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Abstract
The present study investigates the production and characterization of alkali-activated bricks prepared with mixing metakaolin 
(MK) and biomass fly ash from the combustion of a mix of pine pruning, forest residues and energy crops (BFA). To use this 
low cost and high availability waste, different specimens were prepared by mixing MK with different proportions of BFA 
(25, 50 and 75 wt%). Specimens containing only metakaolin and biomass fly ash were produced for the purpose of com-
parison. Effects of the alkali content of biomass fly ash, after a washing pretreatment (WBFA), as well as the concentration 
of NaOH solution on the physical, mechanical and microstructural properties of the alkali-activated bricks were studied. It 
was observed that up to 50 wt% addition of the residue increases compressive strength of alkali-activated bricks. Alkalinity 
and soluble salts in fly ash have a positive effect, leading materials with the improved mechanical properties. Concentra-
tion of NaOH 8 M or higher is required to obtain optimum mechanical properties. The compressive strength increases from 
23.0 MPa for the control bricks to 44.0 and 37.2 MPa with the addition of 50 wt% BFA and WBFA, respectively, indicating 
an increase of more than 60%. Therefore, the use of biomass fly ash provides additional alkali (K) sources that could improve 
the dissolution of MK resulting in high polycondensation. However, to obtain optimum mechanical properties, the amount 
of BFA cannot be above 50 wt%.

Keywords Biomass fly ash · Metakaolin · Alkali-activated bricks · Mechanical properties

1 Introduction

Ordinary Portland cement (OPC) is the most widely used 
hydraulic binder in the world. Despite its innumerable 
advantages (relatively low cost, easy availability of raw 
materials very abundant in the earth's crust, acceptable 

durability), it is, however, a highly polluting manufactur-
ing material, as it requires a large amount of electrical and 
thermal energy (temperatures above 1400–1500 °C need to 
be reached), exploits natural resources (obtaining raw mate-
rials causes the destruction of natural quarries) and emits a 
large amount of polluting gases into the atmosphere. These 
gases cause the greenhouse effect  (CO2,  SO2,  NOX). Envi-
ronmental regulations oblige the cement industry and the 
scientific community to seek solutions to achieve the goal 
of sustainable development. This is reached through pro-
cess efficiency or the development of new, more eco-efficient 
binder materials.

These eco-efficient cements are defined as those binders 
that are obtained through processes that require less energy 
than OPC and also have a lower environmental impact. 
Among the alternative cements developed are cements with 
additions in which the partial replacement of OPC by the 
incorporation of chemically active additions such as poz-
zolans and industrial by-products such as coal ash and steel 
slag has been achieved. Hasmi et al. [1, 2] indicated that the 
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use of fly ash in concrete improves the mechanical proper-
ties due to its pozzolanic behaviour. The creep and fracture 
state of reinforced concrete with up to 40 wt% fly ash shows 
a trend identical to that of reinforced concrete without fly 
ash. Furthermore, concrete with 40 wt% fly ash showed a 
satisfactory behaviour at older ages (i.e. beyond 28 days) 
in terms of strength, modulus of elasticity and deflection. 
Among these eco-efficient cements there are also others 
with very different characteristics from OPCs, the so-called 
Alkali-activated Materials (AAMs), which are defined as 
binders resulting from the chemical interaction of strongly 
alkaline solutions and aluminosilicates of different compo-
sitions (high and low CaO content) and natural origin such 
as metakaolin, produced from the calcination of kaolinite 
clays as well as other calcined clays [3] or industrial wastes 
and by-products such as blast furnace slag, fly ash, ceramic 
residues [4, 5].

Alkaline cements are materials obtained by a chemical 
process or alkaline activation of a material based on alumi-
nosilicates. These materials are rich in alumina  (Al2O3) and 
silica  (SiO2), with totally or partially amorphous structure, 
acting as initiators of the reaction with an alkaline activa-
tor [6, 7]. Aluminosilicates susceptible to alkaline acti-
vation can be divided into two groups according to their 
chemical composition: (i) calcium-rich materials, belong-
ing to the system (Na, K)2O–CaO–Al2O3–SiO2–H2O and 
(ii) calcium-poor materials, belonging to the system (Na, 
K)2O–Al2O3–SiO2–H2O [8]. Therefore, when these materi-
als react, two phases can be produced: sodium aluminosili-
cate gel hydrate (NASH) and calcium silicate hydrate (CSH). 
These two networks act differently. The NASH network pro-
duces a three-dimensional structure, while the CSH network 
resembles that of a polymer [9].

The level of interest in alkaline activated materials, has 
increased in recent years due to their high mechanical prop-
erties and durability in terms of chemical and fire resistance 
[5] in addition to the environmental benefits they bring [10], 
reducing  CO2 emissions because their production does not 
require high temperatures [11].

Andalusia has an important biomass wealth, largely from 
olive cultivation and its derived industries. It can be consid-
ered that one hectare of olive grove can produce 2–3 tons of 
prunings [12]. The energy use of pruning has traditionally 
been linked to the use of firewood as domestic fuel; however, 
during the last decade, the use of olive pruning chips as 
fuel for electricity generation has experienced a significant 
increase. At present, this consumption is almost exclusively 
linked to biomass electricity generation plants. In areas 
where there is no possibility to sell the biomass, burning 
and feeding it into the soil remain the farmer's only options. 
In Andalusia, the use of forest biomass has great potential. 
The need to carry out silvicultural treatments for the mainte-
nance and improvement of forests and forest masses through 

felling, pruning, clearing of bushes, etc. generates residues 
(firewood, branches and bushes) that must be removed from 
the forest, as they are a risk factor of serious importance for 
the spread of pests and forest fires. These residues can be 
used in the energy field. Energy crops are specific crops ded-
icated exclusively to energy production. Numerous public 
and private experiences have been carried out in Andalusia 
for the testing and production of different herbaceous and 
tree species for energy purposes, in which traditional food 
crops, such as cereals, sunflower, rapeseed, with a suitable 
aptitude for the production of biofuels, as well as herbaceous 
and forest species for obtaining solid biomass for thermal 
and/or electrical use, have been evaluated.

Biomass ash is the solid residue from biomass combus-
tion. Nowadays, the use of biomass to generate heat and 
electricity, to apply waste and reduce  CO2 emissions to the 
atmosphere, has increased substantially and has become the 
fastest growing renewable energy. Consequently, the amount 
of ash available is also growing. The ash produced by the 
combustion process is of two types; bottom ash and fly ash. 
Bottom ash is produced on the grate and in the combustion 
chamber and consists of fully or partially burned biomass, 
while fly ash is entrained in the combustion gases that are 
collected and precipitated in the filters. The fields of applica-
tion of biomass ashes depend on their characteristics, such as 
chemical composition, morphology, mineralogical composi-
tion and leaching behavior. The alternatives of the produced 
ashes contemplate their transfer to authorized landfills, with 
the expense and space occupation that it entails being the 
less attractive alternative. Other more sustainable alterna-
tives are its use as fertilizer [13], its applications in con-
struction as raw material in the manufacture of cements, 
concretes, ceramic products, filler in road embankments 
[14–19], nanotechnology in industrial catalysis and envi-
ronmental [19] and its reuse as fuel [20].

Other authors reported the use of different biomass fly 
ashes in the manufacture of alkaline activated materials. 
Thus, Laxman Yadav et al. [21] studied the effect of com-
pressive strength of various parameters, such as silica/alu-
mina ratio, the effect of alkaline activator/binder ratio and 
the effect of sodium silicate/sodium hydroxide ratio in sugar-
cane bagasse-metakaolin ash mortars. Optimum results were 
obtained for a silica/alumina ratio 2.5 (56.36 wt% bagasse 
fly ash-43.64 wt% metakaolin), an activator/alkaline binder 
ratio of 0.5 and a sodium silicate/sodium hydroxide ratio of 
2.5. Nana et al. [22] studied the effect of replacing metakao-
lin with volcanic ash, VA (10–30 wt%) and rice husk ash, 
RHA (0–20 wt%) in the manufacture of geopolymers. The 
results showed that the mechanical strengths and physical 
properties were mainly affected by VA content as well as 
RHA content, where the optimum mechanical strengths were 
obtained for specimens containing 20 wt% VA and 10 wt% 
RHA. De Rossi et al. [23] studied the influence of processing 
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parameters on the properties of geopolymers based on wood 
biomass fly ash. The results showed different physical and 
chemical properties as a function of processing parameters, 
suggesting various applications. Samples obtained under 
ambient conditions with a sodium silicate: sodium hydroxide 
(SS: SH) = 1.5 ratio could be used as dense mortars. Perná 
et al. [24] studied the addition of 20 and 33 wt% of high LOI 
straw ash as filler in metakaolin-based geopolymers inves-
tigating the quality of its incorporation and its influence on 
the resulting properties. Yurt and Bekar [25] have studied 
the effect of using hazelnut shell ash (HA) together with 
metakaolin and blast furnace slag (BFS) in the production 
of alkaline activated concrete. They concluded that ashes can 
be effectively used in alkaline activated concrete mixtures 
and have potential to improve the abrasion resistance of the 
materials. Rajamma et al. [26] studied the effect of addition 
of metakaolin to biomass fly ash in the manufacture of alka-
line activation mortars. It is concluded that addition of up to 
40 wt% metakaolin results in specimens with the improved 
mechanical properties.

The aim of this work is to evaluate the use of biomass fly 
ash from a mix of olive pruning, forestry residues and energy 
crops as a raw material to replace metakaolin (MK) in the 
manufacture of alkaline activated cements. The effect on the 
technological properties of the alkaline activation cements 
of the amount of residue to be replaced by MK has been 
studied. Furthermore, the alkalinity and content of soluble 
salts in the residue, subjecting it to a washing pre-treatment, 
and the concentration of the NaOH solution used have been 
also studied.

2  Experimental procedure

2.1  Raw materials

The raw materials used for the synthesis of alkali-activated 
bricks were: a natural kaolin (provide by Caobar S.A. Póveda 
de la Sierra, Guadalaja, Spain), received as a powder product 
and calcined at 750 °C (4 h) in an electric furnace Carbolite 
to transform into the reactive metakaolin phase [27–29]. The 
biomass fly ash (Aldebarán Energía del Guadalquivir, Andú-
jar, Jaén, Spain) obtained from the combustion of a mix of 
olive pruning, forest residues and energy crops. To observe 
the effect of alkalinity and the content of soluble salts in the 
mechanical properties of the bricks, the fly ashes were used 
as they were received from the renewable energy generation 
plant and subjected to a pretreatment process. The pretreat-
ment consists in a washing and drying process. A 1:3 (wt/
wt) ash/water ratio was shaked in a beaker at 60 °C for 1 h. 
The ash suspension was filtered with a nitrocellulose filter 
and dried at 110 °C up to constant weight. The particle size 
of ash (BFA), washed ash (WBFA) and metakaolin used as 

raw material was determined the particle size distibution by 
laser diffraction (Fig. 1) using a Malvern Mastersizer 2000 
equipment and the d10, d50 and d90 values are presented in 
Table 1. Table 1 shows that metakaolin is a finer material 
than fly ash. However, most of the particles of both raw 
materials are smaller than 150 microns, so it is expected a 
good chemical reactivity of them with the alkaline solution.

The chemical composition of the precursors was ana-
lyzed by X-ray fluorescence (XRF) (Philips Magix Pro 
model PW-2440). Approximately 0.8  g of sample and 
8 g of flux (mixture of  LiB4O7 66.67%,  LiBO2 32.83%, 
LiBr 0.5%) were mixed. Subsequently, a bead was made 
by melting using a bead machine (model Katanax X600 
from Spex Sample Prep). The samples were analysed under 
vacuum. Concentration data were obtained using the inte-
grated UNIQUANT software, in the form of oxides, using 
an overall Kappa (bead) corrected with different CRMs 
and taking into account the percentage of loss of igni-
tion (LOI). The results are shown in Table 2. The washing 
pretreatment reduced the potassium content of the ashes 
from ~ 8.0% to 1.84%. The total  SiO2 +  Al2O3 +  Fe2O3 
value is 32.4% and 36.0% for BFA and WBFA, respec-
tively. The CaO value is 34.54% and 38.15% for BFA and 
WBFA, respectively. The CaO content has an influence over 
the mechanical properties of the alkali-activated materials 
due to the additional CaO–Al2O3–SiO2–H2O (C–A–S–H) 
phases [30, 31] generated during the geopolymerization of 
 Na2O–Al2O3–SiO2–H2O (N–A–S–H). These ashes classified 
as "C" class fly ash [32] rich in carbonates, oxyhydroxides 
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Fig. 1  Particle size distribution of raw materials

Table 1  Particle size of ashes (BFA), washed ashes (WBFA) and 
metakaolin (MK)

Precursors d10 (µm) d50 (µm) d90 (µm)

BFA/WBFA 8.06 51.97 133.92
MK 2.23 9.58 87.02



 Archives of Civil and Mechanical Engineering (2022) 22:121

1 3

121 Page 4 of 21

silicates, and some sulphates and phosphates. The silica/
alumina  (SiO2/Al2O3) ratio is 3.32 and 3.19 for BFA and 
WBFA, respectively.

The mineralogical composition of the metakaolin and the 
residues BFA and WBFA and alkali-activated materials were 
determined by X-ray diffraction (XRD) (Empyrean equip-
ment with a PIXcel-3D detector from PANalytical) the 2θ 
range from 10 to 60 with a step size of 0.02 (Fig. 2). The 

phases in XRD were determined in Highscore software. 
MK consisted of quartz (file card number: 96-900-5020) 
as the only crystalline phase. The broad hump structures 
observed from 15° to 35° (2θ), corresponds to the presence 
of amorphous phase associated to metakaolin. The BFA 
residue consists mainly of quartz (96-900-5020) as the pre-
dominant mineral, calcite (file card number: 96-900-9669) 
and to a lesser extent aluminosilicates (file card number: 
96-900-1967) and sylvite (file card number: 96-900-3130). 
After the washing process, the diffraction patterns of the 
WBFA show an increase in the carbonate content of the 
ashes, and the diffraction peaks corresponding to sylvite is 
not observed. The presence of amorphous phase in the resi-
due can be observed by the deviation of the baseline in the 
2θ region between 20° and 35°.

The different chemical bonds of the precursors and alkali-
activated bricks were investigated by Attenuated Total 
Reflectance-Fourier Transform Infrared spectroscopy ATR-
FTIR (Vertex 70 Bruker equipment). The scans recorded in 
frequency range 4000–400  cm−1. Figure 3 shows the FTIR 
spectra of the precursors: MK, BFA and WBFA. The band 
centered at 1058  cm−1 in the MK precursor and the centered 
bands appearing at frequencies 960–1150  cm−1 in the BFA 
and WBFA waste materials are pointed to the asymmetric 
stretching vibration of the Si–O–T (Si, Al) bond [33, 34]. 
They are indicative of the presence of silicon oxide in the 
samples. In the samples of the BFA residue and subjected 

Table 2  Chemical composition (main oxide content wt%), LOI (loss 
of ignition) and true density of precursors: MK, BFA and WBFA

Component (wt%) MK BFA WBFA

SiO2 58.03 22.08 24.54
Al2O3 40.29 6.65 7.69
Fe2O3 0.42 3.64 3.81
MnO – 0.16 0.19
MgO – 4.77 5.30
CaO 0.11 34.54 38.15
Na2O 0.09 1.91 0.93
K2O 0.02 7.99 1.84
TiO2 0.15 0.65 0.59
P2O5 0.07 2.33 2.62
SO3 0.01 5.27 2.55
LOI 0.36 9.99 10.29
True density (kg/m3) 2631 2553 2431

Fig. 2  XRD pattens of BFA, 
WBFA and MK
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to the wash pretreatment, WBFA, several peaks correspond-
ing to the different symmetries of the  [SiO4]4+ group are 
distinguished [35]. The washing pretreatment has decreased 
the stretching of the silicon bonds, revealing that the poz-
zolanic reactivity of ashes decreased. In the MK precursor 
the band at 796  cm−1 corresponds to the Si–OSi–O–Si bond 
vibration of quartz [36] and the band centered at 437  cm−1 
is assigned to the bending or stretching vibration of T–O–T 
bridges (T = Si or Al) of aluminosilicates [37]. In the resi-
due without and with pretreatment, high absorption bands 
at 1410  cm−1 along with a narrow peak at 874  cm−1 and a 
weak absorption at 712  cm−1 are observed, associated with 
C–O bond vibrations in carbonate  [CO3]2− groups. In addi-
tion to a weak band at 618–603  cm−1 assigned to Si–O bond 
vibration.

In ashes, after washing pretreatment, a broad band cen-
tered at 3418  cm−1 and a shoulder centered at 1641  cm−1 
corresponding to O–H bond tension and O–H–O bond bend-
ing in water, respectively, were identified [38].

The morphology of the MK precursor and residue 
without pretreatment and after washing pretreatment was 
observed by a JEOL SM 840 field emission scanning elec-
tron microscope (SEM) and the chemical composition was 
determined by energy dispersive X-ray spectroscopy (EDS). 
Microstructure of fractured surfaces were examined using 
SEM. Samples were placed on an aluminum sample holder 
and coated with carbon using the JEOL JFC 1100 sputter 
coater. The SEM images and EDS spectra obtained of raw 
materials are shown in Fig. 4.

As can be seen, the MK precursor has irregularly shaped 
particles with an irregular particle size distribution. Most 
of them are rich in silica and alumina (Spectrum 1) and in 
smaller proportion presents particles rich in silica (Spectrum 

2). The BFA and WBFA residue, presents some spheres and 
more spherical particles being rich in silica and alumina in 
addition to calcium. The amount of potassium in the parti-
cles after the washing pretreatment is slightly lower. In addi-
tion, BFA and WBFA presented particles rich in calcium 
(Spectrum 4). After the washing pretreatment, no particles 
other than those rich in silica and alumina, rich in potassium, 
are observed (Spectrum 5).

Leachates from fly biomass ash were characterized by 
ICP-MS according to methods adapted from UNE-EN ISO 
17294–1:2007 [39] and UNE-EN ISO 17294-2:2017 [40] 
(Table 3). The leachate is alkaline (pH = 13), due to soluble 
salts, mainly potassium hydroxide and carbonate, as well as 
sulfates and chlorides. Therefore, this leachate provides an 
elevated pH that could favor geopolymerization reactions. 
The dry matter was 36.5 g/l, potassium representing 10.6 g/l. 
The conductivity is 68,000 µS/cm. It is, therefore, interest-
ing to study the beneficial effect of these soluble salts in the 
manufacture of alkali-activated bricks.

2.2  Sample preparation and characterization

The activating solution contains sodium hydroxide (Pan-
reac SA, purity of 98%) and sodium silicate (Panreac S.A.) 
with a weight composition: 29.2%  SiO2, 8.9%  Na2O and 
61.9%  H2O. The alkaline activator solutions were prepared 
in two main stages. In the first stage, the sodium hydroxide 
solution of the appropriate molarity is prepared to which, 
once cooled, the appropriate amount of sodium silicate is 
added. In the first stage of the study, when the influence of 
the BFA or WBFA content on the addition of MK is studied, 
the molarity of the sodium hydroxide solution is 8 M and 
the sodium silicate/sodium hydroxide ratio = 1.15 being the 

Fig. 3  FTIR spectra of raw 
materials: MK, BFA and WBFA
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modulus of the activator (Ms =  SiO2/Na2O = 1.2). Once the 
amount of BFA and WBFA to be substituted by the MK has 
been optimized, the influence of the concentration of the 
NaOH solution (5, 8, 12 M) was studied.

In the preparation of alkali-activated bricks, solid 
precursors obtained by mixing metakaolin are replaced 
by 25–100 wt% of BFA or WBFA. The mixture of solid 

precursors was mixed with the activating solution. The 
details of the different formulations are presented in 
Table 4. For each formulation in which the effect of the 
addition of BFA or WBFA is studied, the water/binder 
ratio was kept constant at 0.6 obtaining an acceptable 
workability. The activator was added to the precursors 
previously mixed for 2 min and the mixture agitated for 

Fig. 4  SEM images and EDS spectra of raw materials: a MK, b BFA and c WBFA
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approximately 5 min in a Proeti planetary mixer. The 
fresh paste obtained was poured into silicone molds 
(60 × 30 × 15 mm) and vibrated for 2 min to avoid air bub-
bles. The samples were cured at 60 °C (24 h and humidity 
saturated atmosphere), demolded and kept at room tem-
perature until the test day (28 days) (Fig. 5). The alkali-
activated bricks obtained are shown in Fig. 6. The param-
eters of this study were the amount of BFA to be added to 
MK, the influence of soluble salts in the ashes, i.e., of the 
ash pretreatment, and the modulus of the activator. These 
parameters are used to optimize the compressive strength 
of alkali-activated bricks.

The bulk density and apparent porosity of the bricks 
were determined according to the UNE-EN 1015-10 stand-
ard [41]. These parameters evaluated by triple weighing 
of the alkali-activated samples after water saturation, sus-
pended in distilled water and after drying at 80 °C, until 

constant weighing. Water absorption analysis was carried 
out according to ASTM C-642 [42].

The compressive strength of six geopolymer bricks for 
each composition was performed using a universal testing 
machine MTS 810 Material Testing Systems Laboratory of 
100 kN with a displacement of 0.5 mm/min according to 
UNE-EN-772–1 [43].

3  Results and discussion

3.1  Bulk density, apparent porosity and water 
absorption

Figure 7 shows the bulk density, apparent porosity and water 
absorption values of the alkali-activated bricks after 28 days 
of curing. As can be seen, the bulk density increases as the 
substitution ratios of metakaolin for BFA residue increase. 
The water absorption and apparent porosity values are 
in agreement with bulk density results. Alkali-activated 
bricks with lower bulk density had higher water absorp-
tion and bulk porosity and vice versa. The control bricks 
have a bulk density of 1250 kg/m3, apparent porosity of 
38% and a water absorption of 34%. Substitution of MK 
by BFA results in bricks with higher bulk densities in the 
range of 1277–1625 kg/m3, apparent porosity in the range 
38–18% and water absorption in the range 33–12%, lower as 
increasing amounts of BFA residue incorporated. The real 
density measured with He of MK (2631 g/cm3) is higher 
than that of BFA (2553 kg/m3) (Table 2), indicating a lower 
particle mass to volume ratio when the weight percentage 
of BFA was increased. Therefore, the increase in bulk den-
sity and decrease in porosity may be due to a lower fluid-
ity of the obtained pastes as increasing amounts of ash are 

Table 3  Physico-chemical characteristics of leachate from washing of 
fly biomass ash

Property Leachate

pH 13
Electrical conductivity (µS/cm) 68,000
Dry matter (180 °C) (mg/l) 36,500
Sodium (mg/l) 337.5
Potassium (mg/l) 10,593.1
Calcium (mg/l) 870.35
Magnesium (mg/l) 0.0571
Iron (mg/l) 0.046
Manganese (mg/l) 0.0005
Chloride (mg/l) 675.2
Sulphur (mg/l) 2783.9

Table 4  Alkali-activated bricks mix proportion of considered parameters

AAM MK (g) BFA (g) WBFA (g) NaOH (g) H2O (g) Na2SiO3 (g) w/b Ms Molar ratio

Si/Al Na/Si Ca/Si

100MK 450 – – 64 195 300 0.6 1.2 1.63 0.42 0.002
75MK-25BFA 337.5 112.5 – 64 195 300 0.6 1.2 1.83 0.48 0.14
50MK-50BFA 225 225 – 64 195 300 0.6 1.2 2.15 0.56 0.31
25MK-75BFA 112.5 337.5 – 64 195 300 0.6 1.2 2.85 0.67 0.54
100BFA – 450 – 64 195 300 0.6 1.2 5.31 0.82 0.89
75MK-25WBFA 337.5 – 112.5 64 195 300 0.6 1.2 1.83 0.48 0.15
50MK-50WBFA 225 – 225 64 195 300 0.6 1.2 2.15 0.55 0.34
25MK-75WBFA 112.5 – 337.5 64 195 300 0.6 1.2 2.81 0.64 0.59
100WBFA – – 450 64 195 300 0.6 1.2 4.86 0.78 0.93
50MK-50BFA 225 225 – 40 195 300 0.6 1.6 2.15 0.43 0.31
50MK-50BFA 225 225 – 96 195 300 0.58 0.9 2.15 0.73 0.31
50MK-50WBFA 225 – 225 40 195 300 0.63 1.6 2.15 0.42 0.34
50MK-50WBFA 225 – 225 96 195 300 0.58 0.9 2.15 0.72 0.34
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incorporated, which could improve the formation of a more 
compact and dense structure of the samples with the addition 
of BFA. The residue served as a filler with a good ability to 
fill spaces, voids and pores.

In the case of the influence of the washing pretreat-
ment, it was noted that alkali-activated bricks with 
slightly lower bulk densities, with values in the range 

of 1254–1545 kg/m3 are obtained. On the other hand, 
values of apparent porosity between 38% and 21% and 
water absorption between 35% and 14%, slightly higher, 
are obtained. The lower bulk density for the same amount 
of residue incorporated after the washing process may 
be due to the lower real density of the ashes after pre-
treatment, decreasing to 2431 kg/m3 (Table 2), which 
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Compressive strength
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Fig. 5  Synthesis and characterization scheme of alkali-activated cements
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represents a reduction of 4.8%. Moreover, BFA presents 
a higher amount of additional alkaline species that could 
improve the dissolution of the solid precursor resulting in 
a high polycondensation of Si- and Al-oligomers extend-
ing the geopolymer network and improving the densifi-
cation of the structure. It can justify the decrease of the 
apparent porosity.

Concerning of the influence of the NaOH concentra-
tion of the alkali-activated bricks (Fig. 8) incorporating 
50 wt% residue, it can be observed that both bricks sam-
ples using BFA and those using WBFA present a lower 
density as lower NaOH concentrations are used, due to 
an increase in the w/b ratio (Table 4). Therefore, the use 
of a higher amount of water results in higher fluidity and 
lower paste consolidation, which created pores in the 
samples that contributed to lower bulk density and higher 
apparent porosity and water absorption.

3.2  Compressive strength

The mechanical strength in terms of compressive strength 
of the alkali-activated materials after 28 days of curing is 
reported in Fig. 9. The 28-days compressive strengths of the 
specimens are 23.0, 35.9, 44.0, 24.1 and 18.1 MPa for MK, 

Fig. 6  Alkali-activated bricks prepared as described in experimental 
procedure
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25MK-25BFA, 50MK-50BFA, 25MK-75BFA and 100BFA, 
respectively. The compressive strength increases with the 
addition of BFA up to 50 wt% and decreases. The increase 
in compressive strength with the increase of up to 50 wt% 
of BFA can be explained due to the presence of calcium 
in the ashes that will react with silicate and aluminate to 
form various forms of calcium silicate hydrates and calcium 
aluminum hydrates C–S (A)–H gel. This gel fill the voids 
and pores of the geopolymeric binder N(K)–Al–Si–H, which 
increases the density of the paste increasing the compressive 
strength [44]. Therefore, the addition of ash decreases poros-
ity of the different hydrated phases, which can lead to an 
increase in the mechanical strength of these specimens. The 
CaO content of ashes could develop the dissolution of the 
glassy phase and then facilitates the polymerization reaction. 
The simultaneous formation of geopolymer and CSH gel 
help to bridge the gaps between the different hydrated phases 
and the unreacted particles, resulting in a denser and more 
homogeneous matrix. The formation of CSH gel within a 
geopolymeric binder functions as a microaggregate. In this 
way, the compressive strength of specimens containing up 
to 50 wt% of BFA increases. However, when ash amounts 
of 75–100 wt% are added, the excessive calcium content can 
induce the formation of calcium-based products, leading to a 
decrease in the strong Si–O–Al bonding in the geopolymer 
system, resulting in a decrease in compressive strength [45]. 
It is generally accepted that the presence of excess calcium 
hydroxide in the resulting structure and the subsequent car-
bonation process are one of the main causes of concrete 
deterioration [46]. In addition, ash is rich in organic matter, 
as indicated by the LOI value (Table 2), so this addition 
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increases the organic content in the matrix. With the addi-
tion of 75 and 100 wt% of the residue the amount of organic 
matter can be significant and it would limit polycondensation 
reaction, increasing the setting time with consequent loss of 
mechanical strength [47].

When using ashes subjected to washing pretreatment, 
lower compressive strength values obtained, decreas-
ing between 15% and 50% for the 75MK-25WBFA and 
100WBFA specimens with respect to the same 75MK-
25BFA and 100BFA alkali-activated bricks, respectively. 
When ashes are rich in alkalis improve the dissolution of 
the MK precursor and the BFA residue, resulting in a higher 
extension of the geopolymer network structure leading to 
higher compressive strength of the specimens employing 
unwashed ashes.

The influence of NaOH solution concentration on com-
pressive strength is shown in Fig. 10. As can be seen, the 
compressive strength increases as the NaOH concentration 
increases. The increase is greater from 5 to 8 M. Increasing 
the concentration up to 12 M does not produce significant 
improvements in compressive strength. The geopolym-
erization reaction is accelerated with a more concentrated 
alkaline environment. The presence of higher amounts of 
hydroxyl ions will improve the dissociation of silicate and 
aluminate and further polymerization. On the other hand, 
a higher w/b ratio in the samples was unfavorable for the 
development of mechanical strength. One of the reasons for 
the loss of compressive strength is the higher porosity of 
the samples due to the larger space between the particles 
and their lower cohesion associated to the low alkalinity of 
the matrix. Depending on the alkalinity of the system, it is 
possible that the formation of geopolymer gel and CSH gel 
compete with each other. Therefore, instead of having one 
phase acting as a microaggregate to fill the voids and gaps 

in the binder, two reactions compete for soluble silicates and 
space available for growth. Consequently, resulting binder 
will be disordered with two phases of similar size, resulting 
in increased porosity, leading to a reduction in compressive 
strength in the specimens using a 5 M NaOH concentration. 
When 8 and 12 M dilution is employed, the formation of 
CSH gel and geopolymer gel can take place simultaneously. 
The amount and nature of the final products will depend 
mainly on the ratio between aluminosilicate and calcium 
sources, as well as the alkalinity of the alkaline activators 
[44]. The low increase observed when increasing the concen-
tration from 8 to 12 M may be due to the fact that the higher 
 OH− concentration may lead to Ca(OH)2 precipitation and 
inhibition of C–(A)–S–H gel formation. In general, the use 
of high-molarity NaOH has economic, environmental and 
safety limitations in the application of building materials. 
Therefore, it can be deduced that the optimum molarity of 
NaOH for the activation of 50MK-50BFA precursors is 8 M.

3.3  X‑ray diffraction (XRD)

The XRD pattern of the control 100MK and alkali-activated 
bricks containing different amounts (25–100 wt%) of the 
BFA residue are presented in Fig. 11. In the X-ray patterns, 
the X-ray hump is observed between 20–40° (2θ). This hump 
appears in the metakaolin precursor from 15–35 (2θ), while 
in the BFA residue from 20–35° (2θ). The shift of this hump 
towards higher 2θ indicates the formation of the amorphous 
N–A–S–H geopolymeric gel [48–51]. A significant decrease 
of this amorphous halo can be observed for the 25MK-
75BFA and 100BFA alkali-activated bricks, confirming the 
higher degree of polycondensation of these specimens. In 
addition to the formation of amorphous binder, the diffrac-
tion pattern of the 100MK at 28 days of curing indicates the 
diffraction peaks of quartz present in the precursor, as well 
as the presence of traces of calcite due to its carbonation. In 
alkali-activated bricks incorporating different amounts of the 
BFA residue (25–100 wt%), diffraction peaks corresponding 
to quartz, present in both precursors, and calcite, present in 
the BFA residue, are observed. This suggests that most of 
these crystalline phases do not react or partially react dur-
ing the geopolymerization process due to the decrease in 
intensity. The diffraction peaks corresponding to sylvite and 
aluminosilicates are not observed implying that these min-
erals dissolve in the alkaline medium during the geopoly-
merization process and form new phases. The amorphous 
C–S–H and C–A–S–H cementitious products are difficult to 
observe, due to the interference between peaks of the differ-
ent phases, since these phases appear as diffuse diffraction 
peaks at angles approximately 28–30, 34 and 35° (2θ) [52].

Regarding the influence of the washing pretreatment, the 
XRD pattern of the alkali-activated bricks 50MK-50BFA 
and 50MK-50WBFA is shown as an example (Fig. 12). It 
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shows that there are no differences in both diffraction pat-
terns, with the diffraction peak of quartz being slightly more 
intense in 50MK-50WBFA bricks, indicating a lower reac-
tion. As for the influence of NaOH concentration (Fig. 13) 
no differences are observed in the diffraction patterns of the 
5 and 8 M bricks. Increasing the concentration up to 12 M 
causes the excess sodium ions in the medium to react with 
calcium carbonate forming calcium sodium carbonate.

3.4  Fourier transform infrared spectroscopy (FTIR)

Figure 14 shows the FTIR spectra of alkali-activated bricks 
incorporating different amounts of BFA residue (25–100 
wt%) after 28 days of curing. The absorption bands centered 
between 3211 and 3366  cm−1 and at 1645  cm−1 are assigned 
as indicated in the WBFA precursor to the –OH bond stretch-
ing vibrations and the H–O–H bending vibrations of the 

bound water molecules, respectively. These bands proceed 
from water molecules adsorbed on the surface or trapped in 
cavities of the geopolymer structures [53]. The intensity of 
these bands decreases with the addition of higher amounts 
of BFA (75–100 wt%). This indicates a lower degree of 
adsorption of water molecules from these alkali-activated 
bricks or less gel formation. The bands centered at approxi-
mately 1450 and 870  cm−1 in all alkali-activated bricks are 
attributed to vibrations of the O–C–O bonds in the carbon-
ate molecules, asymmetric stretching and bending, respec-
tively [54, 55]. These bands are related to the carbonation 
reaction of the samples during synthesis and curing. They 
are more intense in alkali-activated bricks with higher BFA 
content (75 and 100 wt%), so it could also be assigned to 
the carbonate content present in the residue [56, 57]. A shift 
of the main band from 1058  cm−1 for the MK precursor to 
973  cm−1 for the 100MK bricks is observed after 28 days 

Fig. 11  XRD patterns of alkali-
activated bricks as a function 
of wt% of fly ash and control 
bricks (100MK)
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of curing. The addition of 25–50 wt% BFA produced a 
shift to lower wavenumbers 969–968  cm−1, increasing to 
976 and 977  cm−1 with the addition of 75–100 wt% BFA, 

respectively. This band can be attributed to the vibration of 
the silicate species bound to the alkaline activator [58–60]. 
Therefore, the shift of this band indicates the successful 

Fig. 12  XRD patterns of 
50WBFA and 50BFA alkali-
activated bricks
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geopolymerization of the precursors with the addition of 
activating solution, forming new amorphous products con-
stituting the geopolymer matrix [61]. It is important to note 
that the intensity of this band is reduced when high amounts 
of BFA (75–100 wt%) are used, which could indicate the 
lower formation of geopolymer gel, due to the lower amount 
of Si–O–T groups (Si, Al) when high amounts of residue are 
added [53, 62]. The absorption bands observed at 680  cm−1 
are attributed to the bending vibration of the Si–OSi–O–Si 
bonds of quartz, indicating weak dissolution of the quartz 
phases in alkaline medium. The band centered at 575  cm−1 
is assigned to the vibration of Al–O bonds [63].

As for the influence of the washing pretreatment only 
a slight shift of the bands centered at 968 and 977  cm−1 
is observed for the geopolymeric bricks 50MK-50BFA and 
100BFA, respectively up to 971 and 985  cm−1 for the alkali-
activated bricks 50MK-50WBFA and 100WBFA respec-
tively (Fig. 15). This shift to higher wavenumbers could be 
due to lower amount of alkali ions provided by pretreated 
samples. Therefore, the negative charges of the Al species 
inserted in the tetrahedral Si site of the geopolymer network 
could be compensated by the positive alkali ions,  K+,  Ca2+, 
present in the BFA, modifying the intramolecular distances 
in accordance with Deutou Nemaleu et al. [47].

Concerning the FTIR spectra of the 50MK-50BFA 
alkali-activated bricks in which different concentrations of 
NaOH are used as activating solution (Fig. 16), a shift of 
the band assigned to the asymmetric stretching vibration of 
the Si–O–T group can be observed, centered at 980  cm−1 
for the specimens using 5 M solution up to 968  cm−1 for the 
samples using 8 and 12 M solution. The larger shift of the 
main band towards lower wavenumbers when higher NaOH 
concentrations are used could be related to the increase of 
the amorphous phase in the alkali-activated cement struc-
ture. It implies an increase in the degree of geopolymeriza-
tion, due to a higher dissolution of MK and BFA precursors 
and a higher substitution of Si–OSi–O–Si by Si–O–Al at the 
tetrahedral sites with the provision of more nucleation sites 
in the three-dimensional geopolymer structure leading to a 
local change of the Si–O bond environment [64, 65].

3.5  Scanning electron microscope coupled 
by energy‑dispersive X‑ray spectroscopy (SEM–
EDS)

The SEM images and EDS analysis of the selected alkali-
activated bricks are shown in Fig. 17. The control specimens 
100MK presents a large number of pores and the presence of 

Fig. 14  FTIR spectra as func-
tion of wt% of BFA and 100MK 
control alkali-activated bricks
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Si, Al and Na, which is ascribed to the poly-(sialate-siloxo) 
networks called N–A–S–H geopolymeric gel [66, 67] as 
indicated by the EDS (Spectrum 1). The substitution of MK 
precursor by BFA residue results in a denser structure with 
lower porosity, with unreacted ash particles (Spectrum 2) 
observed in higher proportion in the 100BFA specimens 
embedded in voids or connected with the main amorphous 
gel matrix. The shrinkage between unreacted particles 
results in formation of microcracks, which are responsible 

for microstructural defects and loss of compressive strength. 
The addition of BFA indicates the participation of  Ca2+ ions 
contained in the precursor in the geopolymerization reac-
tions giving rise to a mixed amorphous (N, C)–A–S–H gel 
due to the combination of C–A–S–H and N–A–S–H gel [62]. 
The existence of (N, C)–A–S–H gel exhibits a soft and dense 
matrix, giving the sample 50MK-50BFA with a stronger 
structure. BFA activation results in a (C, N)–A–S–H gel 
richer in calcium than in sodium (Spectrum 4) and with a 

Fig. 15  FTIR spectra of 50MK-
50BFA, 50MK-50WBFA, 
100BFA and 100 WBFA alkali-
activated bricks
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Fig. 17  SEM–EDS results of selected alkali-activated bricks: 100 MK; 50MK-50BFA; 100BFA; 50-50WBFA; 50MK-50BFA-5M and 50MK-
50BFA-12M at 1000× magnification
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relative lower amount of aluminum. In addition, unreacted 
calcium-rich particles are observed (Spectrum 5), although 
a large proportion of the calcium components contained 
in BFA precursor participate in formation of gel structure. 
The amount of unreacted particles is higher in the 100BFA 
alkali-activated bricks, resulting in lower amount of geopol-
ymeric gel which justifies the loss of compressive strength 
with additions above 50 wt% residue.

In the SEM micrographs of the alkali-activated bricks 
50MK-50WBFA using ashes subjected with a washing pre-
treatment as precursor, no major differences are observed 
with respect to the bricks 50MK-50BFA. The formation of 
the mixed gel (N, C)–A–S–H (Spectrum 6) can be observed 
presenting a greater amount of pores and shrinkage microc-
racks, indicating a worse progress of the geopolymerization 
reaction.

Regarding the influence of NaOH concentration, it can 
be observed that when the NaOH concentration is low, 5 M, 
the coexistence of two separate phases takes place. One 
zone rich in silica, aluminum and sodium, with a very small 
amount of calcium (Spectrum 7) and structure similar to that 
obtained by alkaline activation of metakaolin, N–A–S–H 
geopolymer gel, and another zone with dominance of silica, 
aluminum, calcium and sodium, indicating (C,N)–A–S–H 
formation (Spectrum 8). The coexistence of both N–A–S–H 

and C–A–S–H gels results in a weaker structure, due to com-
petition in formation, resulting in less dense and less homo-
geneous structure due to the separation of both phases and 
unreacted particles, as indicated by the compressive strength 
data, neither phase acting as a microaggregate to fill holes 
and voids of the binder [68, 69]. However, the coexistence of 
both gels disappears when a higher alkalinity or higher con-
centration of NaOH, 8 M and 12 M, is used, being the major 
product formed the mixed (C, N)–A–S–H gel (Spectrum), 
giving rise to denser and more homogeneous structures with 
higher compressive strength values.

4  Conclusions

The performance of metakaolin-based alkali-activated 
bricks, which different amounts of BFA (25–100 wt%) added 
in alkaline medium has been investigated. In addition, the 
effect of the alkali content in the ash precursor, by subjecting 
to a washing pretreatment (WBFA) and of the NaOH con-
centration on the physical, mechanical and microstructural 
properties on bricks has been studied. From the results, the 
following main conclusions are drawn:

Fig. 17  (continued)
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– Bulk density increases, water absorption and apparent 
porosity decrease with the addition of higher amounts 
of the BFA residue. The washing pretreatment, as well 
as the use of low NaOH concentrations, results in alkali-
activated bricks with lower density and with higher bulk 
porosity and water absorption.

– The substitution of metakaolin by 50 wt% BFA resulted 
in an increase in compressive strength, due to the forma-
tion of a homogeneous mixed gel (N, C)–A–S–H that 
contributes to the increase in compressive mechanical 
strength. The content of soluble salts in the ashes has 
positive effect on the mechanical properties, resulting in 
higher extension of the geopolymer network structure. 
The NaOH concentration has a marked effect on the 
mechanical properties. Low NaOH concentrations result 
in the formation of a disordered heterogeneous matrix 
with two N–A–S–H and C–S–H gels of higher porosity, 
leading to reduction in compressive strength.

– XRD patterns and the observed shift in FTIR spectra con-
firm a higher formation of amorphous gel network struc-
ture for samples incorporating up to 50 wt% BFA. Higher 
BFA incorporations (75–100 wt%), washing pretreatment 
and low NaOH concentrations result in a decrease of the 
geopolymerization reaction. In consequence, a decrease 
in mechanical properties is produced.

Therefore, this research demonstrates that the substitution 
of 50 wt% MK for 50 wt% BFA results in alkali-activated 
bricks with improved mechanical properties. The alkali 
content of the ashes contributes to an increase in compres-
sive strength, and an 8 M or higher NaOH concentration is 
required to obtain optimum mechanical properties. Future 
durability studies in different environments, economic and 
environmental performance will be carried out to determine 
its viability as structural materials in civil engineering with 
economic and environmental benefits over other conven-
tional building materials.
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