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Abstract: In construction industry, phase change materials (PCMs), have recently been studied and
found effective in increasing energy efficiency of buildings through their high capacity to store thermal
energy. In this study, a combination of Capric (CA)-Palmitic acid (PA) with optimum mass ratio of
85–15% is used and impregnated with recycled concrete powder (RCP). The resulting composite is
produced as foam concrete and tested for a series of physico-mechanical, thermal and microstructural
properties. The results show that recycled concrete powder can host PCMs without leaking if used in
proper quantity. Further, the differential scanning calorimetry (DSC) results show that the produced
RCP/CA-PA composites have a latent heat capacity of 34.1 and 33.5 J/g in liquid and solid phases,
respectively, which is found to remain stable even after 300 phase changing cycles. In this regard,
the indoor temperature performance of the rooms supplied with composite foams made with PCMs,
showed significantly enhanced efficiency. In addition, it is shown that inclusion of PCMs in foam
concrete can significantly reduce porosity and pore connectivity, resulting in enhanced mechanical
properties. The results are found promising and point to the suitability of using RCP-impregnated
PCMs in foam composites to enhance thermo-regulative performance of buildings. On this basis, the
use of PCMs for enhanced thermal properties of buildings are recommended, especially to be used in
conjunction with foam concrete.

Keywords: recycled concrete powder; phase change materials; foam concrete; capric and palmitic
acid; thermal energy storage

1. Introduction

Starting from the early 20th century and the industrial revolution, an increasing trend
of urbanization took place that continues to this date. According to the World Bank [1],
currently, over 55% of the world’s population (~4.2 billion inhabitants) live in urban areas
while this value is projected to be increased by 1.5 times until 2045 and reach a total of
6 billion people. Although such scale of urban sprawl require major resource challenges,
it is estimated to be also responsible for over 70% of the total greenhouse gas production

Sustainability 2022, 14, 7458. https://doi.org/10.3390/su14127458 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14127458
https://doi.org/10.3390/su14127458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5896-6375
https://orcid.org/0000-0002-0991-6897
https://orcid.org/0000-0003-0578-6965
https://orcid.org/0000-0003-3015-736X
https://doi.org/10.3390/su14127458
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14127458?type=check_update&version=2


Sustainability 2022, 14, 7458 2 of 25

and consume some 75% of global energy supply [2]. The U.S. Energy Information Ad-
ministration (EIA) [3], estimates that about 30% of the total energy consumption of urban
areas is directly used in buildings, mostly for cooling and heating purposes. To address
this and follow sustainable means, recent advances in construction and building materials
have attempted increasing the energy efficiency of buildings by utilizing highly porous
composite materials that have a lower thermal conductivity [4–6]. This includes a series of
lightweight composite materials, such as lightweight and foam concretes produced through
open-graded aggregates, porous aggregates, or a foaming agent [7,8].

Although porous composites are known to be energy efficient, their rate of energy
retention is known to be considerably low [9], since they only reduce the conductivity
of materials and are not a mean to store thermal energy. This leads to inefficient use of
energy for temperature control in buildings. As a result, recent studies have reported
that the use of novel phase change materials (PCMs) can increase the energy retention
rate significantly [10] through their considerable capacity to retain thermal energy while
changing their phases.

In general, PCMs refer to specific class of organic or inorganic compounds that have
a low melting temperature and high latent heat of fusion [11] that gives them the ability
to absorb and release a large amount of thermal energy, as they change phase [12]. This
can be melting (or liquifying) and resolidifying, in case of solid-liquid PCMs, but it can
also be merely softening or hardening in case of solid-solid PCMs [13]. Nonetheless, due to
certain volume change and other elemental impracticality, not all forms of PCMs can be
used for construction purposes [13]. In this sense, according to Ref. [11], the selection of
proper PCMs for successful use in buildings depends on various thermodynamic, chemical
and economic criteria.

In general, recent studies (e.g., [14]) have reported that fatty acid-based PCMs can be
very suitable for thermal energy (or heat) storage applications due to their outstanding
properties, such as cost effectiveness, high capacity for latent heat storage, thermal reliability,
non-toxicity, low vapor pressure in the liquid phase, as well as negligible supercoiling and
high stability [15]. Nonetheless, since the melting and resolidifying temperature point of
the mentioned pure PCMs are constant, using a combination of PCMs can provide further
tailoring-ability to adjust the mentioned temperature points as needed, by using a mixed
ratio of multiple PCMs [15]. According to Refs. [16–18], eutectic mixture of Capric (CA)-
Palmitic acid (PA) can be used for this purpose due to their relatively high compatibility
and proper performance for indoor thermoregulation in buildings. As reported by Ref. [19],
unlike certain organic PCMs, a combination of CA-PA does not produce separate freezing
(or solidifying points), making the two an ideal group of PCMs to be used as composite.

Although organic PCMs have numerous benefits, they are known to be prone to
leakage, and thus, requiring a specific packaging method, such as impregnation [20],
micro-encapsulation [21], and adsorption [22]. In either case, however, impregnating
PCMs into a highly porous media, such as foam concrete, can be an effective way to avoid
leakage, especially as the porous medium can adsorb the PCMs through capillary force and
surface tension [19]. To provide such conditions, this study adopted the use of recycled
concrete powder which is known to be a solid waste material and have relatively high
internal porosity [23]. It is reported that concrete powder originating from construction
and demolition (C&D) has an annual production of about 600 million tons, only in the
United States [24], and is considered as a solid waste material. Nevertheless, waste concrete
powder is commonly considered as an inferior material for reuse, as a recycled construction
material due to its high porosity and weak interfacial transition zone (ITZ) with other
aggregates, resulting in reduced physico-mechanical properties [25,26].

Nonetheless, its use in foam concrete have been recently practiced (e.g., [26,27]) and of-
ten found beneficial since it generally reduces pore connectivity and settlement tendency of
foams while it does not significantly increase the conductivity of the produced foams since
it is a porous byproduct [23,28,29]. In general, foam concrete refers to a class of lightweight
concrete with significantly reduced density and very high degree of porosity [6,8,30,31]
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that has major uses as insulating composite materials. Nonetheless, it is known that foams
are incapable of retaining a considerable amount of thermal energy and its use is merely
for insulation purposes.

To date, however, no study has used recycled concrete powder to be impregnated by
PCMs in foam concrete. Ref. [32], for instance, utilized expanded clay, as lightweight aggre-
gates to micro-encapsulate paraffin but had to polymer coat the aggregates to avoid leakage.
Similarly, Ref. [33] impregnated paraffin into expanded clay and pumice and reported
that such combination can increase the life span of bridge and the major infrastructure by
at least a few years due to its high effectiveness in reducing the adverse effect of freeze
thawing. However, the mentioned study again used porous aggregates as a means to host
PCMs and did not provide further information on the leakage of the produced materials,
neither studied the actual thermal properties of the produced cementitious composites. In
addition, Ref. [34] impregnated paraffin into diatomite and reported a maximum latent
heat absorption of 70.51 J/g. Similar set of materials have also been used by Ref. [35] and
reported that up to 67% of the PCM has been leaked when impregnated into diatomite, sug-
gesting alternative means for the impregnation of PCMs. Similarly, Hunger et al. [36] used
waste marble powder as encapsulating agent of paraffin and reported the optimum rate
of paraffin inclusion is 3% from which the physico-mechanical properties are significantly
impacted. Other studies (e.g., [37,38]), impregnated PCMs similarly in porous media and
reported enhanced thermal retention of the produced concretes, as well as documenting
certain leakage shortcoming.

As can be seen in the above literature review, although various techniques have been
used to suitably incorporate PCMs in concrete, to date, no attempt has been done to use
recycled concrete powder as a means for storing a combination of CA-PA. This combination
can lead to enhanced thermo-physical properties, as compared to ordinary foams and other
studies. Similarly, since the inclusion of recycled concrete powder is reported to lower the
pore connectivity [39–41], this can also avoid PCMs leakage problems. As a result, this
study, for the first time, studied the impregnation of a mixed combination of PCMs into
recycled concrete powder, since recycled concrete powder has the ability to adsorb and
host PCMs in liquid form. To suitably evaluate the properties of the produced samples,
a series of physico-mechanical, thermal and microstructural tests have been conducted
and reported. Additionally, specifically designed tests have been carried out to evaluate a
detailed thermal performance of the produced samples. Further information, regarding the
methodology of this research can be found in the following sections.

2. Methodology and Materials
2.1. Materials
2.1.1. Cement

In this study, CEM I Portland cement with specific surface area of 3346 (cm2/g) and
a CaO content of ~61.9% has been used. Further information on the physicochemical
properties of the used Portland cement can be found in Table 1.

2.1.2. Foam Agent

In this study, Sodium lauryl sulfate (SLS)-based foaming agent with a pH of ~8.8 and a
specific gravity of around 100 g/L has been used. SLS is known to be an anionic surfactant
that is heavily used in industrial foam production. In this study, SLS has been added to the
water in a ratio of 95:5 water to SLS by weight. Followed by this, the foam was obtained by
mixing with a high-speed mixer, and was then added to the cementitious materials. The
reason for choosing such method is the authors extensive previous experience with foam
concretes ensuring that no aggregate settlement or bubble instability takes place [6,8].
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Table 1. Chemical and physical properties of CEM I 42.5 R Cement.

Oxide % Physical Properties

CaO 61.9 Specific gravity 3.15

SiO2 20.2 Specific surface area (cm2/g) 3346

Al2O3 4.8 Volume stability (mm) 0.3

Fe2O3 4.3 Initial setting time (mm) 175

MgO 1.8 Final setting time (mm) 265

Na2O 0.5 2-days compressive strength (MPa) 15.2

K2O 0.6 28-days compressive strength (MPa) 46.2

SO3 3.2

LOI 2.5

2.1.3. Waste Concrete Powder

In this research, waste concrete powder with a specific gravity of 2.58 and a particle
size of <0.25 mm has been used. To produce the concrete powder, it was first obtained from
the debris landfill of the municipality. Waste concrete was separated from the debris in
the field and brought to the laboratory. Firstly, the waste concrete was prepared in fine
aggregate size (4 mm) with a laboratory crusher. Afterwards, it was ground into powder
form with a ball mill where it was grinded for 1 h and sieved through 0.250 mm sieve size
and was later impregnated with PCMs. The compressive strength of the waste concrete
in the field is low and its contents are not known exactly. However, according to the XRD
pattern, it is thought to contain limestone-based aggregates. Also, the chemical composition
of the produced waste concrete powder can be seen in Table 2. Also, as presented in Figure 1,
a significant quartz peak was observed in the waste concrete powder. In addition, Ca-based
anorhite and portlandite peaks can also be seen. These peaks are believed to have been
caused by the cement content, left in the recycled concrete. In addition, the calcite peak
representing CaCO3 can also be determined. The calcite peak is believed to have formed
due to carbonation in the concrete.

Table 2. Chemical composition of the waste concrete powder.

CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O(eq) LOI

37.3 29.8 6.4 3.2 2.1 0.6 1.8 18.3

2.1.4. Silica Sand

In this study, silica sand with a maximum particle size of 2 mm and a waster absorption
of ~2.1% has been used. Further information on the properties of the silica sand can be
found in Table 3. Figure 1 also presents the XRD of silica sand where the quartz peaks were
observed. It is also notable that the silica sand used had a SiO2 content of more than 95%.

Table 3. Silica sand properties.

Specific Gravity Particle Size (mm) Water Absorption
(%) Color

2.69 0–2 2.1 Light yellow

2.1.5. PCMs

In this study, a combination of capric acid (CA) with a purity degree of ≥98.0%, and
palmitic acid (PA) with an overall purity degree of ≥99.0% were supplied from Merck Inc.
Darmstadt, Germany, used. Figure 2 presents the XRD result of the combined PCMs. Based
on the figure, the peaks occurring at 11.4, 21.4 and 23.5◦ are resulted due to crystallization.
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2.2. Preparation of Form-Stable Recycled Concrete Powder (RCP)/PCM Composite

Initially, a CA-PA eutectic mixture utilized as PCM was prepared, and the optimum
mass ratios of the two PCMs used was 85–15%, as recommended by Refs. [42,43]. As in
Ref. [16], then, a stable form of RCP/PCM composite was produced by using vacuum
impregnation method. In doing so, certain content of RCP was mixed with melted CA-PA
in beakers. The mixes were then put in vacuum oven at 60 ◦C for 2 h. Following the
vacuum operation, the RCP/PCM mixtures were removed from oven and left for cooling
in ambient temperature until they became ready for stability performance test. In this way,
the stability of the composite materials was evaluated by monitoring the leakage tendency
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during the phase transition. In this assessment, various ranges of RCP/PCM mixtures were
prepared with different CA-PA contents, ranging from 10–40 wt%. The results showed that
the highest possible CA-PA rate in the recycled concrete powder that does not leak the
PCMs is around 20 wt% of the recycled-concrete-powder’s weight, as shown from Figure 3.
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2.3. Specimen Preparation for Testing

In this study, cement and water have been firstly mixed for about 1 min. Then, silica
sand and waste concrete powder were added to the mix and the mix continued for another
2 min where the foaming agent was added to the mixture. The total mixing took about
5 min. The produced samples were then molded and stored under laboratory conditions
for 24 h. Followed by this, foam concretes were removed from their molds and subjected to
water curing until the testing day. The physical properties of the mixtures were measured
after 28 days of water curing. Table 4 presents the testing method, standard and sample
sizes used in this study while Table 5 provides information about the mixing proportions.

Table 4. Presenting the testing method, standard and sample sizes used in this study.

Test Method Standard Sample Size (mm)

Water absorption-Porosity ASTM C 642 [44] 50 × 50 × 50
Flexural strength ASTM C 348 [45] 40 × 40 × 160

Compressive strength ASTM C 349 [46] 40 × 40 × 160
Unit weight ASTM C138 [47] –

Capillary water absorption EN 1015-18 [48] 50 × 50 × 50

Table 5. Materials proportion in each mix (kg/m3).

Material Mix-1 Mix-2 Mix-3

Cement 300 300 300
Water 150 150 150
Foam 75 75 75

Silica Sand 700 - -
RCP - 667 -

RCP-PCM - - 667

2.4. Characterization

The thermal capacity of the pure CA-PA and RCP/PCM composites were evaluated
by utilizing a Differential Scanning Calorimeter (DSC, HITACHI 7020 model) at a constant
heating/cooling rate of 3 ◦C/min, and under a 30 mL/min of nitrogen gas atmosphere.
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2.5. Thermal Performance

To evaluate the thermal energy performance of the produced foams, three identical
test fixtures or small-sized rooms were produced by using medium density fiberboard
(MDF) with a thickness of 0.02 m, as in Ref. [49]. To induce the actual building conditions, a
two-layered glazed window with a dimension of 0.14× 0.14× 0.02 m with a solar radiation
transmissivity of 0.77 were attached to the top of the fixtures. In addition, the inner walls
of the MDFs were surrounded by expanded polystyrene (EPS) foam with a thickness of
0.05 m size. The foam mortar specimens were placed on the floor of the fixtures. Finally,
the fixtures were placed on the rooftop of a building with a coordinate of 41◦38′8.99′′ N
and 32◦2′15′′ E. To evaluate the actual solar radiation inside of the fixtures, Eco MS-410 first
class pyranometer has been used, as shown in Figure 4. Further, the temperatures within
and outside of the fixtures were measured by using T-type thermocouples, connected to a
10-channel Graphtec data logger that recorded temperature and radiation data, as shown
in Figure 4.
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3. Results
3.1. DSC Analysis

Figure 5 presents the results of DSC thermograms of pure CA-PA and CA-PA im-
pregnated RCP/PCM composite. Based on the curve of CA-PA, the peaks clearly show
the accuracy of the eutectic mixture ratio of 85–15 wt% representing the expected phase
transformations at proper temperatures. Based on Figure 5, the start of the liquefying (or
melting) and solidifying (or freezing) temperatures of CA-PA are found to be at 21.63 and
20.78 ◦C, respectively. Similarly, when the CA-PA are impregnated into RCP, the resulting
composite has a melting and solidifying temperatures of 21.62 and 19.75 ◦C, respectively.
Further, the latent heat of CA-PA in liquifying and solidifying phase change processes
are also determined as 172 and 170 J/g, respectively. When the CA-PA is impregnated
into RCP, however, these values change to be 34.1 and 33.5 J/g, respectively. This value
is considerably close to the theoretical latent heat capacity that can be calculated through
multiplication of the latent heat capacity of pure PCM with the impregnation ratio in
the composite. This results in theoretical melting and solidification latent heat values of
34.4 J/g and 34.1 J/g for the RCP/PCM, respectively. Further from Figure 5, the DSC
curves of RCP/PCM composite before and after 300 thermal cycling tests are compared
and presented. Based on these curves, the composite does not show a particular change
in the trends and the resulted latent heat of RCP/PCM is measured as 33.8 and 33.3 J/g,
respectively. This shows a very small variation as a result of 300 liquifying and solidifying
that confirms the stability of the produced RCP/PCM composite.
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3.2. Unit Weight

Figure 6 presents the result of unit weight of various samples. Based on this figure,
the inclusion of recycled concrete powder has increased the unit weight value by ~11%.
This increase can be associated with filling effect of concrete powder. Refs [50–52] also
reported higher compaction due to the inclusion of the concrete powder. Further, the
inclusion of PCM in recycled concrete powder has increased the unit weight values by
about 44%, despite the similar overall volume of materials used in the Mix-3 versus Mix-1.
This significant rise in the unit weight value can be due to the higher specific gravity of
the PCMs used in this study that fills in the pores leading to higher unit weight values.
Similar results are reported in Ref. [53] that utilized polyethylene glycol, impregnated into
lightweight aggregates and achieved up to 9% increased unit weight values.
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3.3. Apparent Porosity

Apparent porosity is a means to evaluate the pore content of cementitious foams and
its potential in hosting free water [8]. The result of apparent porosity test is presented
in Figure 7. Based on this, the inclusion of recycled concrete powder is found not to
have a considerable impact on the porosity values. Most notably, the results indicate a
~6% reduction of porosity values when compared to the mix produced with silica sand.
The reason for this can be the high porosity of recycled concrete powder that can host
or even channel micro pores, despite their filling effect on air-void pores. Ref. [54] used
scanning electron microscopy (SEM) images and showed that that recycled concrete powder
generally has a porosity of above 1% in its microstructure and thus, does not significantly
reduce the overall porosity of the produced concretes. Nonetheless and from Figure 7, when
PCM are impregnated to the recycled concrete powder, significant reduction of porosity,
about ~32%, takes place. This further confirms the high impact of PCM in reducing the
content of micropores and their respective connectivity.
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3.4. Water Absorption

Water absorption test conducted in this study after 28 days of curing the materials and
is presented in Figure 8a. As can be seen, the highest and lowest water absorption rate is
for Mix-1 produced with silica sand with 32.3% and mix-3 produced with recycled concrete
powder, impregnated with PCM with 21.9%, respectively. This shows that the inclusion
of recycled concrete powder did not have significant impact on the water absorption (by
only reducing it ~8%). This is aligned with the results outlined in Section 3.2 and point to
the inherent porosity of recycled concrete powder. Similar results are reported in literature
extensively [55,56]. However, when PCM are impregnated to the recycled concrete powder,
a 32% reduction is observed. This reduction is aligned with the results of porosity reported
in Section 3.2 and shows the filling effect of PCM on micropores. Ref. [57] utilized organic
PCM (polyethylene glycol), and reported its considerable compatibility in filling micropores
and cracks of hardened concrete. Similarly, Bi et al. [58], used paraffin as PCM and
reported significant reduction of water absorption and associated it with the improvement
of hydrophobic characteristics in the pores when PCM are used. This can be better seen
in Figure 8b that shows capillary water absorption. In general, capillary water absorption
shows the transport mechanism of water in micro pores through surface interaction of
water and the pore wall [59]. Based on this figure, the impregnation of PCM has reduced
the capillary water absorption by ~360%. This result further confirms that the inclusion of
PCM alters the hydrophobic characteristics of the produced foams, considerably.
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3.5. Compressive Strength

The result of compressive strength test conducted after 7 and 28 days of curing is
presented in Figure 9. As can be seen, the inclusion of recycled concrete powder has
only increased the compressive strength for ~37% and 15% for 7 and 28 day cured spec-
imens, respectively. This higher strength development shows that the effect of recycled
concrete powder is mostly the filling of pores, as was also reported in Ref. [60]. Despite
this moderate increase in compressive strength values, when PCM are used ~397% and
204% increase in compressive strength results are achieved for specimens cured for 7 and
28 days, respectively. Such significant improvement in compressive strength values can be
associated with the change in rheological properties of mixes containing PCMs coupled
with their filling of micropores within the recycled concrete powder. According to Ref. [61]
when PCM with hydrophilic surface are used, the rheology and particle distribution of the
produced samples tend be affected significantly and lead to a more homogenous particle
distribution, as well as a reduction of segregation. This would then lead to enhanced
mechanical properties as shown in Figure 9.
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3.6. Flexural Strength

Figure 10, presents the result of flexural strength conducted after 7 and 28 days of
curing. Based on the figure, the inclusion of recycled concrete powder has increased the
flexural strength values by ~24% and 15%, after 7 and 28 days of curing, respectively.
Similar to the compressive strength results, outlined in Section 3.4, the inclusion of PCM
impregnated recycled concrete powder increases the flexural strength values by 224%
and 108%, at 7 and 28 days of curing, respectively. As discussed in previous section, the
inclusion of recycled concrete powder does not improve the strength values significantly,
due to its inherent porosity. Nonetheless, when the PCMs are impregnated in its pores,
the strength values increase considerably. Similar results are reported in Ref. [53] that
impregnated polyethylene glycol into lightweight aggregates and reported up to 17%
increase in the flexural strength values.

3.7. Thermal Conductivity

Thermal conductivity is a means to evaluate the rate of thermal conduction of a given
material and its insulating properties [62,63]. Figure 11 presents the result of thermal
conductivity test conducted on specimens cured for 28 days. Based on this figure, the
inclusion of recycled concrete powder has had a positive impact (about 4.5% increase)
on the conductivity value, despite the slightly lowered apparent porosity reported in
Section 3.2. The reason for this can be the impact of micro pores within the recycled
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concrete powder and reduction of pore connectivity. As reported in Ref. [64], a closed
cell-foam can have a considerably lower conductivity values since it does not allow heat
loss from its pores. Nonetheless, when PCM are impregnated to the recycled powder, 43%
increase in conductivity values are documented. This is aligned with the results of water
absorption and porosity values that point to the filling of micro pores when PCMs are
impregnated in the recycled fine concrete powder.
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3.8. Microstructural Properties
3.8.1. SEM

Figure 12a–l present the results of SEM images taken from the 28-day cured specimens.
Based on Figure 12a–d, the pores produced in foams of Mix-1 are found to be relatively
deep and often interconnected. In Figure 12e–h, however, the overall content of pores is
found to have slightly lowered but a high content of unconnected particles can be seen
which represents a weak interfacial transition zone (ITZ) for Mix-2 produced with recycled
concrete powder. Figure 12i–l. however, shows that the inclusion of PCMs has significantly
changed the pore types of the foamed samples by making them highly disconnected. The
mentioned results further confirm the results achieved in Sections 3.2, 3.3 and 3.6.
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3.8.2. EDS

The EDS results of various mixes is presented in Table 6. As can be seen in this table,
the average compositional values of Mix-1 have the highest Ca and the lowest C content.
In turn, Mix-2 samples have the highest C and lowest Ca content. The reason for this can
be the carbonation of the produced samples, as also noted in Section 2.1.3, as well as the
old cementitious paste resulting in high content of C and Ca, that are further discussed by
Refs. [65,66]. When PCMs are impregnated, however, the Ca, C and Si content is found to
shift toward Mix-1 with increased content of C. Similarly, Ref. [43] conducted EDS on pure
CA-PA composite and reported a high content of C and O atoms. These observations are
aligned with what has been reported in Section 3.8.1 that more similarity is seen between
the Mix-1 and Mix-3.

Table 6. The chemical composition of various samples produced from mixes.

Mix No. Ca C Si Fe S Al Mg

Mix-1.1 73.6 0 11.9 5.3 3.8 3.9 1.5
Mix-1.1 76.9 0 13.4 3.5 2.9 2.3 1
Mix-1.1 87.6 0 4.7 7.7 0 0 0
Mix-1.1 84.3 0 5.6 8.8 0 1.3 0
Mix-1.2 79.4 0 7.6 4.7 5.3 3 0
Mix-1.2 74 0 9.6 5.1 5.9 4 1.4
Mix-1.2 76.5 0 19.4 1.4 0 1.1 1.6
Mix-1.2 56.9 0 18.7 9.2 11.5 3.7 0

Average 76.15 0 11.36 5.71 3.60 2.41 0.68

Mix-2.1 39 56.7 3.1 0 0 0.7 0.5
Mix-2.1 37.6 55.6 5.3 0 0 0.8 0
Mix-2.1 6.4 68.8 17.4 0 0 4.6 0
Mix-2.1 40.4 51.4 5.2 0.8 0 1.4 0.7
Mix-2.2 16.4 0 53.8 0 0 23.7 0
Mix-2.2 21.9 63.5 9.3 0 0 2.6 0.5
Mix-2.2 29 52.2 17.2 0 0 1 0
Mix-2.2 5.5 58.9 13 9.6 0 3.6 2.8

Average 24.52 50.88 15.53 1.30 0 4.80 0.56

Mix-3.1 69.9 0 17.6 3.6 2.4 4.4 2.1
Mix-3.1 80.8 0 11.7 3.9 1.8 1.8 0
Mix-3.1 98.2 0 1.8 0 0 0 0
Mix-3.1 70.8 0 15.2 5.1 2.9 4.2 1.9
Mix-3.2 22.9 74 2.4 0 0 0.7 0
Mix-3.2 70.6 0 16.1 2.7 4.9 4.7 1
Mix-3.2 76.1 0 14.3 3.8 1.7 2.3 1.9
Mix-3.2 70.8 0 11.4 6.4 6.6 4.8 0
Mix-3.3 47.5 51.2 1.3 0 0 0 0
Mix-3.3 62.3 0 12.1 13.5 2.3 3.6 6.1
Mix-3.3 98 0 2 0 0 0 0
Mix-3.3 70.3 0 21.6 2.9 1.3 2.4 1.5
Mix-3.4 13 70.3 15.8 0 0 0.5 0
Mix-3.4 16.8 74 5.9 0 0 1.6 0.3
Mix-3.4 24.7 0 62.3 1.2 0 2.4 0
Mix-3.4 66.9 0 23.5 2 0 3.6 1.3
Mix-3.5 47.9 45.8 5.1 0 0 0 0
Mix-3.5 29.8 55.4 13.2 0 0 0.6 0
Mix-3.5 9.9 64.7 15.6 0 0 5.4 0.5
Mix-3.5 22.6 62.2 9.4 2.1 0 1.4 0.7

Average 53.49 24.88 13.91 2.36 1.19 2.22 0.86
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3.9. Thermal Energy Storage Performance

Figure 13 presents the result of global, direct and diffuse solar irradiation on the
surface of the produced fixtures from 6:00 morning to 20:00 evening of the location that
produced rooms and samples have been tested for their energy storage performance. In
general, global radiation presents the total radiation that reaches the horizontal surface of
the measured samples. In turn, unlike direct radiation that directly reaches the samples’
surface, diffuse radiation is part of the total radiation that reaches the surface of fixture
after being scattered by the surrounding environments [67,68]. Based on the figure, it is
notable that the diffuse radiation is dependent on the sky clearness and has changed as
the clearness changed in the coordinate of 41◦38′8.99′′ N and 32◦2′15′′ E on 23 February
2022 and a cloudy-sunny sky. Further from this figure, it can be seen that the global and
direct radiation values are at their peaks at around 9:40–15:00, as the radiation level is at its
highest during this time period.
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Figure 14 shows the temperature change in the prepared fixtures as measured by the 
thermocouples. As noted in the figure, TCp1 through TCp8 were placed in various parts 
of the fixtures and TCp9 refers to the reference ambient temperature. Based on the figure, 
at around 14:00 when the temperature of the room center becomes the highest, the lower 
surface of the fixture that the produced foams are located, have a considerably lower tem-
perature. After around 15:00, however, the lower surface can be seen to have kept a higher 
temperature. 

Figure 13. Global, direct, and diffuse solar radiation data on 23 February 2022 cloudy-sunny sky.

Figure 14 shows the temperature change in the prepared fixtures as measured by
the thermocouples. As noted in the figure, TCp1 through TCp8 were placed in various
parts of the fixtures and TCp9 refers to the reference ambient temperature. Based on the
figure, at around 14:00 when the temperature of the room center becomes the highest, the
lower surface of the fixture that the produced foams are located, have a considerably lower
temperature. After around 15:00, however, the lower surface can be seen to have kept a
higher temperature.

Figure 15a,b show the average temperature differences of reference sample (a) and
the one containing PCMs. As can be seen, at various times, the temperature is about a few
minutes to a few hours away from the reference sample. This helps reducing the peaks
and can also be associated with the absorption and desorption of heat by PCMs which is
found to be very effective in reducing the peak temperatures and potentially increasing the
energy efficiency of the sample rooms.
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Figure 15. Temperature variation for waste concrete (a) and room center (b) on 28 April 2022 cloudy-
sunny sky.

Figure 16 shows the temperature difference between the reference versus PCM con-
taining samples between the lower and upper surface (a), as well as near surface and room
center (b). Based on Figure 16a, the upper surface of the sample containing PCMs is found
to have −5.07 ◦C lower temperature at peak daytime temperature. In turn, at evening
time, up to 3.67 ◦C higher temperature is recorded. Similar results can be seen for lower
surface all of which point to the enhanced energy retention of samples when TPCM-Tref
is calculated.
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for the small-sized sample rooms produced for this study which can potentially be further 
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Figure 17 shows the temperature difference between concrete and the ambient temper-
ature, as well as between the room centers and the ambient temperature around fixtures.
As can be seen, the foam sample produced with PCMs is found to have absorbed the
highest thermal energy until around 15:00, at around 32 ◦C that compares to reference
sample of 27 ◦C. From that point, it starts to discharge the heat, and thus, sustains lower
temperature in itself. Similarly, the room center temperature when the ambient temperature
is at its peak is considerably lower (e.g., 34.7 ◦C versus 38.5 ◦C). Similar to the concrete
temperatures, after around 15:00, it starts to discharge the absorbed heat and maintain a
higher temperature. Further, it is notable that the mentioned variation in energy values is
for the small-sized sample rooms produced for this study which can potentially be further
pronounced in larger scale applications.
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Figure 17. Temperature difference between concretes and ambient; and between room centers and
ambient on 28 April 2022 sunny sky.
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Figure 18 presents the result of thermal camera conducted on the produced rooms at
various hours. As can be seen, at 11:17 morning, even the surface temperature of the room
containing foam with PCMs (FCRCP-PCM) is 1.3–2.2 ◦C lower than the room containing
ordinary foam and recycled concrete powder (FCRCP). Similarly, and as the time passes
until 13:47, this change is seen to be relatively similar and range from 0.1–1.7 ◦C. The reason
for this slightly lower performance at later hours can be the mentioned shift in the peak
temperatures that causes the internal temperature to be considerably enhanced by the
inclusion of PCMs. Similar results have been reported by Ref. [69].
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4. Conclusions

To increase energy efficiency of buildings, porous composites have been used for
many decades with successful results in reducing the thermal conductivity of buildings.
Nonetheless, various porous composites are known to have little capacity to store thermal
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energy which reduces their effectiveness in lowering the need for energy used to heat
or cool the buildings. To address this, recent studies have documented favorable results
when used various forms of PCMs, which are found beneficial in reducing the temperature
intensity at peak hours due to their high capacity for latent heat storage. Despite this,
PCMs have the potential to be leaked out of the produced porous composites when in
liquid phase, which requires a specific impregnation method for their actual application.
To address this and provide a more flexible melting and solidifying point, this study used
a combination of Capric (CA)-Palmitic acid (PA) PCMs and impregnated into recycled
concrete powder, which is known for its high content of fine-sized porosity. To evaluate
the physico-mechanical, thermal and microstructural properties of the produced foamed
composites, a series of tests have been conducted from which, the following conclusions
can be drawn:

1. Based on the trials, the highest ratio of recycled concrete powder to PCM without
leaking is found to be at about 20% (by weight). The results of DSC analysis show
that the RCP/PCM composite produced this way has a latent heat capacity of 34.1
and 33.5 J/g in liquid and solid phases, with melting and solidifying temperatures of
21.62 and 19.75 ◦C, respectively. In addition, after about 300 cycles of liquifying and
solidifying, the latent heat capacity is found to remain almost the same which shows
the high cycling stability of the produced RCP/PCM composite.

2. The results of materials tests including unit weight, porosity, water absorption, all
point to the lowered porosity and potentially pore network connectivity for samples
produced with PCMs, compared to foams with silica sand. For instance, the impreg-
nation of PCMs is found to reduce porosity and the capillary water absorption by
32% and 360%, respectively, when it is compared to foam samples produced with
silica sand. This also causes some 44% increase in unit weight values, as well as 204%
and 108% increase for compressive and flexural strength values (28-day), respectively.
Despite such significant changes, the result of thermal conductivity shows only ~43%
increase in the thermal conductivity values of mixes produced with PCMs, which can
be associated with significantly lowered porosity values.

3. The result of SEM shows that when foams are produced with silica sand, the pores
and cracks are relatively deep and often interconnected. Nonetheless, when recycled
concrete powder is used, the overall content of pores is found to become slightly
lowered but a high content of unconnected particles can be seen which represents a
weak ITZ. After PCMs are impregnated into the recycled concrete powder, however,
the pores are found to be highly disconnected and often better dispersed. With regards
to the EDS test, the foams produced with silica sand are found to have the highest
content of calcium. In turn, upon the inclusion of recycled concrete powder, very
high content of carbon is observed in its microstructure. The reason for this can be
high carbonation tendency of the produced samples. When PCMs are impregnated,
however, the Ca, C and Si content is found to shift toward the mix with silica sand,
pointing to the fact that the inclusion of PCMs has reduced carbonation tendency of
the produced samples.

4. The result of temperature regulation performance test shows that up to −5.07 ◦C
at the highest daily temperature in noon and +3.67 ◦C at the lowest temperature in
evening is achieved in test rooms having the foams produced PCMs. It is also found
that PCMs reduces the actual peak temperature time which further helps increasing
the building energy efficiency in any climatic situation. This is further confirmed
through the thermal camera results that showed up to 2.2 ◦C lower temperature on
the surface of the produced rooms when PCMs are used.

The result of this study is found to be significant and point to the successful use of
recycled concrete powder to host PCMs. Nonetheless, the future studies, can use alternative
forms of PCMs with other hosting agents, or microencapsulation techniques to provide a
comparative evaluation of impregnated PCMs and their respective impact on the actual
thermo-regulative performance of buildings.
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Nomenclature

PCMs Phase change materials
CA Capric acid
PA Palmitic acid
RCP Recycled concrete powder
ITZ interfacial transition zone
DSC Differential scanning calorimetry
RCP/PCM Recycled concrete powder impregnated with phase change materials
C&D Construction and Demolition

References
1. The World Bank. Urban Development Overview: Development News, Research, Data|World Bank. Available online: https:

//www.worldbank.org/en/topic/urbandevelopment/overview#1 (accessed on 1 May 2022).
2. Chowdhury, P.K.R.; Weaver, J.E.; Weber, E.M.; Lunga, D.; LeDoux, S.T.M.; Rose, A.N.; Bhaduri, B.L. Electricity consump-

tion patterns within cities: Application of a data-driven settlement characterization method. Int. J. Digit. Earth 2020, 13,
119–135. [CrossRef]

3. Frequently Asked Questions (FAQs). U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/
tools/faqs/faq.php?id=86&t=1 (accessed on 1 May 2022).

4. Ahmad, M.R.; Chen, B.; Shah, S.F.A. Investigate the influence of expanded clay aggregate and silica fume on the properties of
lightweight concrete. Constr. Build. Mater. 2019, 220, 253–266. [CrossRef]

5. Huang, Y.; Gong, L.; Shi, L.; Cao, W.; Pan, Y.; Cheng, X. Experimental investigation on the influencing factors of preparing porous
fly ash-based geopolymer for insulation material. Energy Build. 2018, 168, 9–18. [CrossRef]

6. Gencel, O.; Nodehi, M.; Bayraktar, O.Y.; Kaplan, G.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Basalt fiber-reinforced foam
concrete containing silica fume: An experimental study. Constr. Build. Mater. 2022, 326, 126861. [CrossRef]

7. Nodehi, M. A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer.
Innov. Infrastruct. Solut. 2021, 6, 231. [CrossRef]

8. Gencel, O.; Bayraktar, O.Y.; Kaplan, G.; Arslan, O.; Nodehi, M.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Lightweight foam
concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Constr. Build.
Mater. 2022, 320, 126187. [CrossRef]

9. Wu, Z.G.; Zhao, C.Y. Experimental investigations of porous materials in high temperature thermal energy storage systems. Sol.
Energy 2011, 85, 1371–1380. [CrossRef]

10. Qiu, L.; Ouyang, Y.; Feng, Y.; Zhang, X. Review on micro/nano phase change materials for solar thermal applications. Renew.
Energy 2019, 140, 513–538. [CrossRef]

11. Alawadhi, E.M. The design, properties, and performance of concrete masonry blocks with phase change materials. In Eco-Efficient
Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 231–248.

12. Al Shannaq, R.; Farid, M.M. Microencapsulation of phase change materials (PCMs) for thermal energy storage systems. In
Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 247–284.

13. Mäkinen, M. Introduction to phase change materials. In Intelligent Textiles and Clothing; Elsevier: Amsterdam, The Netherlands,
2006; pp. 21–33.

https://www.worldbank.org/en/topic/urbandevelopment/overview#1
https://www.worldbank.org/en/topic/urbandevelopment/overview#1
http://doi.org/10.1080/17538947.2018.1556355
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
http://doi.org/10.1016/j.conbuildmat.2019.05.171
http://doi.org/10.1016/j.enbuild.2018.02.043
http://doi.org/10.1016/j.conbuildmat.2022.126861
http://doi.org/10.1007/s41062-021-00595-w
http://doi.org/10.1016/j.conbuildmat.2021.126187
http://doi.org/10.1016/j.solener.2011.03.021
http://doi.org/10.1016/j.renene.2019.03.088


Sustainability 2022, 14, 7458 23 of 25

14. Cai, Y.; Zong, X.; Zhang, J.; Hu, Y.; Wei, Q.; He, G.; Wang, X.; Zhao, Y.; Fong, H. Electrospun nanofibrous mats absorbed with fatty
acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Sol. Energy
Mater. Sol. Cells 2013, 109, 160–168. [CrossRef]
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