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Abstract—Big data processing systems, such as Hadoop and Spark, usually work in large-scale, highly-concurrent, and multi-tenant
environments that can easily cause hardware and software malfunctions or failures, thereby leading to performance degradation.
Several systems and methods exist to detect big data processing systems’ performance degradation, perform root-cause analysis, and
even overcome the issues causing such degradation. However, these solutions focus on specific problems such as stragglers and
inefficient resource utilization. There is a lack of a generic and extensible framework to support the real-time diagnosis of big data
systems. In this article, we propose, develop and validate AutoDiagn. This generic and flexible framework provides holistic monitoring
of a big data system while detecting performance degradation and enabling root-cause analysis. We present an implementation and
evaluation of AutoDiagn that interacts with a Hadoop cluster deployed on a public cloud and tested with real-world benchmark
applications. Experimental results show that AutoDiagn can offer a high accuracy root-cause analysis framework, at the same time as

offering a small resource footprint, high throughput, and low latency.

Index Terms—Root-cause analysis, big data systems, QoS, hadoop, performance

1 INTRODUCTION

THE rapid surge of data generated through sectors like
social media, financial services and industries has led to
the emergence of big data systems. Big data systems enable
the processing of massive amounts of data in relatively
short time frames. For instance, the Netflix big data pipeline
processes approximately 500 billion events and 1.3 peta-
bytes (PB) of data per day, further, during peak hours, it
processes approximately 11 million events and 24 gigabytes
(GB) of data on a per-second basis. Facebook has one of the
largest data warehouses in the world, capable of executing
more than 30,000 queries over 300 PB data every day. How-
ever, the enormousness and complexity of the big data
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system runs in heterogeneous computing resources, multi-
ple tenant environments, as well as has many concurrent
execution of big data processing tasks, which makes it a
challenge to utilize the big data systems efficiently and reli-
ably[1]. For example, Fig. 1 shows that the performance
degrades at least 10 percent when the resources are not uti-
lized efficiently with Setting 2.

To overcome this, it is imperative to continuously moni-
tor and analyze all available system resources at all times in
a systematic, holistic and automated manner. These resour-
ces include CPU, memory, network, I/O and the big data
processing software components.

Most of the commercial [2], [3], [4] and academic big data
monitoring systems mainly focus on visualizing task prog-
ress, and the system’s resource utilization [5]. However,
they do not focus on the interaction between multiple fac-
tors and performing root-cause analysis for performance
degradation [6], [7]. Moreover, works such as [8], [9] aim to
find the best parameters to optimize the performance of big
data processing systems, they do not focus on the root-cause
analysis that may indicate the viable reasons behind perfor-
mance degradation and may provide intuitions for parame-
ter tweaking.

Mantri [10] presents a systematic method that categorizes
the main reasons causing outliers in a big data system. The
authors” work was focused on the MapReduce program-
ming framework in the Hadoop system; they do not discuss
how Mantri can be applied to other big processing frame-
works (e.g., Apache Spark,' and Apache Flink?). Garraghan
et al. [11] proposed an online solution to detect long-tail

1. Online. [Available]: https://spark.apache.org/
2. Online. [Available]: https:/ /flink.apache.org/
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Fig. 1. Six big data applications are executed in a cloud-based Hadoop
cluster with two settings: 1) the input data and jobs are allocated in the
same node and 2) the input data and jobs are allocated in different
nodes. In Setting 2, the execution time of each application is delayed by
transmitting data across nodes.

issues in a distributed system. However, these solutions
were built for specific scenarios with much scope left for
analyzing a variety of problems that can exist in a large scale
big data processing system.

To the best of our knowledge, there is a lack of a generic
and comprehensive solution for the detection of a wide range
of anomalies and performance of root-cause analysis in big
data systems. Developing a general and extensible frame-
work for diagnosing a big data system is not trivial. It
requires well-defined requirements which could enable the
broader adoption of root-cause analysis for the big data sys-
tems, flexible APIs to interact with an underlying monitoring
system and integration of multiple solutions for detecting
performance reduction problems while enabling the auto-
matic root-cause analysis. In this paper, we tackle this
research gap, and design and develop AutoDiagn to auto-
matically detect performance degradation and inefficient
resource utilization problems, while providing an online
detection and semi-online root-cause analysis for a big data
system. Further, it is designed as a microservice architecture
that offers the flexibility to plug a new detection and root-cause
analysis module for various types of big data systems.

The contributions of this paper are as follows:

o Anonline and generic framework: We develop a general
framework called AutoDiagn which can be adapted
for the detection of a wide range of performance deg-
radation problems while pinpointing their root-
causes in big data systems.

e A case study: We develop a novel real-time stream
processing method to detect symptoms regarding
outliers in a big data system. After that, we develop
a set of query APIs to analyze the reasons that cause
the outlier regarding a task.

o A comprehensive evaluation: We evaluate the feasibil-
ity, scalability and accuracy of AutoDiagn through a
set of real-world benchmarks over a real-world
cloud cluster.

The paper is organized as follows. The design require-
ments and idea are outlined in Section 2. In Section 3, we
illustrate the high-level system architecture. Section 4
presents a case study that we implemented and the case
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study is evaluated in Section 5. Section 6 discusses the limi-
tations of this paper and highlights our further work .
Before drawing a conclusion in Section 8, we discuss the
related work in Section 7.

2 REQUIREMENTS AND DESIGN IDEA

In this section, we analyze the key requirements of the real-
time big data diagnosis system, extracting the essential fea-
tures from the literature. Next, we present the key idea of
the framework design.

2.1 Fundamental Prerequisite for Diaghosing Big
Data Processing Systems

In order to design a generic framework for diagnosing big

data processing systems, we classified the fundamental

requirements of building a diagnosis system on such sys-

tems as follows:

o Infrastructure monitoring: Collecting the information
about the underlying system, such as network condi-
tions, CPU utilization, memory utilization, and disk
I/0 status.

o Task execution monitoring: Collecting the task infor-
mation, including execution time, progress, location,
location of its input data, input data size, output
data size, CPU/memory usage, and process state
(running, waiting, succeeded, failed, killed).

o  Abnormal behavior or fault detection: Detecting abnor-
mal behaviors in big data processing systems, such
as slowing tasks, failed tasks, very high/low
resource usage, and experiencing very high response
time for the requests.

e  Root-cause analysis: Finding the root cause of perfor-
mance reduction in big data processing systems,
such as the reasons why: tasks are slowing down,
resource utilization is low, the response time is high,
or when the network latency is high.

o  Visualization: Visualizing the collected metrics and
the results of root-cause analysis of any failures caus-
ing performance reduction in the cluster with a user-
friendly interface in real-time.

2.2 Key Design Idea

Motivated by the above-mentioned requirements and
inspired by medical diagnosis, we highlight the design idea
of root-cause analysis for big data processing systems as
shown Fig. 2, which aims to provide holistic monitoring
and root cause analysis for big data processing systems.
First, a set of Symptom Detectors is defined and developed in
Symptom Detection to detect the abnormalities of the big sys-
tem by processing collected system information stream in
real-time. Once a symptom (abnormality) is detected, the
Diagnosis Management may launch the corresponding Diag-
nosers to troubleshoot the cause of the symptom. One symp-
tom may correspond to root causes. Finally, the decisions
are made based on the root-cause analysis results.

2.3 The Generalizability of AutoDiagn
Modern big data processing systems consists of two main
types: Big data analytics (e.g., Hadoop, Spark) and Stream
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Fig. 2. The key design idea of root-cause analysis for big data processing systems.

processing (e.g., Flink, Spark Stream). Based on our design
idea, our AutoDiagn is an independent framework that can
be deployed alongside existing big data cluster manage-
ment systems (e.g., Apache YARN), and ideally it is suitable
for root-cause analysis of any big data processing system.
However, for the scope of this paper and practical certainty,
the implementation of AutoDiagn focuses on debugging
root causes of performance degradation (e.g., slow task exe-
cution time) in Hadoop due to faults such as data locality,
cluster hardware heterogeneity, and network problems
(e.g., disconnection). Although we have validated the func-
tionality of AutoDiagn in the context of Hadoop and consid-
ering different classes of workload (e.g., WordCount, Grep,
TPC-H, TPC-DC, K-means clustering, PageRank), it is gen-
eralizable to other big data processing systems executing
similar classes of workload.

3 AUTODIAGN ARCHITECTURE

Following the design idea laid out in Section 2, we introduce
AutoDiagn, a novel big data diagnosing system. We first
illustrate the high-level system architecture and then
describe the details of each component. AutoDiagn is imple-
mented in Java and all source code is open-source on
GitHub.?

3.1 Architecture Overview

AutoDiagn provides a systematic solution that automati-
cally monitors the performance of big data systems while
troubleshooting the issues that cause performance reduc-
tion. Fig. 3 shows its two main components: AutoDiagn Mon-
itoring and AutoDiagn Diagnosing. AutoDiagn Monitoring
collects the defined metrics (logs) and feeds AutoDiagn Diag-
nosing with them in real-time. Once the abnormal symptoms
are detected by analyzing the collected metrics, a deeper
analysis is conducted to troubleshoot the cause of abnormal
symptoms.

AutoDiagn Monitoring. AutoDiagn Monitoring is a decen-
tralized real-time stream processing system that collects
comprehensive system information from the big data sys-
tem (e.g., Hadoop Cluster). The Collected Metrics is a set of
pre-defined monitoring entities (e.g., CPU usage, memory

3. Online. [Available]: https:// github.com/umitdemirbaga/AutoDiagn

usage, task location, task status) used to detect the abnormal
symptoms. Moreover, the system information, required for
understanding the cause of detected abnormal symptoms,
is collected in this modular.

AutoDiagn Diagnosing. AutoDiagn Diagnosing is an event
based diagnosing system. First, the carefully crafted metrics
are injected into the Symptom Detection Engine which is a
real-time stream processing module to detect the abnormal
symptoms in a big data system. In this paper, we use the
outlier which is a common symptom for performance
reduction in a Hadoop cluster as a case study to demon-
strate the proposed framework. Section 4.1 illustrates the
details of technology that we developed for symptom detec-
tion. Moreover, our system follows the principle of modular
programming; the new symptom detection method can be
easily plugged in. Diagnoser Plugins is a component for trou-
ble-shooting the reasons behind the detected symptom. A
set of Diagnosers is instantiated by the Diagnoser Manager
when their corresponding symptoms are detected. Then the
instantiated Diagnosers query a time series database to
obtain the required input and their outputs illustrate the
cause of the detected symptoms.

AutoDiagn Diagnosing
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Fig. 3. The high-level architecture of the AutoDiagn system.
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Fig. 4. The high-level architecture of the monitoring framework.

3.2 AutoDiagn Monitoring Framework

AutoDiagn monitoring framework is a holistic solution
for continuous information collection in a big data cluster.
The framework needs to have a fast, flexible and dynamic
pipeline to transfer the collected data as well as a high perfor-
mance, large scale storage system. We now describe an imple-
mentation of the framework for a big data computer cluster,
and the high-level system architecture is shown in Fig. 4.

Information Collection. In each compute node, we develop
and deploy an Agent to collect real-time system information.
For the worker node, the Agent collects the usage of comput-
ing resource via SIGAR APIs,4 including CPU, memory, net-
work bandwidth, and disk read/write speeds. Moreover,
the Agent in the master node collects the usage of computing
resource as well as the job and tasks information. The Filter
is developed by using GSon Library’ to remove the less
important information obtained from ResourceManager
REST API’s,° thereby reducing the size of data transmission.
The collected information is sent to RabbitM(Q’ cluster
which is a lightweight and easy-to-deploy messaging sys-
tem in each time interval via Publisher.

Storage. The acquired information is time series data, we
therefore choose InfluxDB® for data storage. InfluxDB is a
high performance, scalable and open source time series data
base which provides a set of flexible open APIs for real-time
analytics. The Consumer subscribes the related stream topics
from RabbitMQ and interacts with InfluxDB APIs to inject
the information to the data base.

Interacting With AutoDiagn Diagnosing. The information
required for symptom detection is directly forwarded and
processed in AutoDiagn diagnosing via a consumer. If a
symptom is detected, InfluxDB will be queried by Auto-
Diagn diagnosing for root-cause analysis. Finally, the analy-
sis results are sent back to the database to be stored.

4. Online. [Available]: https:/ /github.com/hyperic/sigar

5. Online. [Available]: https://github.com/google/gson

6. Online. [Available]: https:/ /hadoop.apache.org/docs/13.2.1/
hadoop-yarn

7. Online. [Available]: https://www.rabbitmq.com/

8. Online. [Available]: https:/ /www.influxdata.com/

___________

User Visualization. The user visualization allows the users
to have a visible way to monitor their big data system. We
utilize InfluxDB’s client libraries and develop a set of REST-
ful APIs to allow the users to query various information,
including resource utilization, job and task status, as well as
root cause of performance reduction.

3.3 AutoDiagn Diaghosing Framework

In this section, we discuss the core components of the Auto-
Diagn Diagnosing framework (see Fig. 3), as well as the
interactions with each other and the AutoDiagn Monitoring
framework.

Symptom Detection Engine. The symptom detection engine
subscribes a set of metrics from the real-time streaming sys-
tem. Section 4.1 illustrates the technique that we developed
for outlier detection. This component follows microservices
architecture to which new symptom detection techniques
can be directly attached to our AutoDiagn, interacting with
other existing techniques to detect new symptoms.

Diagnoser Manager. The diagnoser manager is the core
entity responsible for selecting the right diagnosers to find
the reasons that cause the detected symptoms. Additionally,
the diagnoser manager is developed as a front-end compo-
nent, triggered by various detected symptoms (events) via a
RESTful API, exposing all diagnosing actions within our
framework. The API includes general actions such as start-
ing, stopping or loading a diagnoser dynamically, and spe-
cific actions such as retrieving some metrics. Importantly,
the diagnoser manager is able to compose a set of diagnos-
ers to complete the diagnosing jobs that may require the
cooperation of different diagnosers.

Diagnoser Plugins. The diagnoser plugin contains a set of
diagnosers; and a diagnoser is the implementation of the
specific logic to perform root-cause analysis of a symptom.
Each diagnoser refers to a set of metrics stored in a time
series database as the input of its analysis logic. Whenever
it is activated by the diagnoser manager, it will perform an
analysis, querying the respective metrics, executing the ana-
lytic algorithm, and storing the results. Section 4.2 discusses
the algorithms to detect the outlier problems, for example,
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https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
https://www.rabbitmq.com/
https://www.influxdata.com/

DEMIRBAGA ET AL.: AUTODIAGN: AN AUTOMATED REAL-TIME DIAGNOSIS FRAMEWORK FOR BIG DATA SYSTEMS

TABLE 1
AutoDiagn Diagnosing Interface

Symptom Detection (High-level APIs)

Description

QueryOutlier ()
QueryResourceUtil ()

Execute a Query that returns the list of outliers if any.
Execute a Query that returns the list of the worker nodes inwhich the
computing resources arenot utilized effectively if any.

Diagnoser (High-level APIs)

Description

QueryNonLocal ()
QueryLessResource()

QueryNodeHealth ()

QueryOversubscribed ()
QueryDiskIOboundTasks ()

Execute a Query that return the list of non-local tasks if any.

Execute a Query that returns false if the cluster is not homogeneous in terms of
having resource capacity (CPU/memory).

Execute a Query that returns the list of disconnected worker nodes in the
cluster if any.

Execute a Query that returns the list of the oversubscribed tasks if any.
Execute a Query that returns the list of the disk- or I0-bound tasks if any.

Decision Making (High-level APIs)

Description

RootcauseOutlier ()
RootcauseResInef ()

Execute a Query that illustrate the main reason of the cause of the outlier.
Execute a Query that illustrate the main reason of the cause of inefficient resource
utilization.

Information Collection (Low-level APIs)

Description

taskExecTime ()
taskProgress ()
taskInput ()
taskBlock ()
taskHost ()
taskCPUusage ()
taskMemoryUsage ()
taskContainerCPU()
taskContainerMemory ()
blockHost ()
pendingTasks ()
nodeTotalCoreNum ()
nodeCPUUsage ()
nodeTotalMem ()
restartedTasks ()

nodeMemUsage ()
nodeDiskReadSpeed ()
nodeDiskWriteSpeed ()
nodeUploadSpeed ()
nodeDownloadSpeed ()

Return the execution time since the task started in sec.
Return the progress of the running task as a percentage.
Return the input data size of the running task in mb.
Return the block id this task process.

Return the name of the node this task ran on.

Return the CPU usage of the task.

Return the memory usage of the task.

Return the allocated CPU to the container this task ran on.
Return the allocated memory to the container this task ran on.
Return the names of the nodes that host the block.

Return the number of the tasks waiting to be run.
Return the number of the CPU core number of the node.
Return the CPU utilization of the node.

Return the total memory capacity of the node.

Return the name of the restarted tasks due to nodes that got disconnected
from the network.

Return the memory utilization of the node.

Return the disk read speed of the node.

Return the disk write speed of the node.

Return the network upload speed of the node.

Return the network download speed of the node.

See Section 3.4 for definitions and examples.
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in a Hadoop cluster. The diagnoser plugin is also designed
as a microservice architecture which has two advantages: i)
a new diagnoser can be conveniently plugged or unplugged
on-the-fly without affecting other components; ii) new root-
cause analysis tasks can be composed by a set of diagnosers
via RESTful APIs.

3.4 AutoDiagn Diagnosing Interfaces for Hadoop

AutoDiagn exposes a set of simple interfaces for system
monitoring, symptom detection and root-cause analysis.
Table 1 shows that two types of APIs are defined: high-level
APIs and low-level APIs. The high-level APIs consist of
Symptom Detection, Diagnoser and Decision Making. The
Symptom Detection APIs are a set of real-time stream process-
ing functions used to detect the defined symptoms causing
the performance reduction in the Hadoop system. Each
Diagnoser is a query or a set of queries, which aim to find
one of the causes of a symptom. For example, QueryNonLo-
cal() tries to find all non-local tasks within a time interval,

which is one of the reasons that causes an outlier. Finally,
the Decision Making APIs are used to analyze the results
from each Diagnoser and make the conclusion. These high-
level APIs have to interact with the low-level APIs (Informa-
tion Collection) to obtain system information including
resource usage, and the execution information of the big
data system (e.g., ask and job status in a Hadoop system).
Based on this flexible design, users can define and develop
their own Symptom Detection, Diagnoser and Decision
Making APIs and plug them into AutoDiagn.

3.5 Example Applications
We now discuss several examples for big data system root
cause applications using AutoDiagn APL

Outliers. Outliers are the tasks that take longer to finish
than other similar tasks, which may prevent the subsequent
tasks from making progress. To detect these tasks, the real-
time stream query QueryOutlier() is enabled in the
Symptom Detection Engine. This function consumes each
task’s completion rate (i.e., progress) and the executed time

Authorized licensed use limited to: ULAKBIM-UASL - Bartin Universitesi. Downloaded on May 16,2023 at 11:04:20 UTC from IEEE Xplore. Restrictions apply.
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to identify the outlier tasks (detailed in Section 4.1). Next,
three APIs QueryNonlocal (), QueryLessResource ()
and QueryNodeHealth (), corresponding to three Diagnos-
ers that are used to analyze the reasons causing the detected
symptom, are executed. QueryNonlocal() queries
whether the input data is allocated on the node on which an
outlier task is processed. In addition, QueryLessResource
() investigates whether outlier tasks are running on the
nodes that have less available resource. Moreover, Query-
NodeHealth () examines if an outlier task is the task that is
a restarted task due to the disconnected nodes from the net-
work. Finally, RootcauseOutlier () is used to process the
results from the three Diagnosers and make the conclusion.
All the APIs are shown in Table 1 and the technical details
are illustrated in Section 4.

Inefficient Resource Utilization. In our case this means that
some tasks are pending (or waiting) to be on worker nodes; at
the same time, some worker nodes are idle, e.g., low CPU and
memory usage. There are many reasons that cause this issue,
but here we consider two key causes: task heterogeneity and
resource heterogeneity. The type of tasks in a big data system are
various, including CPU intensive tasks, IO intensive tasks and
memory intensive tasks. However, the underlying computing
resources are typically equally distributed to these tasks,
thereby causing inefficient resource utilization. The latter is
caused by the heterogeneous underlying computing resour-
ces due to the multiple concurrent processing task environ-
ments and the queues are built on the saturated nodes.

To detect the inefficient resource utilization in a big data
system, the real-time stream query QueryResourceUtil
() is used within a defined time interval. We compute the
mean and standard deviation of the usage resources of the
whole cluster. If the standard deviation is far from the
mean, we will further query whether the tasks are queued
on the nodes which have high resource usage rates. If ineffi-
cient resource utilization is detected, two Diagnosers, Quer -
yOversubscribed() and QueryDiskIOboundTasks
(), which are the root-cause analysis APIs shown in Table 1,
are executed to perform root-cause analysis. QueryOver-
subscribed () checks the type of tasks queuing on the sat-
urated nodes. The QueryDiskIOboundTasks () checks
whether the saturated nodes have less available computing
resource, while processing the allocated tasks. The conclu-
sion of the cause of inefficient resource utilization is made
in RootcauseResInef ().

3.6 Parallel Execution

Following the key design idea, the diagnosers are triggered
by the corresponding detected symptom. However, we are
able to parallelize the execution of each symptom detector
and its diagnosers by partitioning the input data. For exam-
ple, if one symptom detector needs to process too many
data streams, we can use two of the same instances of the
symptom detector to process the data streams and aggre-
gate the results from two symptom detectors. The diagnoser
can follow the same strategy for parallel execution.

3.7 Reliability Analysis
AutoDiagn follows the centralized design for data collec-
tion, which simplifies the implementation of the Symptom
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TABLE 2

A Summary of Symbols Used in the Paper
Symbols  Description
Ip Job progress
N Name of the task
N, List of N/
P Performance of the N/
P, List of P
(@] Progress of the N/
O, List of O
T Execution time of the N/
T, Listof T
Med The performance of median task
D Non-local tasks
D, List of Non-local task
R Task running on the node with less resources
R Listof R
w Restarted tasks due to the nodes’ network failure
W, List of W
S List of outlier task
Sd Non-local outlier
Sd, List of Sd
Sr Outlier stemming from the resource variation
Sry List of Sr
Sw Outlier stemming from disconnected nodes
Sw; List of Sw
F Factor value of 1.5 used to find the S

Detection, Diagnosis Management and Decision Making. They
can easily obtain the required information from one place,
instead of interacting with the entire big data system. More-
over, the centralized design does not mean unreliability,
due to the high-availability of RabbitMQ. The RabbitMQ
cluster can overcome the node fail in the message queuing
system while ensuring scalability.

4 CASE STUuDY

In the previous section, we have discussed that our frame-
work supports detection of multiple types of symptoms
(e.g., outliers, inefficient resource utilization). However,
detecting these symptoms is non-trivial; and each symptom
can be detected by using different algorithms with different
input metrics. In this section, we present a case study that
details the technology of detecting outliers and the root-
causes analysis for the detected outliers. The notations used
in this paper are summarized in Table 2.

4.1 Symptom Detection for Outliers

Ananthanarayanan et al. [10] defined the outlier tasks’ run-
time to be 1.5 times higher than that of the median task exe-
cution time; their method is based on the assumption that
all tasks are started at the same time and are the same type
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Fig. 5. Performance evaluation of the tasks.

(i.e., the same input data and the same processing code),
which is not suitable for real-time symptom detection,
because in a time interval the tasks may be submitted at dif-
ferent times; the input data size of the tasks and the code for
tasks are not always the same. In this paper, we use Perfor-
mance (P) to measure the outlier as shown in Eq. (1). O rep-
resents the normalized value of the task progress in terms of
percent work complete, and 7 is the normalized value of
the task execution time

P:?. (1)

Eq. (2) is used to normalize the O and 7, where z,,, and
ZTmae are the minimal and maximal values of the given met-
rics (e.g., task progress and execution time) in a time inter-
val. We set b=1 and a = 0.1 to restrict the normalized
values within the range from 0.1 to 1 [12]

oy =g BT Emin)(b—a) @)

Tmaz — Tmin

Moreover, we define the outlier tasks which have 1.5
times less performance value than the median performance
value in each time interval. Fig. 5 shows a snapshot of a
time interval (e.g., three seconds), and two mappers are
identified as outliers. More evaluations will be discussed in
Section 5.

Algorithm 1 demonstrates the proposed ASD (automated
symptom detection) algorithm in the AutoDiagn system. It
is fed by the streaming data provided by the AutoDiagn
Monitoring system during job execution. First, the perfor-
mance of each running task is calculated (see Algorithm 1,
Line 11) using Eq. (1). Next, the median value of the perfor-
mance of all tasks is taken to be used to detect outliers (see
Algorithm 1, Line 16). Then, the tasks whose performance is
1.5 times less than the performance of the median task are
selected as outliers (see Algorithm 1, Line 26). As a final
step, these tasks detected as outliers are sent to the Diagnosis
Generation component for root-cause analysis (see Algo-
rithm 1, Line 24).

4.2 Root Cause Analysis for Outliers

When the detected symptoms are passed to the Diagnoser
Manager, the corresponding Diagnosers are executed for
trouble-shooting. The following subsection illustrates the

1041

technologies that we have developed for analyzing the
causes of outliers in a Hadoop cluster.

4.2.1 Root Cause of Outliers

In this paper, we follow the three main reasons that cause
outliers, discussed in [10], i.e., Data locality, Resource het-
erogeneity, and Network failures.

Algorithm 1. Automated Symptom Detection for Outliers

Input: J, - job progress in percentage,
F - factor,
N - name of the running task,
N, -list of NV,
O - progress of the task,
O, -listof O,
T - execution time of the task,
T, -listof 7.
Output: 9 - list of outliers S.
1 // Create a list S| to store the S
2 5, — 5)[0]
3 // Initialize the m,q
4 Mg — Me|0]
5 while J, < 100.0 do
6 //Clear the S; and P,
7 S« Clear(S]™, S)
8 P« Clear(P}™, P))
9 foreach N in N, then
10 //Compute P
11 P=2
12 / /Insert the P into the P,
13 P,.add(P)
14 end
15  //Get the m,4 from the P,
16 mg; < Medianvalue of P,
17 for each value of P; then
18 if (P*F) < mgq then

19 / /Insert the NV into the S,
20 Sr.add(W)

21 end

22  end

23 //Update the S; in Diagnosis Generation component
24 S, Update(S;™,S)

25 //Update the N;, O;, T}, J,

26 N; < Replace(N}, N

27  O; «— Replace(O;*, O

28 T)+« Replace(T}®,T))

29 J,— Replace(JI',“””, Ip)

30 end

Data Locality. Hadoop Distributed File System (HDEFS)
stores the data in a set of machines. If a task is scheduled to
a machine which does not store its input data, moving data
over the network may introduce some overheads to cause
the outliers issue.

Resource Heterogeneity. The machines in a Hadoop cluster
may be homogeneous with the same hardware configura-
tion, but the run-time computing resources are very hetero-
geneous due to the multiple talents environment, multiple
concurrent processing task environment, machine failures,
machine overloaded etc. If a task is scheduled to a bad
machine (e.g., has less computing resource) it may cause an
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outlier issue. Moreover, resource management systems for a
large-scale cluster like YARN split the tasks over the nodes
equally without considering the resource capacities of the
nodes in the cluster, but only takes into account sharing the
node’s resources among the tasks running on the node
equally by default [13]. That is more likely to raise an outlier
problem in the cluster.

Network Failure. In Hadoop clusters, the network discon-
nection can cause the running tasks allocated on a discon-
nected node to be restarted on other nodes, which may lead to
the task becoming an outlier and, increase the completion
time. The following illustrates the three algorithms that we
developed to identify the outliers caused by the three reasons.

4.2.2 Detecting Data Locality Issues

We assume that a non-local task (D) (e.g., mapper) is exe-
cuted on a node where its input data is not stored (In the fol-
lowing, we use Sd to represent non-local outliers). To detect
these tasks, we develop Algorithm 2 to check whether a set
of outliers is caused by a data locality issue. The input of
our algorithm is a list of detected outliers during the time
interval from ¢ to t + 1 and one of its outputs is a list of out-
liers which also belongs to the non-local tasks. First, we
query our time series database to obtain all non-local tasks
within the given time interval (see Algorithm 2, Line 2).

Here, QueryNonLocal (), a root-cause analysis AP, is
used to find the non-local ones among the running tasks in
that period of time. It compares the location where the task
is running (host node of the task) with the nodes where the
data block is replicated for fault tolerance via information
collection APIs shown in Table 1, taskHost () and
blockHost (). If the task is not running on any of these
nodes (nodes hosting a copy of the block), this task is
marked as a non-local task. In the second step (Algorithm 2,
Line 4), we obtain the common elements of list D; and S;.
These elements symbolize the non-local outliers stemming
from a data locality issue.

4.2.3 Detecting Resource Heterogeneity Issues

Algorithm 2 is designed to identify the outliers caused by
the resource heterogeneity. The tasks running on the nodes
which have less computing resource (R) tend to be outliers
[14] (in the following, we use Sr to represent outliers running
on the nodes which have less computing resource). In Algorithm
2, the list of detected outliers during the time interval from ¢
to t 4+ 1 is used as input and one of the outputs of the algo-
rithm is a list of outliers which also belongs to the tasks run-
ning on the node with less computing resource. The time
series database is queried to obtain all the tasks running on
the node with less computing resource within the given time
interval (see Algorithm 2, Line 6).

Here, QueryLessResource(), a root-cause analysis
API], is used to check the heterogeneity of the nodes that
host only the running tasks based on the resource specifica-
tions of them in that period of time. It detects the nodes
with less resource capacity in terms of CPU core numbers
and the total amount of memory among the nodes hosting
the running tasks. The resource specifications of the nodes
(i.e., CPU core numbers, total amount of memory) are
obtained from each node via information collection APIs
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shown in Table 1, nodeTotalCoreNum() and nodeTo-
talMem() APIs. As a second step (Algorithm 2, Line 8), we
obtain the common elements of list R; and 5;. These ele-
ments symbolize the outliers stemming from a cluster het-
erogeneity issue.

4.2.4 Detecting Network Failure Issues

Since 5 is obtained from Algorithm 1, a Diagnoser is exe-
cuted via QueryNodeHealth () to find all restarted tasks
due to the nodes disconnected by network failure within
the given time interval (see Algorithm 2, Line 10). The low-
level APl restartedTasks() is called which distin-
guishes the restarted tasks due to network failure from the
speculation of straggler tasks by analyzing the information
of the tasks that is provided by the monitoring agent. There-
after, we compute the list Sw; that contains the outlier tasks
caused by the network failure (see Algorithm 2, Line 12).

Algorithm 2. Root-Cause Analysis of Outliers

Input: S; - list of outliers in time interval from ¢ to ¢ + 1
Output: Sd; - list of non-local outliers Sd,
Sy - list of outliers stemming from resource variation Sr,
Sw; - list of outliers stemming from disconnected
nodes Sw.
1 // Find all D within the given time interval
2 D; + QueryNonLocal (t, t+1)
3 //Find the common elements in the D; and S;, and add
them into the Sd;
4 Sd; — RetainAll(D,, S))
5 // Find all R within the given time interval
6 R; < QueryLessResource(t, t+1)
7 //Find the common elements in the R; and 5;, and add
them into the Si;
8 Sr; «+— RetainAll(R;, S))
9 // Find all W within the given time interval
10 W; < QueryNodeHealth(t, t+1)
11 //Find the common elements in the W, and 5;, and add
them into the Swy,
12 Sw; + Retainall(W,, S))

4.2.5 Decision Making

In this case study, we use a simple decision make method
that compares the lists Sd;, Sr; and Sw; and the probability
of the reasons causing the outliers by using the number of
the elements of a list divided the total number of outlier
tasks. For instance, the probability of the performance
reduction caused by data locality is ‘%’Z‘.More advanced
methods such as deep learning mode&s can be used for
processing more complicated decision making tasks in
future work.

5 [EVALUATION

In this section, we present a comprehensive evaluation show-
ing the capacity and the accuracy rate of AutoDiagn, as well
as a analysis of its resource consumption and overheads.

5.1 Experimental Setup

Environments. We set up the Hadoop YARN clusters over 31
AWS nodes with 1 master and 30 slaves with the Operating
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TABLE 3
The Accuracy of Symptom Detection for Non-Local Outliers in a
Homogeneous Cluster

1043

TABLE 4
The Accuracy of Symptom Detection for the Outliers Stemming
From Resource Variation in a Heterogeneous Cluster

Benchmark Total D Outliers Accuracy Error  Benchmark Total R Outliers Accuracy  Error
tasks (detected as Sd) (%) (o) tasks (detected as Sr) (%) (0)
WordCount 234 32 29 90.63 3.9 WordCount 234 37 33 89.19 2.77
Grep 236 37 33 89.19 4.8 Grep 236 26 24 9231 4.77
TPC-H 102 13 12 92.31 6.72 TPC-H 102 9 8 88.89 5.47
TPC-DS 126 13 12 92.31 6.1 TPC-DS 126 13 12 92.31 6.9
K-means 234 34 29 85.29 1.25 K-means 234 36 33 91.67 2.88
PageRank 235 28 25 89.29 6.2 PageRank 235 30 28 93.33 5.35
TABLE 5

system of each node being Ubuntu Server 18.04 LTS (HVM).
The Hadoop version is 3.2.1 and the Hive version is 3.1.1.
To meet our experimental requirements, we built two types
of cluster. In Type I each node has the same configuration
(i.e., 4 cores and 16 GB memory). In Type II, 25 nodes have 4
cores and 16 GB memory and 6 nodes have 2 cores and 4
GB memory.

Benchmarks and Workload. We used six well-known
Hadoop benchmarks in our evaluations namely: Word-
Count,’ Grep,10 TPC-H,'! TPC-DS,'? K-means (:lus’cering,]3
and PageRank.'* The input of each benchmark application
is 30GB.

Methodology. Our experiments aim to evaluate the effec-
tiveness of AutoDiagn. To this end, we manually inject the
above-mentioned three main reasons to cause the outliers,
which can be summarized as three types of execution envi-
ronment. Env A: we perform all benchmark experiments in
the cluster Type I. Env B: we perform all benchmark experi-
ments in the cluster Type I, but skew the input size stored
on different nodes. Env C: we perform all benchmark
experiments in the cluster Type II (a heterogeneous cluster).
Env ‘H: we perform all benchmark experiments in the clus-
ter Type I, and disconnect some nodes’ network during exe-
cution. Each benchmarking is repeated 5 times and results
are reported as the average and standard deviation. In total,
there are 90 experiments conducted in our evaluation.

5.2 Diagnosis Detection Evaluation

In this section, we evaluate the accuracy of our symptom
detection method. To this end, we execute our benchmarks
in Env B to increase number of Sd tasks (see Section 4.2.2).
Next, to increase the issue of resource heterogeneity (Sr
referring to Section 4.2.3), we run the benchmarks in Env C.
Thereafter, we run the benchmarks in Env H to emulate the
network failure (Sw referring to Section 4.2.4). Finally, we
compare the detected Outlier tasks with the ground truths
that are the data locality, resource heterogeneity, and net-
work failure issues observed by the AutoDiagn diagnosing
system.

9. Online. [Available]: http://wiki.apache.org/hadoop/WordCount

10. Online. [Available]: http:/ /wiki.apache.org/hadoop/Grep

11. Online. [Available]: http:/ /www.tpc.org/tpch/

12. Online. [Available]: http:/ /www.tpc.org/tpcds/

13. Online. [Available]: https:/ /en.wikipedia.org/wiki/K-means_
clustering

14. Online. [Available]: https:/ /en.wikipedia.org/wiki/PageRank

The Accuracy of Symptom Detection for the Outliers Stemming
From Network Failures

Benchmark Total W Outliers Accuracy Error
tasks (detected as Sw) (%) (0)
WordCount 234 11 10 90.91 1.83
Grep 236 13 12 92.31 6.73
TPC-H 102 13 12 92.31 6.54
TPC-DS 126 15 14 93.33 5.43
K-means 234 17 16 94.12 4.33
PageRank 235 19 18 94.74 4.23

Tables 3, 4, and 5 summarize all the results. All bench-
marks achieve high accuracy by using our proposal symp-
tom detection method. The highest accuracy for both Sd and
Srare 92.3 percent, and for Sw is 94.7 percent and the overall
accuracy for outlier detection is 91.3 percent, where the
Error represents the variation of the accuracy depending on
the repeated experiments.

We compute the accuracy of our symptom detection
method by using the number of detected outlier tasks
divided by the actual number of the tasks that can cause the
outlier issue. Table 3, for example, D is the total number of
non-local tasks and Outliers (Sd) is the number of detected
outlier tasks that belong to non-local task. Therefore, the
accuracy is 5¢. Tables 4 and 5 follow the same approach to
compute the accuracy.

Outlier Verification.To further verify the Sd, St, and Sw are
the main reasons causing the outliers, we conduct the fol-
lowing comparison experiments: 1) comparing the execu-
tion time of local tasks and non-local tasks; 2) comparing
the execution time of the tasks running in Env A and Env C;
and 3) comparing the execution time of normal tasks and
restarted tasks due to network failure. Fig. 6a proves that
non-local tasks consume more time than local tasks due to
the overload introduced by data shuffling. Additionally, we
compare the throughput of the local tasks and non-local
tasks in terms of how much data can be processed in each
second. Fig. 7 reveals that the throughput of non-local tasks
is only 70 percent that of local tasks.

Moreover, Fig. 6b shows that the execution time of the
tasks running on Env A is less than that on Env C. This is
because the tasks are equally distributed to all computing
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Fig. 6. Comparison of execution time of the tasks.

nodes and the less powerful nodes are saturated. Further-
more, Fig. 9a shows that the CPU usage of less powerful
hosts reaches 100 percent, thereby building a task queue in
these hosts, increasing the overall execution time. However,
Fig. 9b reveals that the powerful hosts have sufficient com-
puting resources for processing the allocated tasks.

Furthermore, Fig. 6¢c shows that the execution time of the
restarted tasks are longer than the normal tasks. As Fig. 8
illustrates, we compute the execution time of the restarted
task by adding the execution time of the task in the discon-
nected node and that in the rescheduled node.

5.3 Performance and Overheads

Performance Evaluation. We evaluate the performance of
AutoDiagn by measuring the end-to-end response time of
symptom detection and root-cause analysis. Since they are
not affected by the types of benchmark, we report the aver-
age of the response time. Fig. 10a shows that the real-time
symptom detection can achieve a low response time, which
only has 96 milliseconds and 1,059 milliseconds with 100
tasks and 1,000 tasks, respectively. Although the response
time increases linearly, the parallel execution method dis-
cussed in Section 3.6 can be applied to reduce the latency.
The response time for root cause analysis is higher than that
of symptom detection. For 100 tasks and 1,000 tasks, their
response times are 0.354 seconds and 5.974 seconds, respec-
tively. Unlike the symptom detection which is very sensitive
to latency because of the follow-up processes, triggering the
further root-cause analysis or alerting the system managers,
Root-cause analysis aims to provide a holistic diagnosing of
a big system and the analysis results may help to improve

3 Local tasks I Non-local tasks

Throughput (MB/s)
o = N W H» U1 O

Types of Benchmarking

Fig. 7. The throughput of AutoDiagn.

(b) Homogeneous cluster vs Heterogeneous (c) Normal tasks vs Restarted tasks caused by

network failure

the system performance in future. As a result, the real-time
root-cause analysis is not compulsory.

System Ouverheads. To evaluate the system overhead intro-
duced by AutoDiagn, we measure the CPU and memory
usage of AutoDiagn Monitoring (agent) and AutoDiagn
Diagnosing. Table 6 shows that -AutoDiagn Monitoring only
consumes approximately 2.52 percent memory and 4.69 per-
cent CPU; while -AutoDiagn Diagnosis uses 2.08 percent
memory and 3.49 percent CPU.

Fig. 10b shows the network overhead of AutoDiagn. The
extra communication cost introduced by our tool is small
but it increases when the number of parallel tasks increases.
For example, when the number of parallel task is 100, there
are about 45 messages per second sent from agents to Rab-
bitMQ cluster and the total size of these messages is 13.5
KB/s. The message rate and network overhead increase to
615 per second and 223 KB/s, respectively, when the num-
ber of parallel tasks is 1,000.

Storage Overheads. AutoDiagn needs to dump the system
information to a database which may consume extra storage
resource. In our evaluation experiments, it only cost 3.75 MB
disk space in total. Obviously, increasing the types of symp-
tom detection and root cause analysis will also consume
more storage resources. We discuss the potential future
work in Section 6.

6 DiscussioN AND FUTURE WORK

Populating Applications. In this paper, we propose a general
and flexible framework to uncover the performance reduc-
tion issues in a big data system. In particular, we develop
and evaluate big data applications for outliers. New appli-
cations (including symptom detection and root-cause analy-

100 [T T T T I T T T
80 .
60
40 - .
20

Progress (%)

0
0 5 10 15 20 25 30 35 40 45 50 55
Elapsed time (sec)

Fig. 8. The life cycle of the restarted task.
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Fig. 10. Performance evaluation and network overhead of AutoDiagn.

sis) are required to populate our system for future work.

Owverhead Cost Reduction. Our system is designed in a
loosely-coupled manner, the processing components can be
easily scaled. However, the storage overhead increases with
the number of applications increasing. [15] proposed a cach-
ing method to aggregate the information before sending to
destination nodes. We will explore this direction in future
work to reduce the storage overhead and network
overhead.

Performance Improvement. Mantri [10] utilized the outputs
of the root cause analysis to improve the resource allocation
in Hadoop clusters. Thus, one open research direction is to
build a system which can react to analysis results, thereby
improving the performance of the big data system.

7 RELATED WORK

Much recent work in big data systems focuses on improving
workflows [16], [17], [18], programming framework [19],
[20], [21], task scheduling [22], [23], [24].

Root-Cause Analysis. There is a large volume of published
studies describing the role of root-cause analysis. The
authors of [10], [25], [26] take the next step of understanding
the reasons for performance reduction. Mantri [10] charac-
terizes the prevalence of stragglers in Hadoop systems as

TABLE 6
Resource Overhead Caused by AutoDiagn Components
Components Mem (%) CPU (%)
AutoDiagn Monitoring 2.52 4.69
AutoDiagn Diagnosing 2.08 3.49
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(b) The message rates and network overhead

well as troubleshooting the cause of stragglers. Dean and
Barroso [25] analyze the issues causing tail latency in big
data systems. Garraghan ef al. [11], [27] proposed a new
method to identify long tail behavior in big data systems
and evaluated in google data trace. The authors in [28] use
offline log analysis methods to identify the root cause of
outliers in a large-scale cluster consisting of thousands of
nodes by tracking the resource utilization. Similarly, Zhou
et al. [29] use a simple but efficient rule based method to
identify the root cause of stragglers.

Along with these similar works, there are some
researchers using statistical and machine learning methods
for root-cause analysis. The authors of [30] introduce a
Regression Neural Network (RNN) based algorithm to
trouble-shoot the causes of stragglers by processing Spark
logs. More algorithms such as the associated tree and fuzzy
data envelopment analysis [31] and Reinforcement Learn-
ing [32] are applied for finding the reasons of stragglers in
Hadoop and Spark.

In [33], a Pearson coefficient of correlation is used for root
cause analysis to measure linear correlation between system
metrics, workload and latency. However, these works lack a
systematic solution for root cause analysis for big data proc-
essing systems and the proposed methods are not applica-
ble for real-time systems.

Different to other work, the authors of [34] propose a new
algorithm that aims to reduce the proportion of straggler tasks
in machine learning systems that use gradient-descent-like
algorithms. This work offers an idea to develop new Diagnos-
ers for machine learning systems using our framework.

Anomaly Detection and Debugging. The authors in [35] pro-
pose a rule-based approach to identify anomalous behaviors
in Hadoop ecosystems by analyzing the task logs. This work
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TABLE 7
The Features Supported by Existing Tools and AutoDiagn
Feature DataDog Sequence Sematext TACC Mantri DCDB Nagios Ganglia Chukwa DMon [44] AutoDiagn
[2] 1Q 3] [4] (5] [10] [39]1  [41] [42] [43]
Real-time monitoring Yes Yes Yes Yes Yes Yes Yes Near Yes Near Yes
real-time real-time

Root-cause analysis No No No No Yes Yes No No No Yes Yes
BigData frameworks support ~ Good Poor Good No  Poor No Poor Poor Poor Good and Good and

Extensible Extensible
Underlying resource Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
monitoring
Real-time monitoring for big Yes Yes Yes No Yes No No No Yes Yes Yes
data tasks
Auto-scaling Yes Yes Yes Yes Yes Yes No No Yes Yes Yes
Alerts Yes No Yes No No No Yes No No No Yes
Visualization of big data tasks ~ Yes No Yes No No No No Yes No No Yes
User customized root-cause No No No No No No No No No No Yes

analysis

only analyzes the task logs, which fails to capture the per-
formance reduction issues caused by inefficient utilizing the
underlying resources. Next, Khoussainova et al. [36] build a
historical log analysis system to study and track the MapRe-
duce jobs which cause performance reduction based on
their relevance, precision and generality principles. How-
ever, this cannot be performed for real-time anomaly detec-
tion. Du et al. [37] train a machine learning model from the
normal condition data by using Long Short-Term Memory
(LSTM) and this trained model is used for detecting in
Hadoop and OpenStack environments. Our AutoDiagn pro-
vides infrastructure into which the trained models can be
plugged to enrich the applications.

Real-Time Operational Data Analytic System. Agelastos et al.
[38] propose a monitoring system for HPC systems, which can
capture the cases of applications competing for shared resour-
ces. However, this system does not consider root-cause analy-
sis of the performance reduction. The authors of [5], [39] do
not only provide the feature of real-time monitoring, but are
also able to identify the performance issues and trouble-shoot
the cause of the issues. In addition to them, [40] uses a type of
artificial neural network called autoencoder for anomaly
detection. They first monitor the system in real-time and collect
the normal data for training the model used to discern between
normal and abnormal conditions in an online fashion. How-
ever, these systems are developed for HPC clusters and are
not suitable for big data systems.

Table 7 presents a brief overview of various monitoring
tools for big data frameworks.

8 CONCLUSION

In this paper, we have presented AutoDiagn, a framework for
enabling diagnosing of large-scale distributed systems to
ascertain the root cause of outliers, with the core purpose of
unravelling the concretization of complicated models for sys-
tem management. After making a comprehensive literature
review and identifying the requirements for real-world prob-
lems, we conceived its design. The combination of user-

defined functions powered by APIs and the agent-based moni-
toring system along with the findings obtained from an empir-
ical analysis of the experiments we conducted play a
fundamental role in the development of the system. Auto-
Diagn can be applied to most big data systems along with the
monitoring systems. We have also presented the implementa-
tion and integration of the AutoDiagn system to the SmartMo-
nit [45], real-time big data monitoring system, combined in our
production environment. In our implementation on a large
cluster, we find AutoDiagn very effective and efficient.

Outliers are one of the main problems in big data systems
that overwhelm the whole system and reduce performance
considerably. AutoDiagn embraces this problem to reveal
the bottlenecks alongside their root causes.
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