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Abstract: The use of Internet of things (IoT)-based physical sensors to perceive the environment is a
prevalent and global approach. However, one major problem is the reliability of physical sensors’
nodes, which creates difficulty in a real-time system to identify whether the physical sensor is
transmitting correct values or malfunctioning due to external disturbances affecting the system,
such as noise. In this paper, the use of Long Short-Term Memory (LSTM)-based neural networks is
proposed as an alternate approach to address this problem. The proposed solution is tested for a
smart irrigation system, where a physical sensor is replaced by a neural sensor. The Smart Irrigation
System (SIS) contains several physical sensors, which transmit temperature, humidity, and soil
moisture data to calculate the transpiration in a particular field. The real-world values are taken from
an agriculture field, located in a field of lemons near the Ghadap Sindh province of Pakistan. The
LM35 sensor is used for temperature, DHT-22 for humidity, and we designed a customized sensor in
our lab for the acquisition of moisture values. The results of the experiment show that the proposed
deep learning-based neural sensor predicts the real-time values with high accuracy, especially the
temperature values. The humidity and moisture values are also in an acceptable range. Our results
highlight the possibility of using a neural network, referred to as a neural sensor here, to complement
the functioning of a physical sensor deployed in an agriculture field in order to make smart irrigation
systems more reliable.

Keywords: neural networks; artificial intelligence; sensor reliability; agritech; precision agriculture;
Recurrent Neural Networks; sensor modeling

1. Introduction

The agriculture industry plays a significant role in the economies of many countries.
For this reason, the technological advancements in the agricultural industry are consid-
ered to be a vital contributor to the economy, as well as to sustainable development. The
implementation of smart monitoring and automatic condition sensing systems in agricul-
tural fields enable farmers to effectively monitor their land and take necessary actions to
maintain productivity. Several new technologies and approaches [1,2] have been studied
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and implemented to promote continuous improvement in the agriculture sector. Com-
puter vision-based systems [2] for precision agriculture, hyper-spectral imaging [3], and
disease/productivity prediction [4] are some examples. AirSurf, an automated and open-
source analytic platform that combines computer vision techniques with deep learning
to measure yield-related phenotypes from ultra-large aerial imagery, is presented in [5].
Artificial Intelligence (AI)-based systems are used for the analysis and prediction of the five
most produced grains in the world: maize, rice, wheat, soybean, and barley. A systematic
review for AI applications in precision agriculture is presented in [6].

Pakistan is an agricultural country, with the majority of the population associated with
the agricultural industry directly or indirectly [7]. Despite advancements in the agricultural
sector and evolution of the concept of precision agriculture [4], Pakistani farmers still lack
access to modern technological advancements in the field and are forced to use conventional
and traditional mechanisms for farming. In this paper, we have designed and implemented
a Smart Irrigation System (SIS) [8] and deployed it in different agricultural fields in Sindh
and other parts of the country. The SIS is a Wireless Sensor Network (WSN) [9], which
collects information on temperature, soil moisture and humidity from a particular field
and passes this information back to a central server station, which calculates the water
required in a particular field and passes this information back to the farmer’s smart phone.
The farmer then irrigates the crops as communicated by the application. This allows the
farmer to save water resources while increasing the crop yield.

One of the major flaws in the current SIS system and most of the WSNs deployed
around the world is the sudden failure of physical nodes deployed along with the WSNs.
It is sometimes impossible to assess whether the physical nodes are passing on the correct
sensor values or are malfunctioning over the course of time. The only way to identify
malfunctioning physical nodes is through manual inspection, which is a tedious and
cumbersome job. The malfunctioning sensor node also has drastic effects on any real-time
system. Providing incorrect values to the farmer from the SIS system will have a very
negative impact on the overall reliability and public perception of the system.

A study related to the current work is presented in [10], which focuses on three vital
parameters, i.e., the speedy and precise prediction of the network lifetime, internode
distance and power level. Since these three constraints are closely associated with each
other, by fixing the two parameters, one can predict the optimal value of the third parameter
with high accuracy. Moreover, the more tedious and complicated task is to design a WSN
(i.e., determining network parameters) whilst employing a heuristic algorithm for the
neural network.

Another research study [11] proposed a novel architecture based on a Long Short-Term
Memory (LSTM) network. It uses an appropriate training function and introduces a target
generation to find suitable ways to explain and deal with the complications related to RUL
(Remaining Useful Life) [12] estimations for physical systems. The different sensors, which
uninterruptedly record diverse indicators about a working asset such as vibration intensity
or applied pressure, gather data. The suggested network uses a bidirectional sequence
processing methodology in a sequential fashion, bidirectional handshaking LSTM [11],
to continuously monitor the sequential data. Instead of partially processing units or
sequences, it passes the final states from forward processing LSTM units to backward
processing units up to the time of predictions, to ensure the immediate availability of
predictions. The aforementioned research study also proposed that RUL training does
not require the hypothesis related to the deterioration of function, as it is based on the
calculation of sensor reading to determine the health of the current system.

Neural networks are used in image processing [3], saliency detection [13], biomedical
image analysis [14], drug design [15] and weather forecasting applications [16]. The
use of neural networks (NN) in environment monitoring for the creation of datasets of
atmospheric parameters as well as for weather forecasting is also increasing day by day.
Researchers have trained deep neural networks for weather prediction accompanied with
the complexity of climate model. With the advancement in computational speed and power,
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the availability of massive datasets, and complex deep architectures, consisting of millions
of parameters, deep learning is becoming the state of the art in many fields, including
agriculture [17].

This study tries to solve this problem by designing a neural network, referred as a
neural sensor, complementing a physical sensor. This research also endeavors to provide,
with initial feasibility, a study that utilizes a neural network mimicking a physical sensor
node. Using such a model may also increase the reliability and efficiency of the current wa-
ter resource management system, SIS, while reducing the dependency on physical sensors
to effectively facilitate farmers in managing the productivity of their agricultural fields.

The main contributions of this research study are:

• The development of an LSTM-based smart system that provides readings for irrigation
based on the predictive analysis of temperature, soil moisture and humidity.

• The continuous validation of the developed smart system using both physical and
neural sensor readings to avoid malfunctions.

• A comprehensive comparative forecasting of temperature, humidity and moisture.

The rest of this paper is organized as follows: In Section 2, the design methodology
and data collection are presented, and in Section 3, the results are discussed. Finally,
Section 4 concludes the paper with future prospects.

2. Materials and Methods
2.1. Design Methodology

A sequential model is a linear stack of layers which enables building of the model
layer by layer, where each layer poses one input and one output tensor. A linear sequential
model [18,19] is used as the development methodology for the neural sensor system. The
proposed model is sequential in nature and consists of blocks to process input data and
feedback. The complete SIS system data flow is shown in Figure 1. It illustrates diverse
stages and events of this model, which depicts the implementation of a neural network to
mimic the behavior of the physical sensor node, deployed in the agricultural field. Neural
networks are universally employed as predictive models [20]. In the proposed model,
the neural network is trained in the supervised mode using actual data values acquired
in the previous year by the SIS system deployed in the field. In supervised learning, the
actual labels are also fed to the network during training. The data values mainly include
temperature and humidity readings. The trained neural network will then be used to
predict sensor data in the test mode. Since, there is a very little support available in the
existing literature regarding the role of neural networks mimicking the behavior of a
physical sensor node, the proposed module is referred to as a neural sensor. The flowchart
of the complete system is shown in Figure 1, which also illustrates how the proposed
system operates.

Figure 1. The flowchart of the proposed model for the flow of the SIS system in the presence of
the proposed neural sensor node. The system is fed with the values from the physical sensor and
neural sensor values simultaneously. The comparator module compares both the values. If the
physical sensor value deviates from a neural sensor node by a huge margin, then a red flag is raised
regarding the physical sensor and the neural sensor value is passed to the SIS system to save it from
experiencing a drastic degradation in performance.
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2.2. Data Collection

This section emphasizes the data gathering and how the raw data were preprocessed
by using different methods and techniques to obtain clean and observable data. The
resulting data is used in the training of the proposed neural sensor model. Data processing
is solely the alteration of raw data to extract meaningful information through a process.
For the neural sensor, we used the data of physical sensors embedded in the agricultural
field of lemons near Ghadap, Sindh, Pakistan.

Data preprocessing consists of: importing data values, concatenating and sorting them,
resampling the data, handling missing values and finally downsampling these values. The
targeted variables in the dataset are temperature, humidity and soil moisture. The targeted
variables plot is represented in Figure 2, where the orange-colored graph shows the value of
humidity against the date-time variable and blue-colored plot represents the temperature,
while green represents the soil moisture readings of the physical sensor against a particular
date-time variable. The plot shown in Figure 2 consists of the values transmitted from the
physical sensor of SIS fitted in the lemon crop field. Since index will not be a part of the
prediction variable, the date components were extracted from it to highlight seasonality
and time components.

Figure 2. Plot of targeted variables (Temperature in ◦C, humidity (H) and soil moisture).

The data values acquired from the field include temperature, humidity and the soil
moisture values. The temperature value is relayed from a temperature sensor LM35 which
is a precision integrated circuit (IC) temperature device. LM35 can operate accurately
between temperature ranges of −50 degrees centigrade to 150 degrees centigrade, which is
a sufficient range for the local temperatures in Pakistan. The humidity values are taken
from the humidity sensor DHT-22. A customized in-house sensor has been designed
to calculate the values of soil moisture in the agricultural field. Soil moisture works by
passing a current between the two probes inserted closely in the soil and then measuring
the strength of the output signal at the controller side. A comparator integrated circuit,
LM 393, has been used to adjust the sensitivity of the soil moisture sensor. The data from
the temperature, humidity and soil moisture sensors are passed to the controller, which
transfers these values instantaneously to the cloud. The controller is tuned to transfer
sensor values on an hourly basis to the main decision support system via the cloud.

2.3. Neural Sensor Modeling

A popular machine learning model used for data processing is a neural network
(NN). A neural network is a set of algorithms that attempts to recognize the underlying
relationships in a set of data using a method that is similar to how the human brain works.
The architecture of an NN is inspired by the functional and structural aspects of a biological
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brain. A neuron receives inputs with adjustable weights along the incoming edges. In the
most predictive model, the sigmoid or Relu activation function is frequently used as the
activation function to model the non-linearity in the data [21].

Recurrent Neural Networks (RNNs) [22] are a robust type of neural network for pro-
cessing sequence-dependent data as they handle variable length sequences and avoid the
need for fixed-sized time windows. These are densely connected NNs with feedback loops
to connect the hidden neurons across time. A state vector in the hidden units maintains
the memory of all the previous elements of the sequence. Due to this internal memory,
RNNs can learn the long-term dependencies across many time steps and generalize across
input sequences rather than individual patterns. It is well suited for time-series analysis,
forecasting, and many other areas of natural language processing [23]. It enables precise
future predictions based on the patterns of time series data.

A precise Recurrent Neural Network (RNN) architecture is demonstrated in Figure 3,
which is extended into a deep neural network to illustrate how a state is constructed with
time. It takes an existing sequence element at time step t and the hidden state from the
preceding time step at −1. Now, the hidden state (memory) updated to and the network
output is determined. “U” is the weight matrix that maps the input to the hidden layer
and “W” is the weight matrix for the recurrent transition among one hidden state to the
next. The hidden layer is propagated to the output layer through the weight matrix “V”.
Hence, the recent output is reliant on all the prior inputs (for t′ ≤ t). Mathematically, it can
be expressed as:

h(t) = f (ht−1, xt) (1)

where h(t) is the current state, xt is the input, and ht−1 is the previous state. After that, the
tanh activation function is applied.

ht = tanh(Whh ∗ ht−1 + Wxh ∗ xt) (2)

where Whh is the weight matrix multiplied by the hidden state and Wxh is the hidden matrix
multiplied to the input sequence. Since, our data is sequential in nature, such a model is
well suited to our problem.

Figure 3. RNN architecture.

LSTM networks are a specific RNN architecture that can maintain long-term depen-
dencies. The core idea behind this architecture is a memory cell, which maintains the
temporal state of the network over several time steps (over 1000), and non-linear analog
gating units, which controls the information flow by selectively storing and deleting in-
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formation in this cell. Initially, the basic LSTM components are the input gate, forget gate,
output gate and hidden layer, i.e., the Constant Error Carousel (CEC).

output(t) = σ(wo[ht−1, xt) + bo) (3)

The output gate controls what information needs to be released from the CEC and
thus ensures that other units are not disturbed by the stored information. This architecture,
however, led to instability in the network in the presence of a continuous input stream
without any marked start and end points, as it did not reset the cell contents after finishing
the processing of a sequence or before it started a new one. To deal with this issue,
forget gates are used, which enable the LSTM cell to reset or forget the cell’s memory at
appropriate times.

A typical LSTM architecture with forget gates and peephole connections, with LSTM
RNNs, is shown in Figure 3. The training of the network takes a shorter time and is of high
accuracy compared to conventional RNNs. It prevents the error from back-propagating
through time and makes it feasible for tasks with high complexity and temporal extent to
learn over multiple time steps, thereby allowing the model to predict future data points
based on long-term context dependencies without any vanishing gradient problem.

2.4. Training of the Neural Network

This section deals with the training of a neural sensor with the help of a recurrent
neural network (LSTM). Since our data is sequential in nature with long-term dependencies,
we decided to choose the Long Short-Term Memory (LSTM) architecture. Before applying
the modeling technique, shift steps should be identified. Shift steps define how many
steps into the future one wants to predict with each input to the network. It shifts the
data backwards by the number of steps, and as one wants to predict into the future, the
input and output dimensions remain the same. In the neural sensor, the shift steps number
twenty-four for the input of each date, and it will generate twenty-four records of the
predicted values of temperature, humidity and soil moisture on the hour against each
date. These shifts have created an empty space in the tail of the target dataset equal to the
number of shift steps. A sample dataset is shown in Table 1.

Table 1. Data captured from multiple fields at time steps. Physical sensors were used to obtain the
values.

Created at Field1
Temperature

Field2 Heat
Index

Field3
Humidity

Field4 Average
Flow Rate

Field5 Soil
Moisture

Field6 Flow
Reading
(Quantity)

0 2017-08-18
@6:07:22 39.0 34.08 1.0 0 63.62 0.0

1 2017-08-18
@12:48:44 31.8 28.59 1.0 0 81.70 0.0

2 2017-08-19
@07:15:31 41.7 121.97 99.9 0 62.88 0.0

3 2017-08-21
@06:51:22 42.6 42.83 19.0 0 59.46 0.0

4 2017-08-21
@07:22:22 43.5 44.32 19.2 0 59.71 0.0

The bottom half from both the original and target datasets will be truncated, which
correspond to the empty space. The number of rows remains the same, and we save them
in x and y data where x corresponds to the input port of the neural net and y corresponds
to the output port. Note that the output y data is ahead of the input x data in terms of
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number of shift steps. Interpolation was used to handle the missing values, as shown in
Figure 4.

Figure 4. Plot of data after interpolation.

To train the neural network, the dataset was splitted into a training dataset and testing
dataset. The physical sensor readings for temperature, humidity and soil moisture were
used as an input, and the neural network output was the future predicted values for
temperature, humidity and soil moisture. We chose the common criteria of 80–20% split.
In total, 80% of the data were used for training and 20% of the data were used for testing
purposes. This allowed us to obtain a reasonable number of samples to train our models,
and out of 10,223 records, 8178 records were assigned for training and 2045 were allocated
for testing. We did not prepare the validation sets. Validations sets are used for hyper-
parameter tuning [24]. We tuned our parameters during the training phase and they also
performed well during the testing phase. Root mean square propagation was used as an
optimizer with a learning rate of 0.01. We divided the data into twenty batches.

After the collection of the dataset, the first step was normalization. The normalization
of data is the removal of repetition and redundancy in data. The data were normalized
using a min-max normalization method. The training data is made up of almost eight thou-
sand observations. Instead of training the RNN on the complete sequences of observations,
we used a batch of shorter sub-sequences picked at random from the training data. Batch
size is the number of training examples utilized in one epoch or iteration. Sequence length
represents the number of records in one batch. Lowering the batch size will reduce the size
of the data loaded into memory. Lowering the sequence size too much will make the signal
history too small to make predictions. For training the model, we chose 20 batch size sets,
while the sequence length was set to 24 × 7 × 8, i.e., two-month window used for training.

In Figure 5, the input (blue curve) and output (orange curve) readings in the graph
are shown after setting the step size for model training. The shift steps being set to 24
represents that, as a result of training of model, 24 predicted values will be obtained against
each input date.
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Figure 5. Plot of dataset after shift stepping.

The neural network trains quickly by running multiple training epochs. However,
there is a chance of overfitting the model to the training set, leaving it incapable of oversim-
plifying the unknown data. Therefore, it is necessary to screen how well the model works
on the test data after every epoch and only include the model’s weights if the functioning
is enhanced on the test data. The batch generator arbitrarily chooses a batch of small
sequences from the training data values and employs it during training. For the validation
data value, it is desired to instead route through the complete structure from the test data
and measure the prediction correctness on that complete structure. The architecture and
number of Training parameters is shown in Table 2.

Table 2. Neural network architecture and number of parameters.

Layer (Type) Output Shape Number of Parameters

LSTM (None, None, 100) 42,800

DENSE (None, None, 202) 202

To train the neural network, note that a single “epoch” does not correspond to a
single processing of the training set because of how the batch-generator randomly selects
sub-sequences from the training set. Instead, different researchers have selected steps per
epoch in order to process each epoch in a small amount of time. The training of an RNN
consists of learning new weight values per epoch. For the modeling of the neural sensor,
the defined epochs are 20 and steps per epochs are 100.

3. Results and Discussion

Some conventional testing procedures can be used to evaluate the model’s perfor-
mance on the test set. This involves examining the model’s anticipated values at various
time intervals on the same day. This is a reliable method of demonstrating the neural
sensor’s performance. From 1900 to 2200, the prediction is made on an hourly basis.

The results of prediction on the training dataset are shown in Table 3.
The plot of the predicted output signals is important to understand the workings of

the neural sensor in predicting different sensor values. These plots only show the output
signals. The time shift between the input and output is fixed. The model foresees the
output signals, for example, twenty-four hours into the future (as defined in the shift-steps
variable above). Therefore, the x-axis of the plot displays how many time steps of the
input-signals have been grasped by the extrapolative model so far.
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Table 3. Predicted values by neural sensor during training.

Index Predicted Humidity Predicted Moisture Predicted Temperature

2018-07-25, 19:00:00 32.45 38.24 27.45

2018-07-25, 20:00:00 32.64 36.67 27.45

2018-07-25, 21:00:00 32.79 35.12 27.36

2018-07-25, 22:00:00 32.90 33.69 27.25

The prediction is not very accurate for the first 30 to 50 time steps because initially the
model has fewer input data at this point. The model generates a single time step of output
data for each time step of the input data. The model requires an adequate window of time
by processing perhaps 30–50 time steps before it starts generating usable output signals.
The initial 50 time steps were ignored, while the mean-squared error in the loss function
was calculated, referred to here as the warm-up period. The warm-up period is shown
in a grey box in Figure 6. The blue-colored plot represents the physical sensor values of
temperature while the orange-colored plot represents the predicted values of temperature
by the neural sensor in Figure 6. The predicted values are within the acceptable range,
except a few spikes between the months of April and January. The created neural sensor, in
particular, has shown a high level of overlap with physical sensors utilized from October
to April and May to August. This means that the neural sensor learns the patterns of the
physical sensor and is able to generate precise predictions.

Figure 6. Plot of true (blue curve) and predicted (orange curve) readings of temperature.

Figures 7 and 8 show the true and predicted values for humidity and soil moisture,
respectively. The performance of the neural sensor well mimics the physical sensor values
for humidity compared to soil moisture values throughout the year, despite the fact that the
number of spikes in moisture values is slightly greater than that which follows the pattern
in the temperature and humidity readings in the test dataset. It was observed that the
temperature and humidity predictions successfully overlap with the ground truth dataset,
while the moisture value predictions are within an acceptable range for use in agriculture.
It should also be noted that all predictions for temperature, humidity and moisture are
sensitive to the small changes in values compared to the true values. For instance, the
moisture values changed from December to February, as shown in Figure 8, and are quite
small compared to the rest of the ground truth dataset. The observed value differences are
minor, as illustrated in Figure 8, and the suggested neural sensor is capable of measuring
the proper moisture values nearly and successfully mimicking the actual values. This is
further confirmed in Figure 6, which shows the temperature readings from September to
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October, and Figure 7, which shows humidity readings from September to October and
July to August. This demonstrates the neural sensor’s robustness and sensitivity presented
in this study.

Figure 7. Plot of true (blue curve) and predicted (orange curve) readings of humidity.

Figure 8. Plot of true (blue curve) and predicted (orange curve) readings of moisture.

For modeling a neural sensor, a forecasting function is designed which take date as an
object to forecast temperature, humidity and soil moisture against that particular date and
time, the essential parameter for object (date) is time delta. Time deltas are differences in
times. After training of LSTM network, the forecast values of temperature, humidity and
soil moisture by neural sensor are shown in Figures 9–11, respectively. The blue-colored
graph shows the value of the physical sensor embedded in the field and orange curve in
the graph is the plot of predicted value of neural sensor that is obtained after the training of
the LSTM model. Figures 9–11 further confirms the generalization of the proposed neural
sensor model and illustrates its potential to be used to complement the physical sensors.
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Figure 9. Forecasted readings of temperature.

Figure 10. Forecasted readings of humidity.

Figure 11. Forecasted readings of moisture.
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Table 4 presents a statistical analysis where the mean and standard deviation of
physical and neural sensors are compared. The mean and standard deviation of physical
and neural sensors are very close and show good agreement. Regarding humidity, there is a
large standard deviation due to sudden spikes and fluctuation in physical sensor data. The
neural sensor does not capture this well. The mean value for physical sensor data is 35.920
and for neural sensor is 30.510. This is due to the sudden rise and fall in physical sensor
data values. However, the neural sensor learns after some time and generates reasonable
predictions for humidity. For the case of moisture, the behavior of the neural sensor is
similar to humidity. We can conclude that the predictions are precise and accurate for
temperature and less precise for humidity and moisture.

Table 4. Mean and Standard deviation of physical sensor and neural sensor values.

Physical Sensor Mean Value Standard Deviation Neural Sensor Prediction Mean Value Standard Deviation

Temperature 30.386 8.9510 Temperature 31.761 8.736

Humidity 35.920 30.385 Humidity 30.510 22.865

Soil moisture 36.746 12.576 Soil moisture 32.415 8.907

Table 5 presents a comparison with the related studies. Despite the fact that our work
is novel and has not been developed previously in the field of agriculture, we compared
the accuracy of our results to other types of neural sensors that mimic the physical sensor
behavior for various applications. For instance, for effective sensor array reduction in
a gas mixtures analysis system, a neural network sensitivity analysis method was used
in [25], by improving a basic engine parameter, Artificial Neural Network (ANN)-based
virtual sensors were employed to manage exhaust emissions and physical sensors can be
eliminated during vehicle tuning in [26], and a convolutional bi-directional LSTM-based
approach was proposed in [27] for a tool wear prediction task as a part of machine health
monitoring. Although the applications of neural network models varies, a common goal
is to develop an ANN-based sensor to replace physical sensors in a variety of industrial
applications. This comparison is conducted based on the accuracy of the models developed
in the literature. The accuracy is measured using root mean square values (RMSE). We
averaged the RMSE values of temperature, humidity and moisture. The proposed method
achieves the best performance within the agriculture sector, compared to other models
that are developed for various applications, in terms of accuracy. This research can also
be used as a guide for other disciplines looking for alternative solutions, such as medical
microrobotics, where physical sensors are difficult to integrate into the system for various
measurements such as 3D vibration measurements [28] and force sensing [29] for biological
cell injection.

Table 5. Comparison with other state-of-the-art methods.

Reference Algorithm Application Accuracy

[25] Feed Forward Neural Network Sensitivity analysis for sensor array optimization Not reported

[26] Neural Network Virtual Sensors Hydrogen Vehicle Tuning RMSE 4.1%

[27] Convolutional Bi-Directional LSTM Tool wear prediction tasks RMSE 7.1%

Proposed LSTM-based Neural sensor Smart Irrigation RMSE 2.35%

The requirement for large datasets to be used as input during the training procedure
is a significant limitation of deep learning-based neural sensors that is developed in our
study. Furthermore, there are few publicly available datasets for agricultural researchers to
work with, so most must create their own datasets, which takes time.



Agronomy 2022, 12, 212 13 of 14

4. Conclusions

The focus of this study is to present a model that addresses the problem of physical
sensor nodes malfunctioning by informing the system regarding that particular node.
The presented model achieves this by utilizing an alternate mechanism that provides the
predictive values of temperature, humidity and soil moisture to avoid instances of complete
system failure. The proposed model increased the overall reliability and efficiency of the
existing system by providing additional information regarding the working of the physical
sensor in the agricultural context. The proposed neural sensor in this paper is successfully
able to predict key values related to the SIS system such as temperature, humidity and soil
moisture, and is thus able to inform us if the physical sensors embedded in the agricultural
field in a real-time environment have malfunctioned.

It also provided a set of predicted values of desired variables for a particular instance
on an hourly basis. The current model further provides a mechanism to save the sys-
tem from complete failure. It helps to improve the mean time to failure of the system
and the system performance gradually becomes worse in the case of a malfunctioning
physical sensor.

The future possibilities of this research are in the integration of this model with the
decision support system of SIS, which decides the supply of water in the field by calculating
the amount of water already in the soil with the help of transpiration parameters such
as temperature, humidity and soil moisture. This model can be utilized in a number of
real-time systems, relying heavily on physical sensor values to avoid any catastrophic event
due to the failure/malfunctioning of physical sensor nodes, and to ensure the reliable and
safe operation of the system.
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