statistically converges in measure to ¢ and the theorem is thus proved. O
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Remark 1. Converse of above theorem is not true. i.e. Az-statistical convergence in measure
does not imply Az-statistical convergence in mean. The following example illustrates this.

Example 1. Consider the uncertainty space (F, L, M ) to be 71,79, ... with

1 : 1 )
sup ) lf sup il < 05,
Yn€A YnEA
_ 1 : 1 .
M{A} =<1- sg;{z e i sgg -1 < 0.5
TYn€AC Yn€AC
0.5, otherwise,

and the complex uncertain variables be defined by

n+1)i, iy =y
G =Y .
0, otherwise,
forn=1,2,... and ¢ = 0. For some small number ¢,4§,9 > 0 and n > 2, we have

e Ns L|{k € L M(G— ¢ 2 €) 2 6} 2 0} =

— {neN: L |{k € L M(r: G(0) =<0 | 2 €) 2 61 2 9} =

= {neN: - |{k e M{n} 25} >0} €T

Thus, the sequence {Cn} Az-statistically converges in measure to (. However, for each n > 2,

we have the uncertainty distribution of uncertain variable HCn —( || = HC"H is
0, if v <0;
D, (z) = 1—%1, if0<zx<n+l;
1, ifex>n+1.

So, for each n > 2, and for every ,0 > 0, we have

{neN: -|{k € Ls B~ (]| - 1) 2 £} 2 6} =

:{neN: Ain {kel,: <[?11 (1—n_1|_1>dx] —1> 26} 25},

which is impossible. That is, the sequence {Cn} does not Az-statistically converge in mean
to C.

4.2. )\z-statistically convergence in measure and \z-statistically convergence in
distribution.

Proposition 2. Let {Cn be a sequence of complex uncertain variables with real part {ﬁn
and imaginary part {%i, respectively, for n = 1,2,.... If the sequences {gn} and {%j
Az-statistically converge in measure to & and -y, respectively, then the sequence {Cn} Az-
statistically converges in measure to ( = £ + 7.
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Proof. Tt follows from the definition of A\z-statistical convergence in a measure of sequence
of uncertain complex variables that for any small numbers ¢, 4,9 > 0,

[nen: )\%erln: M6 —¢ = =) = 6}| =0} e,

fnen: %erl M=ol = ) 2 6}| =0} e

Note that |G, — || = /& — &> + [ — 7[?. Thus, we have

{le=clz <} {llen—ell = S ullm =l 2 5}

Using the subadditivity axiom of an uncertain measure, we obtain

N

{neN:i\{kefn:M(||§k—gH>e ) > a}| = v}
R
20)| 20} ez

Q{nEN

v

A

fpes ke (] 2 3

Hence, we have

{rem: )\%er]n: M([l— ¢l 2 2) 28} =0} ez

Thus, {Cn} Az-statistically converges in measure to (. O

Proposition 3. Let {Cn} be a sequence of complex uncertain variables with real part {§n
and imaginary part {%}, respectively, for n = 1,2,.... If the sequences {ﬁn} and {%
Az-statistically converge in measure to £ and vy, respectively, then the sequence {(n} Az-
statistically converges in distribution to ( = & + 7.

Proof. Let ¢ = a+ b be a given continuity point of the complex uncertainty distribution &.
On the other hand, for any a > a, 8 > b, we have

{gnga”y”Sb}:{gnSaaf)/nSb7§§a77§5}u{£n§a77n§b76>04,’7>6}u
U{gngaﬁnSba§§a77>5}U{fnSaﬁnﬁb,§>a,7§ﬁ} C
c{e<ay<biu{lea—¢za—afu{lm—n]=8-0}

It follows from the subadditivity axiom that
®,(c) = @p(a+ib) < P(a+if) + M{|& —&| > a—a} + M{|y. —7| > 8~}

Since {gn} and {%} Az-statistically converge in measure to £ and -, respectively, hence, for
any small number €, > 0 we have

{nEN:)\—lnHkEI,L:M(”{k—fHZa—a)ZS}}Z(S}GI

[nen: A—lnHk;eln: M~ = 8-b) =<} 26} ez



Sx (I)—CONVERGENCE OF COMPLEX UNCERTAIN SEQUENCE 189

Thus, we obtain Z-lim sup ®,(c) < ®(a+if) for any a > a, § > b. Letting a+ i — a+ b,
we get e

Z-1lim sup ®,(c) < ®(c). (1)

n—oo

On the other hand, for any x < a, y < b we have

{¢<ay<y}={&<am<bi<zy<ylU{& <a,7, <b¢<zy<ylu
U{n>a,m <b <z, y<ylU{&>am>bE<z,y<y}C
Cl{é<am<bu{lé—¢za—zfu{lm—r[=0-y}

This implies,
O(z +iy) < @n(a—I—ib)—l—M{Hﬁn—fH Za—x}—l—M{”%—7H >b—y}.

Since
[nen: L{ken: M(|G—¢|2a-n) 2} 25} ez,
{nEN: /\i\{ke]n: M(”%_VH Zb—y) 25}‘ 25} A

we obtain
¢ (z +iy) < Z-lim inf ®,(a + ib)

n—oo
for any x < a,y < b. Taking x + iy — a + ib, we get
®(c) < Z-lim inf ®,(c) (2)

n—oo

It follows from (1) and (2) that ®,(c) — ®(c) as n — oco. Hence, the sequence {(,} is
Az-statistically convergent in distribution to ¢ = & + i7. O

Remark 2. Converse of the above theorem is not necessarily true. i.e. Az-statistical conver-
gence in distribution does not imply Az-statistical convergence in measure. The following
example illustrates this.

Example 2. Consider the uncertainty space (F,L,M) to be {y1,7} with M(y;) =
7 =1,2. We define a complex uncertain variable as

i, iy =y,
CW%={ o '
—1, ify=rs.

1
29

We also define (,, = —( for n =1,2,.... Then (, and ( have the same distribution

0, ifa<0,—00<b< 4o00;
0, ifa>0,b< —1;
O,(c)=,(a+ib) =< - ’
(©) ( ) %, ifa>0,-1<b<1;
L,

ifa>0b>1.
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Then {(n} is Az-statistically convergent in distribution to ¢. However, for a given € > 0, we
have

{nen: )\in}{ke[n: Mg €] 2 e) 2 1}| = 6} =

={nen: %n\{’““n: M(y: [&() —€6) 2 e) 2 1}| =6} €T,

Thus, the sequence {Cn} does not Az-statistically converge in measure to (. By Theorem 4,
the real part and imaginary part of {Cn} also do not A\z-statistically converge in measure. In
addition, since (,, = —( forn = 1, 2,.. ., the sequence {Cn} does not A\z-statistically converge
a.s. to C.

4.3. \z-statistically convergence a.s. and \;-statistically converge in measure.
Az-statistically convergence a.s. does not imply Az-statistically convergence in measure.

Example 3. Consider the uncertainty space (F, L, M ) to be 71,79, ... with

n : n .
suea AT if sugj)\ s < 0.9;
Tn Tn
M{A} =4q1—sup 55, if sup 575 <0.5;
'YneAc ’ynGAC
0.5, otherwise

and we define a complex uncertain variable as

) if v =,
Cn(’vf):{zn’ Iy =7

0, otherwise.

for n = 1,2,... and ¢ = 0. Then the sequence {(n} Az-statistically converges a.s. to (.
However, for some small number ¢,6 > 0, we have

{nen: )\in‘{ke[n: M(||g—¢]| =€) > %}‘ > 6} =

- {nens i ns i Jat) —cO)l 2 2 |20} -

= {nen s {{ken M) 2 3} 2},

Therefore the sequence {Cn} does not Az-statistically converge in measure to (.

Remark 3. A\z-statistically convergence in measure does not imply Az-statistically conver-
gence a.s.

Example 4. Consider the uncertainty space (F, LM ) to be [0, 1] with the Borel algebra and
the Lebesgue measure. For any positive integer n, there is an integer p such that n =27 + k
where k is an integer between 0 and 2P — 1. Then, we define a complex uncertain variable by

G(y) =

i, ifk-27P<y<(k+1)-277
0, otherwise.
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forn=1,2,... and ¢ = 0. For some small number ¢,4,9 > 0 and n > 2, we have
1
{nen: —[{kel: M(la—¢|=e) 20} 2} =
1
= {neN: —[{ke L M(3: au(n) =<l 2 ) 2 0} =0} =

—{nemn: )\in|{ke[n: M{na} 2 8}| = 0},

Thus, the sequence {Cn} Az-statistically converges in measure to (. In addition for every
g,0 >0 we have{n € N: ﬁ}{k el,: E(Hgk — CH) > 5}‘ > 5} € 7. Hence, the sequence

{Cn} also Az-statistically converges in mean to ¢. However, for any v € [0, 1], there is an
infinite number of intervals of the form [k - 277 (k4 1) - 27| containing ~y. Thus, (,(v) does
not \z-statistically converge to 0. In other words, the sequence {Cn} does not \z-statistically
converge a.s. to (.

4.4. \r-statistically convergence a.s. and \z-statistically converge in mean. \z-sta-
tistically convergence a.s. does not imply Az-statistically convergence in mean.

Example 5. Consider the uncertainty space (F, L, M) to be {’yl, 72} with M{A} =
= Z% ca 3" The complex uncertain variables are defined by

3", iy =
wo={I

0, otherwise.

for n = 1,2,... and ¢ = 0. Then, the sequence {Cn} Az-statistically converges a.s. to (.
However, the uncertainty distributions of ||CnH are

0, if x <O0;
Pp(z) =q1—5, if0<z<3m
1, if z > 3",

forn =1,2,..., respectively. Then, we have {n € N: ﬁ‘{k € InE(HCk—CH) > 1}‘ >6} eT.
Therefore, the sequence {Cn} does not Az-statistically converge in mean to (.

From Example 5, we can obtain that \z-statistically convergence in mean does not imply
Az-statistically converge a.s.

4.5. \z-statistically convergence a.s. and \z-statistically convergence uniform-
ly a.s.

Proposition 4. Let (, (1, (s, ... be complex uncertain variables. Then {Cn} Az-statistically

converges a.s. to ¢ if and only if for any €,9,9 > 0, we have

1 o oo

—{ren:m(OU
k=1 n=k

{nEN: "

29202 ooz
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Proof. By the definition of Az-statistical convergence a.s., we have that there exists an event
A with M(A) = 1 such that{n € N: 3-|{k € I,: || —¢|| = e}| > 6} € T for every £,6 > 0.

Then for any €,9 > 0, there exists k such that ||(n — CH < ¢ where n > k and for any v € A,
that is equivalent to

1

{nEN: »

gn—gH<g) 21}‘219}61.

{ke[n:M(ég

It follows from the duality axiom of an uncertain measure that

{nEN: /\in’{keln: M(QH

G| ze) 2o}z v} e

O

Proposition 5. Let (, (1, (s, ... be complex uncertain variables. Then {Cn} Az-statistically
converges uniformly a.s. to ( if and only if for any €,6,v > 0, we have

(et n(Qle-d|29 252} ez

Proof. 1f {Cn} Az-statistically converges uniformly a.s. to ¢, then for any ¥ > 0 there exists
K such that M{K} < ¢ and {Cn} Az-statistically converges to ¢ on I' — K. Thus, for any
€ > 0, there exists k£ > 0 such that HCk —CH < ¢ where n > k and for any v € I' — K. That is

1

{nEN: "

Ul ¢ =<t c k.
n==k

It follows from the subadditivity axiom that

{k:e[n: D{

{nEN:)\in

Cn—CH za}}‘ 25} Q(SI“’M{K} C 9.

Then{n € N: &=|{k € ;s M(U;2,,||¢a = ¢|| =€) = 6}| = ¥} € Z. On the contrary, if

{ke[n:M<D

{nEN:)\in

o292l 2 ez

for any €,0,9 > 0, then for given 6 > 0 and m > 1, there exists m; such that

(U {le—di=31) < 5

n=msi

Let K= U U { Cn—CHZ%}.Then

m=1n=my

o

(i) = ol U o= 1) < S

n=mig m=1

In addition, we get Z- sup HCn — CH < % for any m =1,2,... and n > my,. O]
yel'-K
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Theorem 1. If a sequence {Cn} of complex uncertain variables Az-statistically converges
uniformly a.s. to (, then {Cn} Az-statistically converges a.s. to (.

Proof. 1t follows from the above proposition that if {Qn} Az-statistically converges uniformly
a.s. to ¢, then

(renl{eetm(Udln-clze) =0} 20} ez

Since
s(r(A ULl =<l =e3)) < o(v(U (o<l = <3))

taking the limit as n — oo on both side of above inequality, we obtain

(AUl = 2))) =0

k=1n=k
By the first proposition, {(n} Az-statistically converges a.s. to (. O]

4.6. \r-statistically convergence uniformly a.s. and Ar-statistically convergence
in measure.

Theorem 2. If a sequence {Cn} of complex uncertain variables Az-statistically converges
uniformly a.s. to ¢, then {Cn} Az-statistically converges in measure to (.

Proof. 1f the sequence {Cn} complex uncertain variables Az-statistically converges uniformly
a.s. to ¢, then from the proposition above we have

{rem: A—ln‘{keIT: M(Q{Hgn—gu >e}) 26|20} eT.

s(({lic. - <l = <)) < s G {llca - <l = <})).

Letting n — oo, we can obtain {(,} Az-statistically converges in measure to (. O
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