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Abstract. We first get some new Fejér type inclusions for products of interval-valued convex mappings.
The most important feature of our work is that it contains Fejér type inclusions for both interval-valued
integrals and interval-valued fractional integrals.

1. Introduction

Integral inequalities cover an important area of study in pure and applied mathematics. Especially
Hermite-Hadamard inequalities attract the attention of researchers today. C. Hermite and J. Hadamard
discovered these inequalities, such that if $ : I → R is a convex function on the interval I of real numbers
and κ1, κ2 ∈ I with κ1 < κ2, then

$
(
κ1 + κ2

2

)
≤

1
κ2 − κ1

∫ κ2

κ1

$(ξ)dξ ≤
$ (κ1) + $ (κ2)

2
. (1)

If $ concave, the two inequalities are in opposite directions. Excellent results associated with this midpoint
inequalities and trapezoidal inequalities often used in Special means and estimation errors (see [14] and
[25]). Later, many contributors obtained new results for these inequalities under different mapping posi-
tions. And then many mathematicians have evaluated generalizations, refinements and counterparts and
generalizations of the inequalites (1). For instance, weighted version of the inequalities (1), which is also
named Hermite-Hadamard-Fejér inequalities, was established by Fejér in [16] as follow:

Theorem 1.1. Suppose that $ : [κ1, κ2] → R is a convex function, and let φ : [κ1, κ2] → R be non-negative,
integrable, and symmetric about ξ = κ1+κ2

2 (i.e. φ(ξ) = φ(κ1 + κ2 − ξ)). Then, we have the inequality

$
(
κ1 + κ2

2

) ∫ κ2

κ1

φ(ξ)dξ ≤
∫ κ2

κ1

$(ξ)φ(ξ)dξ ≤
$ (κ1) + $ (κ2)

2

∫ κ2

κ1

φ(ξ)dξ. (2)
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Many mathematicians derived some generalizations and new results involving fractional integrals
regarding to the inequalities (2) to obtain new bounds for left and right sides of the inequalities (2) (for
example, [15], [46] and [47]). In addition to all these generalizations, a good many authors have worked
on Hermite-Hadamard type inequalities for products two convex functions in recent years. Moreover,
some of them attained Hermite-Hadamard type results contains fractional integrals in their works. For
instance, Pachpatte provided novel inequalities for products of two non-negative and convex mappings
in [40]. After that, some authors examined how the results were obtained by multiplying two mappings
selected from various convex function classes in the references [4, 8–10, 22, 26, 48–50]. What is more,
some inequalities involving product of two co-ordinated convex mapping were observed by Latif and
Alomari in [27]. Thereafter, Ozdemir et al. deduced more general versions of the inequalities presented in
[27] by considering the product of two co-ordinated s-convex and product of two co-ordinated h-convex
mappings in [38] and [39], respectively. In [3], by using products of two co-ordinated convex mappings,
new Hermite-Hadamard type results including fractional integrals were proved by Budak and Sarıkaya.

On the other hand, interval analysis which is considered as one of the means of resolving interval
uncertainty is an important factor used in mathematical and computer models. Although this theory has a
long history that cannot be traced much study has not been published in this field until the 1950’s. The first
reference [34] relevant interval analysis was pressed by Ramon E. Moore known as the guide of interval
calculus in 1966. After that, many researchers began to investigate the theories and applications of interval
analysis. Latterly, many scholars paid attention on integral inequalities obtained by using interval-valued
functions. For example, Sadowska [44] has established a Hermite-Hadamard inequality for set-valued
functions that is more general version of interval-valued mappings as follows:

Theorem 1.2. [44] Suppose thatϕ : [κ1, κ2]→ P+ is interval–valued convex function such thatϕ(τ) =
[
ϕ(τ), ϕ(τ)

]
,

Then, we have the inclusions:

ϕ
(
κ1 + κ2

2

)
⊇

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ(ξ)dξ ⊇
ϕ(κ1) + ϕ(κ2)

2
. (3)

In addition, Ostrowski, Minkowski and Beckenbach inequalities and their some applications were
provided by evaluated interval-valued functions in [6, 7, 17, 18]. And then, some inclusions involving
interval-valued Riemann-Liouville fractional integrals were obtained by Budak et al. in [5]. In [28], Liu
et al. gave the definition of interval-valued harmonically convex functions, and so they some Hermite-
Hadamard type inclusions including interval fractional integrals. If you want to see more, check out these
[11], [12], [19], [20], [33], [35], [36], [37], [52], [53].

The general structure of this paper consist of four main sections including introduction. In this part, we
gave some necessary definitons and the concept of interval analysis, and we also mentioned some related
works in the literature. In section 2, some basic informations connected interval calculus which forms the
basis of this work were presented. In section 3, we provide Fejér type inclusions for products of interval-
valued convex functions, and we examine the relation between our results and inclusions presented in the
earlier works. Finally, we establish interval-valued Fejer type inequalities including fractional integrals by
appling the inequalities given in section 3 to interval-valued fractional integrals in section 4. Briefly, the
most important property of this study is that it contains interval-valued Fejer type inclusions for classical
and fractional integrals. We note that the opinion and technique of this work may inspire new research in
this area.

2. Interval Calculus

In this part, we give some information related to interval analysis which forms the basis of this paper.
For this, we denote byP the space of all closed intervals ofR. Suppose thatU is element ofP and bounded,
then we have the notation

U =
[
U,U

]
=

{
τ ∈ R :U ≤ τ ≤ U

}
,
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whereU,U ∈ R andU ≤ U. The numbersU andU are named the left and the right endpoints of interval
U, respectively. We say thatU is degenerate ifU =U, and this situation is denoted byU = U = [U,U].
What’s more,U is said to be positive whenU > 0, orU is said to be negative whenU < 0. The sets of all
closed positive intervals of R and the sets of all closed negative intervals of R are denoted by P+ and P−,
respectively. The Hausdorff-Pompeiu distance between the intervalsU andV is defined by

d (U,V) = d
([
U,U

]
,
[
V,V

])
= max

{∣∣∣U −V∣∣∣ , ∣∣∣U −V∣∣∣} .
Also, (P, d) is known to be a complete metric space [1].

We now give the properties of fundamental interval analysis operations for the intervals U and V as
follows:

U +V =
[
U +V,U +V

]
,

U −V =
[
U −V,U −V

]
,

U.V = [min Λ,max Λ] where Λ =
{
U V,U V, UV,U V

}
,

U/V = [min ∆,max ∆] where ∆ =
{
U/V,U/V,U/V,U/V

}
and 0 <V.

Scalar multiplication of the intervalU is indicated by

θU = θ
[
U,U

]
=



[
θU, θU

]
, θ > 0

{0} , θ = 0[
θU, θU

]
, θ < 0,

where θ ∈ R.
The opposite of the intervalU is

−U := (−1)U = [−U,−U]

for δ = −1.
The subtraction is given by

U −V =U + (−V) = [U −V,U −V].

In general, −U is not additive inverse forU i.eU −U , 0.
The definitions of operations cause a large number of algebraical features that allowsP to be quasilinear

space [30] . These features can be written as follows [29],[30],[34],[35]:
(1) (Associativity of addition) (U +V) +W =U + (V +W) for allU,V,W ∈ P,
(2) (Additive element)U + 0 = 0 +U =U for allU ∈ P,
(3) (Commutativity of addition)U +V =V +U for allU,V ∈ P,
(4) (Cancellation law)U +W =V +W =⇒U =V for allU,V,W ∈ P,
(5) (Associativity of multiplication) (U.V).W =U.(V.W) for allU,V,W ∈ P,
(6) (Commutativity of multiplication)U.V =V.U for allU,V ∈ P,
(7) (Unit element)U.1 = 1.U for allU ∈ P,
(8) (Associate law) θ(γU) =

(
θγ

)
U for allU ∈ P and all θ, γ ∈ R,

(9) (First distributive law) θ(U +V) = θU + θV for allU,V ∈ P and all θ ∈ R,
(10) (Second distributive law) (θ + γ)U = θU + γU for allU ∈ P and all θ, γ ∈ R.
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In addition, one of the set features is the inclusion ”⊆” that is defined by

U ⊆ V ⇐⇒V ≤ U andU ≤ V.

If we consider together with arithmetic calculations and inclusion, then we have the following feature that
is called inclusion isotony of interval operations:

Assuming that � is the addition, multiplication, subtraction or division. IfU,V,W andY are intervals
supplying the conditions

U ⊆ V andW ⊆ Y,

then the following connection is true

U �W ⊆ V �Y.

2.1. Integral of Interval-Valued Functions
In this subsection, the notion of integral of the interval-valued mappings is mentioned. Before we can

understand the definition of interval integrals, we need to give some concepts in the following.
A function ϕ is said to be an interval-valued function of τ on [κ1, κ2] if it assigns a nonempty interval to

each τ ∈ [κ1, κ2]

ϕ(τ) =
[
ϕ(τ), ϕ(τ)

]
.

A partition of [κ1, κ2] is any finite ordered subset D having the form

D : κ1 = τ0 < τ1 < ... < τn = κ2.

The mesh of a partition D is indicated by

mesh(D) = max {τi − τi−1 : i = 1, 2, ...,n} .

We denote by D ([κ1, κ2]) the set of all partition of [κ1, κ2] . Suppose that D (δ, [κ1, κ2]) is the set of all
D ∈ D ([κ1, κ2]) such that mesh(D) < δ. We take an arbitrary point ξi in interval [τi−1, τi] , i = 1, 2, ...,n, and
we define the sum

S(ϕ,D, δ) =

n∑
i=1

ϕ(ξi) [τi − τi−1]

where ϕ : [κ1, κ2] → P. The sum S(ϕ,D, δ) is said to be a Riemann sum of ϕ corresponding to D ∈
D (δ, [κ1, κ2]) .

Definition 2.1. [41],[42],[13] ϕ : [κ1, κ2]→ P is said to be an interval Riemann integrable function (IR-integrable)
on [κ1, κ2] if there exist A ∈ P and δ > 0, for each ε > 0, such that

κ4
(
S(ϕ,D, δ),A

)
< ε

for every Riemann sum S of ϕ corresponding to each D ∈ D (δ, [κ1, κ2]) and independent of choice of ξi ∈ [τi−1, τi],
1 ≤ i ≤ n. In this case, A is called as the IR-integral of ϕ on [κ1, κ2] and is denoted by

A = (IR)

κ2∫
κ1

ϕ(τ)dτ.

The collection of all functions that are IR-integrable on [κ1, κ2] will be denote by IR([κ1,κ2]).
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The next theorem explains connection between IR-integrable and Riemann integrable (R-integrable):

Theorem 2.2. Assume that ϕ : [κ1, κ2] → P is an interval-valued function such that ϕ(τ) =
[
ϕ(τ), ϕ(τ)

]
.

ϕ ∈ IR([κ1,κ2]) if and only if ϕ(τ), ϕ(τ) ∈ R([κ1,κ2]) and

(IR)

κ2∫
κ1

ϕ(τ)dτ =

(R)

κ2∫
κ1

ϕ(τ)dτ, (R)

κ2∫
κ1

ϕ(τ)dτ

 ,
where R([κ1,κ2]) denotes the all R-integrable function.

It is easy to see that if ϕ(τ) ⊆ ψ(τ) for all τ ∈ [κ1, κ2], then (IR)
κ2∫
κ1

ϕ(τ)dτ ⊆ (IR)
κ2∫
κ1

ψ(τ)dτ.

Presented by Zhao et al. in [51], h−convex interval-valued function are given in the following definition.

Definition 2.3. Suppose that h : [κ3, κ4] → R is a non-negative function, (0, 1) ⊆ [κ3, κ4] and h , 0. We say that
ϕ : [κ1, κ2]→ P+ is a h−convex interval-valued function if for all ξ, η ∈ [κ1, κ2] and τ ∈ (0, 1), we have

h(τ)ϕ(ξ) + h(1 − τ)ϕ(η) ⊆ ϕ(τξ + (1 − τ)η). (4)

SX(h, [κ1, κ2],P+) will show the set of all h-convex interval-valued functions.

If we choose h(τ) = τ in the above definition, then we reach the usual notion of convex interval-valued
function in [44]. Also, if h(τ) = τs in (4), then Definition 2.3 gives another convex interval-valued function
defined by Breckner [2].

Zhao et al. [51] established the following Hermite-Hadamard inequality for interval-valued functions
by using the definition of h-convexity.

Theorem 2.4. Supposing that ϕ : [κ1, κ2] → P+ is an interval-valued mapping such that ϕ(τ) = [ϕ(τ), ϕ(τ)] and

ϕ ∈ IR([κ1,κ2]), h : [0, 1]→ R is a non-negative function with h
(

1
2

)
, 0. If ϕ ∈ SX(h, [κ1, κ2],P+), then

1

2h
(

1
2

)ϕ (
κ1 + κ2

2

)
⊇

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ(ξ)dξ ⊇ [ϕ(κ1) + ϕ(κ2)](R)

1∫
0

h(τ)dτ. (5)

Remark 2.5. (i) If h(τ) = τ in (5), then (5) reduces the result

ϕ
(
κ1 + κ2

2

)
⊇

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ(ξ)dξ ⊇
ϕ(κ1) + ϕ(κ2)

2

which is presented by Sadowska in [44].
(ii) If h(τ) = τs in (5), (5) reduces the result

2s−1ϕ
(
κ1 + κ2

2

)
⊇

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ(ξ)dξ ⊇
1

s + 1
[ϕ(κ1) + ϕ(κ2)]

which is given by Osuna-Gómez in [20].

We recall the Riemann-Lioville fractional integrals as follows [24]:
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Definition 2.6. Let $ ∈ L1[κ1, κ2]. The Riemann-Liouville integrals Jακ1+$ and Jακ2−
$ of order α > 0 with κ1 ≥ 0

are defined by

Iακ1+$(ξ) =
1

Γ(α)

∫ ξ

κ1

(ξ − τ)α−1 $(τ)dτ, ξ > κ1

and

Iακ2−
$(ξ) =

1
Γ(α)

∫ κ2

ξ
(τ − ξ)α−1 $(τ)dτ, ξ < κ2,

respectively. Here, Γ(α) is the Gamma function and J0
κ1+$(ξ) = J0

κ2−
$(ξ) = $(ξ).

In [45], Sarikaya et al. gave the Hermite-Hadamard inequality by using fractional integral as follows:

Theorem 2.7. Let $ : [κ1, κ2] → R be a positive function with 0 ≤ κ1 < κ2 and $ ∈ L1[κ1, κ2]. If $ is a convex
function on [κ1, κ2], then the following inequalities given for fractional integrals hold:

$
(
κ1 + κ2

2

)
≤

Γ(1 + α)
2(κ2 − κ1)α

[
Iακ1+$(κ2) + Iακ2−

$(κ1)
]
≤
$(κ1) + $(κ2)

2

for α > 0.

On the other side, Iscan [23] established following Lemma, and he proved the following Fejer type
inequalities for Riemann-Liouville fractional integrals by using this Lemma.

Lemma 2.8. If w : [κ1, κ2]→ R is integrable and symmetric to (κ1 + κ2) /2 with κ1 < κ2, then we have

Iακ1+w(κ2) = Iακ2−
w(κ1) =

1
2

[
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

for α > 0.

Theorem 2.9. Assuming that $ : [κ1, κ2] → R is a convex function with 0 ≤ κ1 < κ2 and $ ∈ L1 [κ1, κ2]. If
w : [κ1, κ2] → R is non-negative, integrable and symmetric to (κ1 + κ2)/2, then the following fractional integral
inequalities hold

$
(
κ1 + κ2

2

) [
Iακ1+w(κ2) + Iακ2−

w(κ1)
]
≤

[
Iακ1+

(
f w

)
(κ2) + Iακ2−

(
f w

)
(κ1)

]
(6)

≤
$ (κ1) + $ (κ2)

2

[
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

for α > 0.

For more information about Riemann-Liouville integrals, you can look over [21],[24],[32],[43].
By considering Riemann-Liouville integral for real valued functions, Lupulescu defined the following

interval-valued left-sided Riemann–Liouville fractional integral in [29].

Definition 2.10. Suppose that ϕ : [κ1, κ2] → P is an interval-valued function such that ϕ(τ) =
[
ϕ(τ), ϕ(τ)

]
, and

let α > 0. The interval-valued left-sided Riemann–Liouville fractional integral of function ϕ is defined by

J
α
κ1+ϕ(ξ) =

1
Γ(α)

(IR)

ξ∫
κ1

(ξ − s)α−1 ϕ(τ)dτ, ξ > κ1, (7)

where Γ is Euler-Gamma function.
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Based on the definition of Lupulescu, Budak et al. [5] defined the corresponding interval-valued right-
sided Riemann–Liouville fractional integral of function ϕ by

J
α
κ2−
ϕ(ξ) =

1
Γ(α)

(IR)

κ2∫
ξ

(s − ξ)α−1 ϕ(τ)dτ, ξ < κ2 (8)

where Γ is Euler-Gamma function.
Budak et al. also presented the following results.

Theorem 2.11. [5] If ϕ : [κ1, κ2]→ P is an interval-valued function such that ϕ(τ) =
[
ϕ(τ), ϕ(τ)

]
, then one has

J
α
κ1+ϕ(ξ) =

[
Iακ1+ϕ(ξ), Iακ1+ϕ(ξ)

]
and

J
α
κ2−
ϕ(ξ) =

[
Iακ2−

ϕ(ξ), Iακ2−
ϕ(ξ)

]
.

Theorem 2.12. [5] Let ϕ : [κ1, κ2] → P+ is a convex interval-valued function such that ϕ(τ) =
[
ϕ(τ), ϕ(τ)

]
and

α > 0, then we have

ϕ
(
κ1 + κ2

2

)
⊇

Γ(1 + α)
2(κ2 − κ1)α

[
J
α
κ1+ϕ(κ2) +Jα

κ2−
ϕ(κ1)

]
⊇
ϕ(κ1) + ϕ(κ2)

2
. (9)

In addition to all these results, Liu et al. refined Hermite-Hadamard type inclusions for interval-valued
mappings in [28].

Theorem 2.13. [28] Suppose that w : [κ1, κ2]→ R is non-negative, integrable, and symmetric about ξ = κ1+κ2
2 (i.e.

w(ξ) = w(κ1 + κ2 − ξ)). If ϕ : [κ1, κ2]→ P+ is a convex interval-valued function such that ϕ =
[
ϕ(τ), ϕ(τ)

]
, then

we possess

ϕ
(
κ1 + κ2

2

) [
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

⊇

[
J
α
κ1+ϕ(κ2)w(κ2) +Jα

κ2−
ϕ(κ1)w(κ1)

]
⊇

ϕ(κ1) + ϕ(κ2)
2

[
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

for α > 0.

3. Fejér Type Inclusions for Products of Interval-Valued Convex Functions

We present some Fejér type inclusions for products of interval-valued convex functions in this section.

Theorem 3.1. Suppose that w : [κ1, κ2] → R is non-negative, integrable, and symmetric about ξ = κ1+κ2
2 (i.e.

w(ξ) = w(κ1 + κ2 − ξ)). If ϕ1, ϕ2 : [κ1, κ2] → P+ are two convex interval-valued functions such that ϕ1(τ) =[
ϕ1(τ), ϕ1(τ)

]
and ϕ2(τ) =

[
ϕ2(τ), ϕ2(τ)

]
, then the following interval inclusion holds:

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)w(ξ)dξ ⊇
M(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ)2 w(ξ)dξ (10)

+
N(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w(ξ)dξ,
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where

M(κ1, κ2) = ϕ1(κ1)ϕ2(κ1) + ϕ1(κ2)ϕ2(κ2) andN(κ1, κ2) = ϕ1(κ1)ϕ2(κ2) + ϕ1(κ2)ϕ2(κ1).

Proof. Since ϕ1 and ϕ2 are interval-valued convex functions on [κ1, κ2], one has

ϕ1 ((1 − τ)κ1 + τκ2) ⊇ (1 − τ)ϕ1(κ1) + τϕ1(κ2) (11)

and

ϕ2 ((1 − τ)κ1 + τκ2) ⊇ (1 − τ)ϕ2(κ1) + τϕ2(κ2). (12)

By (11) and (12), we have

ϕ1 ((1 − τ)κ1 + τκ2)ϕ2 ((1 − τ)κ1 + τκ2) (13)

⊇ (1 − τ)2 ϕ1(κ1)ϕ2(κ1) + τ2ϕ1(κ2)ϕ2(κ2) + τ (1 − τ)
[
ϕ1(κ1)ϕ2(κ2) + ϕ1(κ2)ϕ2(κ1)

]
.

Integrating the resulting inclusion with respect to τ from 0 to 1 after multiplying both sides of (13) by
w ((1 − τ)κ1 + τκ2) , we obtain

(IR)

1∫
0

ϕ1 ((1 − τ)κ1 + τκ2)ϕ2 ((1 − τ)κ1 + τκ2) w ((1 − τ)κ1 + τκ2) dτ (14)

⊇ (IR)

1∫
0

ϕ1(κ1)ϕ2(κ1) (1 − τ)2 w ((1 − τ)κ1 + τκ2) dτ

+(IR)

1∫
0

ϕ1(κ2)ϕ2(κ2)τ2w ((1 − τ)κ1 + τκ2) dτ

+(IR)

1∫
0

[
ϕ1(κ1)ϕ2(κ2) + ϕ1(κ2)ϕ2(κ1)

]
τ (1 − τ) w ((1 − τ)κ1 + τκ2) dτ

= ϕ1(κ1)ϕ2(κ1)(R)

1∫
0

(1 − τ)2 w ((1 − τ)κ1 + τκ2) dτ

+ϕ1(κ2)ϕ2(κ2)(R)

1∫
0

τ2w ((1 − τ)κ1 + τκ2) dτ

+
[
ϕ1(κ1)ϕ2(κ2) + ϕ1(κ2)ϕ2(κ1)

]
(R)

1∫
0

τ (1 − τ) w ((1 − τ)κ1 + τκ2) dτ.
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By change of the variable ξ = (1 − τ)κ1 + τκ2, it is found that

(IR)

1∫
0

ϕ1 ((1 − τ)κ1 + τκ2)ϕ2 ((1 − τ)κ1 + τκ2) w ((1 − τ)κ1 + τκ2) dτ (15)

=

(R)

1∫
0

ϕ1 ((1 − τ)κ1 + τκ2)ϕ2 ((1 − τ)κ1 + τκ2) w ((1 − τ)κ1 + τκ2) dτ,

(R)

1∫
0

ϕ1 ((1 − τ)κ1 + τκ2)ϕ2 ((1 − τ)κ1 + τκ2) w ((1 − τ)κ1 + τκ2) dτ


=

 1
κ2 − κ1

(R)

κ2∫
κ1

ϕ1 (ξ)ϕ2 (ξ) w (ξ) dξ,
1

κ2 − κ1
(R)

κ2∫
κ1

ϕ1 (ξ)ϕ2 (ξ) w (ξ) dξ


=

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)w(ξ)dξ.

Moreover, since w is symmetric about κ1+κ2
2 , it is easily observed that

(R)

1∫
0

τ2w ((1 − τ)κ1 + τκ2) dτ =
1

(κ2 − κ1)3 (R)

κ2∫
κ1

(ξ − κ1)2 w(ξ)dξ (16)

=
1

(κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ)2 w(ξ)dξ

and

(R)

1∫
0

(1 − τ)2 w ((1 − τ)κ1 + τκ2) dτ =
1

(κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ)2 w(ξ)dξ. (17)

We also have

(R)

1∫
0

τ (1 − τ) w ((1 − τ)κ1 + τκ2) dτ =
1

(κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w(ξ)dξ. (18)

By substituting the equalities (15)-(18) in (14), then we possess

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)w(ξ)dξ (19)

⊇
ϕ1(κ1)ϕ2(κ1) + ϕ1(κ2)ϕ2(κ2)

(κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ)2 w(ξ)dξ

+
ϕ1(κ1)ϕ2(κ2) + ϕ1(κ2)ϕ2(κ1)

(κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w(ξ)dξ.
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If we multiply both sides of (19) by (κ2 − κ1) , then we reach the desired result.

Remark 3.2. If we choose w(ξ) = 1, in Theorem 3.1, then for all ξ ∈ [κ1, κ2] , we have

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)dξ ⊇
1
3
M(κ1, κ2) +

1
6
N(κ1, κ2)

which is proved by Zhao et al. in [51].

Corollary 3.3. If we choose ϕ2(ξ) = [1, 1] in Theorem 3.1, then, for all ξ ∈ [κ1, κ2] , we have

(IR)

κ2∫
κ1

ϕ1(ξ)w(ξ)dξ ⊇
ϕ1(κ1) + ϕ1(κ2)

2
(R)

κ2∫
κ1

w(ξ)dξ.

Proof. If we consider the case when ϕ2(ξ) = [1, 1] in (10), then we possess

(IR)

κ2∫
κ1

ϕ1(ξ)w(ξ)dξ ⊇
ϕ1(κ1) + ϕ1(κ2)

(κ2 − κ1)2

(R)

κ2∫
κ1

(κ2 − ξ)2 w(ξ)dξ (20)

+ (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w(ξ)dξ


=

ϕ1(κ1) + ϕ1(κ2)
(κ2 − κ1)

(R)

κ2∫
κ1

(κ2 − ξ) w(ξ)dξ

for all ξ ∈ [κ1, κ2] .
On the grounds that w is symmetric about ξ = κ1+κ2

2 , it follows that

(R)

κ2∫
κ1

(κ2 − ξ) w(ξ)dξ = (R)

κ1+κ2
2∫

κ1

(κ2 − ξ) w(ξ)dξ + (R)

κ2∫
κ1+κ2

2

(κ2 − ξ) w(ξ)dξ (21)

= (R)

κ1+κ2
2∫

κ1

(κ2 − ξ) w(ξ)dξ + (R)

κ1+κ2
2∫

κ1

(ξ − κ1) w(κ1 + κ2 − ξ)dξ

= (κ2 − κ1) (R)

κ1+κ2
2∫

κ1

w(ξ)dξ

=
(κ2 − κ1)

2
(R)

κ2∫
κ1

w(ξ)dξ.

Putting the equality (21) in (20), we obtain the required result.
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Theorem 3.4. Suppose that all the conditions of Theorem 3.1 hold, then we have the inclusion

2ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
(R)

κ2∫
κ1

w(ξ)dξ (22)

⊇ (IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)w(ξ)dξ

+
M(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w (ξ) dξ +
N(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ)2 w (ξ) dξ

whereM(κ1, κ2) andN(κ1, κ2) are defined as in Theorem 3.1.

Proof. For τ ∈ [0, 1], we can write

κ1 + κ2

2
=

(1 − τ)κ1 + τκ2

2
+
τκ1 + (1 − τ)κ2

2
.

Considering that ϕ1 and ϕ2 are interval-valued convex mappings on [κ1, κ2] , we find that

ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
= ϕ1

(
(1 − τ)κ1 + τκ2

2
+
τκ1 + (1 − τ)κ2

2

)

×ϕ2

(
(1 − τ)κ1 + τκ2

2
+
τκ1 + (1 − τ)κ2

2

)
⊇

1
4
[
ϕ1((1 − τ)κ1 + τκ2) + ϕ1(τκ1 + (1 − τ)κ2)

]
×

[
ϕ2((1 − τ)κ1 + τκ2) + ϕ2(τκ1 + (1 − τ)κ2)

]
=

1
4
[
ϕ1((1 − τ)κ1 + τκ2)ϕ2((1 − τ)κ1 + τκ2)

+ ϕ1(τκ1 + (1 − τ)κ2)ϕ2(τκ1 + (1 − τ)κ2)
]

+
1
4
[
ϕ1((1 − τ)κ1 + τκ2)ϕ2(τκ1 + (1 − τ)κ2)

+ ϕ1(τκ1 + (1 − τ)κ2)ϕ2((1 − τ)κ1 + τκ2)
]
.
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For the second expression in the last equality, by using again the convexity of ϕ1 and ϕ2, it follows that

(23)

ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
⊇

1
4
[
ϕ1((1 − τ)κ1 + τκ2)ϕ2((1 − τ)κ1 + τκ2)

+ ϕ1(τκ1 + (1 − τ)κ2)ϕ2(τκ1 + (1 − τ)κ2)
]

+
1
2
τ (1 − τ)

[
ϕ1(κ1)ϕ2(κ1) + ϕ1(κ2)ϕ2(κ2)

]
+

1
4

[
τ2 + (1 − τ)2

] [
ϕ1(κ1)ϕ2(κ2) + ϕ1(κ2)ϕ2(κ1)

]
.

Multiplying both sides of (23) by w ((1 − τ)κ1 + τκ2) , then integrating the resulting inclusion with respect
to τ from 0 to 1, one has

ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
(R)

1∫
0

w ((1 − τ)κ1 + τκ2) dτ (24)

⊇
1
4

(IR)

1∫
0

[
ϕ1((1 − τ)κ1 + τκ2)ϕ2((1 − τ)κ1 + τκ2)

+ ϕ1(τκ1 + (1 − τ)κ2)ϕ2(τκ1 + (1 − τ)κ2)w ((1 − τ)κ1 + τκ2)
]

dτ

+
M(κ1, κ2)

2
(R)

1∫
0

τ (1 − τ) w ((1 − τ)κ1 + τκ2) dτ

+
N(κ1, κ2)

4
(R)

1∫
0

[
τ2 + (1 − τ)2

]
w ((1 − τ)κ1 + τκ2) dτ.

If we substitute the identities (15)-(18) in (24), then we obtain

ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

) 1
κ2 − κ1

(R)

κ2∫
κ1

w(ξ)dξ (25)

⊇
1
4

 1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)w(ξ)dξ +
1

κ2 − κ1
(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)w(κ1 + κ2 − ξ)dξ


+
M(κ1, κ2)

2 (κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w (ξ) dξ +
N(κ1, κ2)

2 (κ2 − κ1)3 (R)

κ2∫
κ1

(κ2 − ξ)2 w (ξ) dξ.

Multiplying the both sides of (25) by 2(κ2 − κ1), then the desired result (22) can be readily attained.
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Remark 3.5. If we choose w(ξ) = 1 for all ξ ∈ [κ1, κ2] in Theorem 3.4, then we have

2ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
⊇

1
κ2 − κ1

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)dξ +
1
6
M(κ1, κ2) +

1
3
N(κ1, κ2)

which is proved by Zhao et al. in [51].

Corollary 3.6. If we choose ϕ2(ξ) = [1, 1] in Theorem 3.4, then we have

2ϕ1

(
κ1 + κ2

2

)
(R)

κ2∫
κ1

w(ξ)dξ ⊇ (IR)

κ2∫
κ1

ϕ1(ξ)w(ξ)dξ

+
ϕ1(κ1) + ϕ1(κ2)

κ2 − κ1
(R)

κ2∫
κ1

(κ2 − ξ) w (ξ) dξ

for all ξ ∈ [κ1, κ2] .

Proof. If we consider again the inclusion (22) for ϕ2(ξ) = [1, 1] , then we get

2ϕ1

(
κ1 + κ2

2

)
(IR)

κ2∫
κ1

w(ξ)dξ

⊇ (IR)

κ2∫
κ1

ϕ1(ξ)w(ξ)dξ +
ϕ1(κ1) + ϕ1(κ2)

(κ2 − κ1)2

(R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) w (ξ) dξ

+ (R)

κ2∫
κ1

(κ2 − ξ)2 w (ξ) dξ


= (IR)

κ2∫
κ1

ϕ1(ξ)w(ξ)dξ +
ϕ1(κ1) + ϕ1(κ2)

κ2 − κ1
(R)

κ2∫
κ1

(κ2 − ξ) w (ξ) dξ.

for all ξ ∈ [κ1, κ2] . By the equality (21), we deduce the desired result.

4. Some Results For Interval-Valued Fractional Integrals

In this part, we apply the results provided in Section 3 to interval valued fractional integrals. Thus, we
establish some Fejér type inclusions involving interval-valued fractional integrals.

Theorem 4.1. Suppose that w : [κ1, κ2] → R is non-negative, integrable, and symmetric about ξ = κ1+κ2
2 (i.e.

w(ξ) = w(κ1 + κ2 − ξ)). If ϕ1, ϕ2 : [κ1, κ2] → P+ are two convex interval-valued functions such that ϕ1(τ) =[
ϕ1(τ), ϕ1(τ)

]
and ϕ2(τ) =

[
ϕ1(τ), ϕ2(τ)

]
, then we have

J
α
κ1+ϕ1(κ2)ϕ2(κ2)w(κ2) +Jα

κ2−
ϕ1(κ1)ϕ2(κ1)w(κ1) (26)

⊇
M(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ)α−1
[
(κ2 − ξ)2 + (ξ − κ1)2

]
w(ξ)dξ

+
2N(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ
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for α > 0. Here, Γ is the Gamma function.

Proof. Since w is non-negative, integrable and symmetric about ξ = κ1+κ2
2 , it is obvious that h(ξ) =

1
Γ(α)

[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ) is non-negative, integrable and symmetric about ξ = κ1+κ2

2 . Thus, by
using Theorem 3.1, we can write the inclusion,

(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)h(ξ)dξ ⊇
M(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ)2 h(ξ)dξ

+
N(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) h(ξ)dξ,

that is,

1
Γ (α)

(IR)

κ2∫
κ1

(κ2 − ξ)α−1 ϕ1(ξ)ϕ2(ξ)w(ξ)dξ (27)

+
1

Γ (α)
(IR)

κ2∫
κ1

(ξ − κ1)α−1 ϕ1(ξ)ϕ2(ξ)w(ξ)dξ

⊇
M(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ)2
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ

+
N(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1)
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ.

Then, from the (7) and (8), it is easy to see that

1
Γ (α)

(IR)

κ2∫
κ1

(κ2 − ξ)α−1 ϕ1(ξ)ϕ2(ξ)w(ξ)dξ (28)

+
1

Γ (α)
(IR)

κ2∫
κ1

(ξ − κ1)α−1 ϕ1(ξ)ϕ2(ξ)w(ξ)dξ

= J
α
κ1+ϕ1(κ2)ϕ2(κ2)w(κ2) +Jα

κ2−
ϕ1(κ1)ϕ2(κ1)w(κ1).
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Moreover, since w is symmetric about ξ = κ1+κ2
2 , we conclude that

(R)

κ2∫
κ1

(κ2 − ξ)2
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ (29)

= (R)

κ2∫
κ1

(κ2 − ξ)α+1 w(ξ)dξ + (R)

κ2∫
κ1

(κ2 − ξ)2 (ξ − κ1)α−1 w(ξ)dξ

= (R)

κ2∫
κ1

(κ2 − ξ)α+1 w(ξ)dξ + (R)

κ2∫
κ1

(ξ − κ1)2 (κ2 − ξ)α−1 w(ξ)dξ

= (R)

κ2∫
κ1

(κ2 − ξ)α−1
[
(κ2 − ξ)2 + (ξ − κ1)2

]
w(ξ)dξ

and

(R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1)
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ (30)

= (R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ + (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1)α w(ξ)dξ

= (R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ + (R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ

= 2(R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ.

If we substitute the equalities (28)-(30) in (27), then we obtain the desired inclusion (26) which completes
the proof.

Remark 4.2. If we choose w(ξ) = 1 in Theorem 4.1, then, for all ξ ∈ [κ1, κ2], we have

Γ(α + 1)
2 (κ2 − κ1)α

[
J
α
κ1+ϕ1(κ2)ϕ2(κ2) +Jα

κ2−
ϕ1(κ1)ϕ2(κ1)

]
⊇

(
1
2
−

α
(α + 1) (α + 2)

)
M(κ1, κ2) +

α
(α + 1) (α + 2)

N(κ1, κ2)

which is proved by Budak et al. in [5].

Remark 4.3. If we choose α = 1 in Theorem 4.1, then Theorem 4.1 reduces to Theorem 3.1.

Corollary 4.4. If we choose ϕ2(ξ) = [1, 1] in Theorem 4.1, then, for all ξ ∈ [κ1, κ2] , we have

J
α
κ1+ϕ1(κ2)w(κ2) +Jα

κ2−
ϕ1(κ1)w(κ1) ⊇

ϕ1(κ1) + ϕ1(κ2)
2

[
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

which is the same as the second inclusion in Theorem 2.13.
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Proof. Using the Lemma 2.8 after taking ϕ2(ξ) = [1, 1] in the inclusion (26), for all ξ ∈ [κ1, κ2] , we find that

J
α
κ1+ϕ1(κ2)w(κ2) +Jα

κ2−
ϕ1(κ1)w(κ1) (31)

⊇
ϕ1(κ1) + ϕ1(κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ)α−1
[
(κ2 − ξ)2 + (ξ − κ1)2

]
w(ξ)dξ

+
2ϕ1(κ1) + ϕ1(κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ

=
ϕ1(κ1) + ϕ1(κ2)

(κ2 − κ1)2 Γ (α)

×

(R)

κ2∫
κ1

(κ2 − ξ)α−1
[
(κ2 − ξ)2 + (ξ − κ1)2 + 2 (ξ − κ1) (κ2 − ξ)

]
w(ξ)dξ


=

ϕ1(κ1) + ϕ1(κ2)
Γ (α)

κ2∫
κ1

(κ2 − ξ)α−1 w(ξ)dξ

=
ϕ1(κ1) + ϕ1(κ2)

2

[
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

which completes the proof.

Theorem 4.5. Suppose that all the conditions of Theorem 4.1 hold. Then, we have the inclusion

2ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

) [
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

(32)

⊇ J
α
κ1+ϕ1(κ2)ϕ2(κ2)w(κ2) +Jα

κ2−
ϕ1(κ1)ϕ2(κ1)w(κ1)

+
2M(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(ξ − κ1) (κ2 − ξ)α w(ξ)dξ

+
N(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ)α−1
[
(κ2 − ξ)2 + (ξ − κ1)2

]
w(ξ)dξ.

Proof. Inasmuch as w is non-negative, integrable and symmetric about ξ = κ1+κ2
2 , it is clear that h(ξ) =

1
Γ(α)

[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ) is non-negative, integrable and symmetric about ξ = κ1+κ2

2 . Thus, by
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using Theorem 3.4, we can write the inclusion

2ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
(R)

κ2∫
κ1

h(ξ)dξ

⊇ (IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)h(ξ)dξ

+
M(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1) h (ξ) dξ +
N(κ1, κ2)

(κ2 − κ1)2 (R)

κ2∫
κ1

(κ2 − ξ)2 h (ξ) dξ.

That is, we have

2ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

) 1
Γ (α)

(R)

κ2∫
κ1

[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)

⊇
1

Γ (α)
(IR)

κ2∫
κ1

ϕ1(ξ)ϕ2(ξ)
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ

+
M(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ) (ξ − κ1)
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ

+
N(κ1, κ2)

(κ2 − κ1)2 Γ (α)
(R)

κ2∫
κ1

(κ2 − ξ)2
[
(κ2 − ξ)α−1 + (ξ − κ1)α−1

]
w(ξ)dξ.

Using the identities (28)-(30), we reach the desired result (32).

Remark 4.6. If we choose α = 1 in Theorem 4.5, then the inclusion (32) reduces to the inclusion (22).

Remark 4.7. If we choose w(ξ) = 1 in Theorem 4.5, then we have

2ϕ1

(
κ1 + κ2

2

)
ϕ2

(
κ1 + κ2

2

)
⊇

Γ(α + 1)
2 (κ2 − κ1)α

[
J
α
κ1+ϕ1(κ2)ϕ2(κ2) +Jα

κ2−
ϕ1(κ1)ϕ2(κ1)

]
+

α
(α + 1) (α + 2)

M(κ1, κ2) +

(
1
2
−

α
(α + 1) (α + 2)

)
N(κ1, κ2)

which is proved by Budak et al. in [5].

Corollary 4.8. If we take ϕ2(ξ) = [1, 1] in Theorem 4.5, then, for all ξ ∈ [κ1, κ2], we have the result

2ϕ1

(
κ1 + κ2

2

) [
Iακ1+w(κ2) + Iακ2−

w(κ1)
]

⊇ J
α
κ1+ϕ1(κ2)w(κ2) +Jα

κ2−
ϕ1(κ1)w(κ1)

+
ϕ1(κ1) + ϕ1(κ2)

2

[
Iακ1+w(κ2) + Iακ2−

w(κ1)
]
.
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Proof. The proof is obvious from the inclusion (31).
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