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Abstract

To study the heterogeneous nature of lifetimes of certain mechanical or engineering
processes, a mixture model of some suitable lifetime distributions may be more appro-
priate and appealing than simpler models. In this paper, a new mixture family of the
lifetime distributions is introduced via harmonic weighted mean of an underlying distri-
bution and the distribution of the proportional hazard model corresponding to the baseline
model. The proposed class of distributions includes the general Marshall-Olkin family of
distributions as a special case. Some important properties of the proposed model such as
survival function, hazard function, order statistics and some results on stochastic order-
ing are obtained in a general setting. A special case of this new family is considered by
employing Weibull distribution as the parent distribution. We derive several properties of
the special distribution such as moments,hazard function survival regression and certain
characterizations results. Moreover, we estimate the parameters of the model by using
frequentist and Bayesian approaches. For Bayesian analysis, five loss functions, namely
the squared error loss function (SELF), weighted squared error loss function (WSELF),
modified squared error loss function (MSELF), precautionary loss function (PLF), and
K-loss function (KLF) are considered. The beta prior as well as the gamma prior are used
to obtain the Bayes estimators and posterior risk of the unknown parameters of the model.
Furthermore, credible intervals (CIs) and highest posterior density (HPD) intervals are
also obtained. A simulation study is presented via Monte Carlo to investigate the bias
and mean square error of the maximum likelihood estimators. For illustrative purposes,
two real-life applications of the proposed distribution to Kidney and cancer patients are
provided.

Keywords: Bayes estimators, credible intervals, loss functions, mixture distribution, posterior
risks, survival regression.

1. Introduction

In recent years, extensive efforts have been made to present new models in the area of distribu-
tion theory and related statistical applications. These studies deal mainly with the modeling
of various data sources and finding out the probabilistic structure of the model. In connec-
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tion with the development of new models, it is worthwhile to note that these new models
should have the capability for analyzing a wide range of real observations. Undoubtedly, this
is also the most basic concern in the development of the new models from the past to the
future. Mixture models are quite versatile and thus have been frequently used in different
fields of sciences such as reliability, information theory, economic, engineering, agriculture,
to name a few. For example, Mendenhall and Hader (1958), while referring to the practi-
cal situations encountered by engineers, pointed out that the failure of a system or a device
may be divided into two or more different types of causes. Further, Acheson and McElwee
(1952) categorized the failures of the electronic tube into gaseous defects, mechanical defects,
and normal deterioration of the cathode in order to find the proportion of failure due to a
certain cause. Another example is that of an engineering system which consists of different
subsystems. These subsystems may be homogeneous or heterogeneous. Heterogeneity nature
of such systems can not be captured by a single probability model but it can be captured
through mixture models.
In the following, three well-known mixture distributions are reviewed. The usual arithmetic
mixture distribution is defined by the weighted mean of two probability density functions
(PDFs):

h(x) = θf(x) + (1− θ)g(x), 0 ≤ θ ≤ 1. (1)

The geometric mixture is defined by the normalized geometric mean of two PDFs:

h(x) =
fθ(x)g1−θ(x)

k
, k =

∫
fθ(x)g1−θ(x)dx, 0 ≤ θ ≤ 1, (2)

provided that the normalizing factor k <∞ on the support of h. This model has been derived
in statistics, and in physics in different contexts. Bercher and Vignat (2009) called (2) the
generalized escort probability distribution. A more general mixture distribution, called here
as the power mean mixture, is defined by the following PDF:

h(x) =
[θfα(x) + (1− θ)gα(x)]

1
α

k
, 0 ≤ θ ≤ 1, α > 0, (3)

where

k =

∫
[θfα(x) + (1− θ)gα(x)]

1
αdx.

The normalizing factor always exists for α > 0 and

k ∈
{

[2−(1−α)/α, 1], 0 < α ≤ 1

[1, 2(α−1)/α], α ≥ 1.

The α-mixture family (3) contains (1) as a especial case with α = 1 and (2) as a limiting case
for α→ 0. Asadi, Ebrahimi, Kharazmi, and Soofi (2018) obtained some interesting informa-
tional properties for the above mixture models. The above three mixture distributions play
important roles in the information theory and shown that they contain optimal information.
For more details see Asadi et al. (2018).

Motivated by optimal information properties of these mixture distributions, we propose a
new lifetime distribution based on the harmonic mean mixture of two survival functions. The
proposed family of distributions is called harmonic mixture G (HMG) distribution. The new
HMG distribution includes Marshall-Olkin family of distributions introduced by Marshall
and Olkin (1997).

Our main motivation to introduce this new category of distributions is to provide more flexibil-
ity for fitting real data sets compare to the other well-known classic statistical distributions.
We first derive certain statistical and reliability properties of the HMG distribution in a
general setting and then we consider a special case of this model by employing the Weibull
distribution as the parent distribution G. It is called HMW distribution. We provide a
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comprehensive discussion about the survival regression of the new HMW model. Further-
more, we consider the Maximum likelihood, bootstrap estimation and Bayesian procedures
to estimate the unknown parameters of the new model for the real application. In addition,
the asymptotic confidence intervals and parametric and non-parametric bootstrap confidence
intervals are calculated.

In the Bayesian discussion, we consider different types of symmetric and asymmetric loss
functions such as squared error loss, weighted squared error, modified squared error, precau-
tionary, K-loss, linear exponential and general entropy loss functions to estimate the four
unknown parameters of HMG model. Since all of the parameters are positive, we use gamma
and beta prior distributions. Bayesian 95% credible and highest posterior density (HPD) in-
tervals (see Chen and Shao (1999)) are provided for each parameter of the proposed model. In
addition, the asymptotic confidence intervals and parametric and non-parametric bootstrap
confidence intervals are calculated for comparison with the corresponding Bayesian intervals.
In addition, a simulation study is performed to investigate MLEs of consistency.

The rest of the manuscript is organized as follows. In Section 2, we introduce a new class
of distributions called harmonic mixture-G (HMG) distributions and consider the hazard
function, quantiles and a discussion about informational properties in a general setting. In
Section 3, we consider the Weibull as the parent distribution and introduce generalized har-
monic mixture Weibull distribution. This new model is referred to as HMW distribution.
Also, in this section, we plot the density function, hazard function and 3D plots of skew-
ness and kurtosis for the HMW distribution. Some characterization results for the HMW
distribution are provided in Section 4. In Section 5, the estimation of the parameters of
the HMW distribution are obtained via three methods: maximum likelihood, Bayesian and
bootstrap estimations. Bayesian analysis results are provided by considering five well-known
loss functions. Also, we study the performance of the maximum likelihood estimates of the
parameters of HMW distribution via a simulation study. Section 6 is devoted to a discussion
about survival regression of HMW model. In Section 7, the superiority of the new model to
some competitor statistical models is shown through different criteria of selection model by
analyzing a real example. Moreover, Bayesian analysis and associated plots of the posterior
samples corresponding to this data are provided in this Section. Also, in this Section we
provide numerical analysis for survival regression of HMW distribution via a Kidney data
set. Finally, the paper is concluded in Section 8.

2. Harmonic mixture-G (HMG) family of distributions

Let X be a continuous random variable with survival and hazard functions Ḡ(x) and r(x),
respectively. The model with hazard function rPh = αr(x);α > 0, is known as proportional
hazards (PH) model, popularized by Cox (1972). The survival function of PH model corre-
sponding to the baseline survival function Ḡ(x), is given as Ḡα(x). This model is widely used
in various applications in many fields especially in survival analysis and economics. In this
section, first we propose a new model based on the harmonic mixture mean of two survival
functions Ḡ(x) and Ḡα(x) and then study some of its main properties in a general setting.

H̄(x) =
1

θ
Ḡ(x)

+ 1−θ
Ḡα(x)

=
Ḡα(x)

1− θ(1− Ḡα−1(x))
, x ∈ R, α ≥ 0, 0 < θ < 1.

Lemma 1. If α = 0, the general Marshall-Olkin family of distribution is obtained as

H̄(x) =
Ḡ(x)

1− (1− θ)G(x)
,

where G = 1− Ḡ.
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The associated CDF and PDF are given, respectively, by

H(x) = 1− Ḡα(x)

1− θ(1− Ḡα−1(x))
; x ∈ R, α ≥ 0, 0 < θ < 1, (4)

and

h(x) = g(x) Ḡα−1(x)
α(1− θ) + θḠα−1(x)(
1− θ(1− Ḡα−1(x))

)2 , x ∈ R. (5)

2.1. Hazard rate function

Here, first we obtain the hazard rate function of HMG model and then two associated lemmas
are given. The hazard rate is a fundamental tool in reliability modeling for evaluation of the
aging process. Knowing the shape of the hazard rate is important in the reliability theory,
risk analysis and other disciplines. The concepts of increasing, decreasing, bathtub shaped
(first decreasing and then increasing) and upside down bathtub shaped (first increasing and
then decreasing) hazard rate functions are very useful in the reliability analysis. The lifetime
distributions with these aging properties are designated as the IFR, DFR, BUT and UBT
distributions, respectively. The hazard function of the HMG distribution is

rG(x) =
h(x)

H̄(x)
=
g(x)

Ḡ(x)

α(1− θ) + θḠα−1(x)

1− θ(1− Ḡα−1(x))
. (6)

In fact the hazard rate function of the new model is a weighted version of the baseline hazard

r(x) = g(x)
Ḡ(x)

with the weight w(x) = α(1−θ)+θḠα−1(x)
1−θ(1−Ḡα−1(x))

.

Lemma 2. In view of (6), we have:

• If r(x) is increasing and α ≥ 1 then rG(x) is increasing.

• If r(x) is decreasing and 0 < α ≤ 1 then rG(x) is decreasing.

Proof. The proof is straightforward.

In the following lemma we provide a result regarding the stochastic ordering of the hazard
function to the compare proposed model and baseline distribution. First, we recall the fol-
lowing definition. The random variable X is said to be less than the random variable Y in
the hazard rate order, X ≤hr Y , if hX(x) ≥ hY (x), for all x in the union of supports of X
and Y , where hX(x)(hY (x)) is the hazard rate of X(Y ). For more details see Shaked and
Shanthikumar (2007).

Lemma 3. Suppose that X is a random variable with the baseline distribution G and XG is
harmonic mixture random variable associated with X, and have density function (1).

(i) If 0 < α ≤ 1, then X ≤hr XG.

(ii) If α ≥ 1, then XG ≤hr X.

Proof. The proof is straightforward.

3. Harmonic mixture-Weibull (HMW ) distribution

In this section, we specialize HMG distribution, which is described in the previous Section,
by choosing special case for baseline distribution G. We apply the HMG method to a specific
case of baseline distribution, namely to a Weibull distribution and call this special model,
four-parameter HMW distribution.



Austrian Journal of Statistics 5

Definition 1. A random varible X has HMW (α, β, λ, θ) distribution, if its PDF is given by

h(x) = β λxβ−1 e−αλx
β α(1− θ) + θe−(α−1)λxβ(

1− θ(1− e−(α−1)λxβ )
)2 , (7)

where, x > 0, α, β, λ > 0 and 0 < θ < 1.

The CDF corresponding to (7) is

H(x) = 1− e−αλx
β

1− θ(1− e−(α−1)λxβ )
, x > 0.

The survival and hazard rate functions are

H̄(x) =
e−αλx

β

1− θ(1− e−(α−1)λxβ )
,

and

r(x) = β λxβ−1α(1− θ) + θe−λ(α−1)xβ

1− θ(1− e−(α−1)λxβ )
,

respectively. Some plots of PDF and hazard function for the selected parameter values are
given in Figures 1 and 2.
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Figure 1: Plots of the PDF of HMW for selected parameter values.

3.1. Some properties of the HMW distribution

In this section, we obtain some properties of the HMW distribution, such as the moments
and order statistics distribution.

3.2. Moments

In this subsection, moments and related measures including coefficients of variation, skewness
and kurtosis are presented. Tables of values for the first six moments, standard deviation
(SD), coefficient of variation (CV ), coefficient of skewness (CS) and coefficient of kurtosis
(CK) are also presented. The rth moment of the HMW distribution, denoted by µ′r, is

µ′r = E(Xr) = β λ

∫ ∞
0

xr+β−1 e−αλx
β α(1− θ) + θe−(α−1)λxβ(

1− θ(1− e−(α−1)λxβ )
)2 dx.
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Figure 2: Plots of the failure rate function of HMW for selected parameter values.

The variance, CV , CS, and CK are given by

σ2 = µ′2 − µ2, CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1, (8)

CS =
E[(X − µ)3]

[E(X − µ)2]3/2
=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
, (9)

and

CK =
E[(X − µ)4]

[E(X − µ)2]2
=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
, (10)

respectively.

In order to investigate and analyze the amount of skewness and kurtosis of the new model
under the three parameters α, λ, β and θ, 3D diagrams are presented in Figures 3-8. These
plots indicate that the proposed model can be left skewed, right skewed and symmetrical.
Further, it is evident from these plots that all four parameters have a considerable effect on
the skewness and Kurtosis of the HMW model. Variety of skewness and Kurtosis shapes make
the new model to be useful in modeling various shapes of the real data sets.
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Figure 3: 3D plots of skewness and kurtosis of HMW distribution for some fixed parameter
values λ and θ.
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Figure 4: 3D plots of skewness and kurtosis of HMW distribution for some fixed parameter
values β and θ.
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Figure 5: 3D plots of skewness and kurtosis of HMW distribution for some fixed parameter
values β and λ.
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Figure 6: 3D plots of skewness and kurtosis of HMW distribution for some fixed parameter
values α and λ.

3.3. Order statistics

Order statistics play an important role in probability and statistics. In this subsection, we
present the distribution of the ith order statistic from the HMW distribution. The PDF of
the ith order statistic from the HMW PDF , fHMW (x), is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
fHMW (x) [FHMW (x)]i−1 [1− FHMW (x)]n−i

=
n!

(i− 1)!(n− i)!
fHMW (x)

n−i∑
m=0

(
n− i
m

)
(−1)m [FHMW (x)]m+i−1 .
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Figure 7: 3D plots of skewness and kurtosis of HMW distribution for some fixed parameter
values α and θ.
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Figure 8: 3D plots of skewness and kurtosis of HMW distribution for some fixed parameter
values α and β.

Using the binomial expansion [1− FHMW (x)]n−i =
∑n−i

m=0

(
n−i
m

)
(−1)m [FHMW (x)]m, we have

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
m=0

(
n− i
m

)
(−1)m [FHMW (x)]m+i−1 fHMW (x)

4. Characterization results

In this section we establish certain characterizations of the HMW distribution in three direc-
tions: (i) based on two truncated moments; (ii) in terms of the hazard function and (iii) based
on the conditional expectation of a function of the random variable. These characterizations
will be presented in three subsections.

4.1. Characterizations based on two truncated moments

This subsection deals with the characterizations of HMW distribution in terms of a simple
relationship between two truncated moments. We will employ Theorem 1 of Glänzel (1987)
[1] given in the Appendix A. As shown in [2], this characterization is stable in the sense of
weak convergence.

Proposition 4.1.1. Suppose X is a continuous random Let q1 (x) =

(
α(1−θ)+θe−(α−1)λxβ(

1−θ
(

1−e−αλxβ
))2
)−1

and q2 (x) = q1 (x) e−αλx
β

for x > 0. Then X has density (7) if and only if the function ξ
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defined in Theorem 1 is of the form

ξ (x) =
1

2
e−αλx

β
, x > 0.

Proof. If X has density (7), then

(1− F (x;α, β, λ, θ))E [q1 (X) | X ≥ x] =
1

α
e−αλx

β
, x > 0,

and

(1− F (x;α, β, λ, θ))E [q2 (X) | X ≥ x] =
1

2α
e−2αλxβ , x > 0,

and hence

ξ (x) q1 (x)− q2 (x) = −1

2
q1 (x) e−αλx

β
< 0, for x > 0.

Conversely, if η is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
= αλβxβ−1, x > 0,

and
s (x) = αλxβ, x > 0.

Now, according to Theorem 1, X has PDF (7).

Corollary 4.1.1. Suppose X is a continuous random variable. Let q1 (x) be as in Proposition
4.1.1. Then X has density (7) if and only if there exist functions q2 and ξ defined in Theorem
1 for which the following first order differential equation holds

ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
= αλβxβ−1, x > 0.

Corollary 4.1.2. The differential equation in Corollary 4.1.1 has the following general solution

ξ (x) = eαλx
β

[
−
∫
αλβxβ−1e−αλx

β
(q1 (x))−1 q2 (x) +D

]
,

where D is a constant. A set of functions satisfying the above differential equation is given
in Proposition 4.1.1 with D = 0. Clearly, there are other triplets (q1, q2, ξ) satisfying the
conditions of Theorem 1.

4.2. Characterization based on hazard function

The hazard function, hF , of a twice differentiable distribution function, F , satisfies the fol-
lowing differential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

The following proposition establishes a non-trivial characterization HMW distribution based
on the hazard function.

Proposition 4.2.1. Suppose X is a continuous random variable. Then, X has density (7) if
and only if its hazard function hF (x) satisfies the following first order differential equation

h′F (x)− β − 1

x
hF (x) = λβxβ−1 d

dx

{
α (1− θ) + θe−(α−1)λxβ

1− θ
(
1− e−(α−1)λxβ

) } , x > 0,

with the initial condition limx→0 hF (x) = 0 for β > 1.
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Proof. If X has density (7), then clearly the above differential equation holds. Now, if the
differential equation holds, then

d

dx

{
x−β+1hF (x)

}
= λβ

d

dx

{
α (1− θ) + θe−(α−1)λxβ

1− θ
(
1− e−(α−1)λxβ

) } ,
or

hF (x) = λβxβ−1

{
α (1− θ) + θe−(α−1)λxβ

1− θ
(
1− e−(α−1)λxβ

) } , x > 0,

which is the hazard function corresponding to the PDF (7).

4.3. Characterizations based on the conditional expectation of a function of the
random variable

Hamedani (2013) [3] established the following proposition which can be used to characterize
the HMW distribution.

Proposition 4.3.1. Suppose X : Ω → (a, b) is a continuous random variable with cdf F . If
ψ (x) is a differentiable function on (a, b) with limx→a+ ψ (x) = 1. Then, for δ 6= 1,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (a, b) ,

if and only if

ψ (x) = (1− F (x))
1
δ
−1 , x ∈ (a, b) .

Remark 4.3.1. Let (a, b) = (0,∞) , ψ (x) =

{
e−x

β[
1−θ

(
1−e−(α−1)λxβ

)]1/αλ
}

and δ = αλ
αλ+1 , then

Proposition 4.3.1 presents a characterization of HMW distribution. Clearly, there are other
suitable functions than the one we employed for simplicity.

5. Inference procedure

In this section, we consider estimation of the unknown parameters of the HMW (α, β, λ, θ) dis-
tribution via three methods: maximum likelihood method, bootstrap estimation and Bayesian
procedure.

5.1. Maximum likelihood estimation

Let x1, . . . , xn be a random sample from the HMW distribution and ∆ = (α, β, λ, θ) be the
vector of parameters. The log-likelihood function is given by

L = L(∆) =n log β + n log λ+ (β − 1)

n∑
i=1

log xi − αλ
n∑
i=1

xβi

+

n∑
i=1

log
(
α(1− θ) + θe−(α−1)λxβi

)
− 2

n∑
i=1

log
(

1− θ(1− e−(α−1)λxβi )
)
.

(11)

The elements of the score vector are given by

dL

dα
= −λ

n∑
i=1

xβi +
n∑
i=1

(1− θ)− λθ xβi e−(α−1)λxβi

α(1− θ) + θe−(α−1)λxβi
− 2

n∑
i=1

λθxβi e
−(α−1)λxβi

1− θ(1− e−(α−1)λxβi )
= 0,
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dL

dβ
=
n

β
+

n∑
i=1

log xi − αλ
n∑
i=1

xβi log xi −
n∑
i=1

θλ(α− 1)xβi log xi e
−(α−1)λxβi

α(1− θ) + θe−(α−1)λxβi

+ 2
n∑
i=1

θ λ(α− 1)xβi log xi e
−(α−1)λxβi

1− θ(1− e−(α−1)λxβi )
= 0,

dL

dλ
=
n

λ
− α

n∑
i=1

xβi −
n∑
i=1

(α− 1)θ xβi e
−(α−1)λxβi

α(1− θ) + θe−(α−1)λxβi

+ 2
n∑
i=1

(α− 1)θ xβi e
−(α−1)λxβi

1− θ(1− e−(α−1)λxβi )
= 0,

and

dL

dθ
=

n∑
i=1

e−(α−1)λxβi − α
α(1− θ) + θe−(α−1)λxβi

− 2

n∑
i=1

e−(α−1)λxβi

1− θ(1− e−(α−1)λxβi )
= 0,

respectively.

The maximum likelihood estimate, ∆̂ of ∆ = (α, β, λ, θ) is obtained by solving the nonlinear
equations dL

dα = 0, dLdβ = 0, dLdλ = 0, dL
dθ = 0. These equations are not in closed form and the

values of the parameters α, β, λ and θ must be found using iterative methods. Therefore,
the maximum likelihood estimate, ∆̂ of ∆ = (α, β, λ, θ) can be determined using an iterative
method such as the Newton-Raphson procedure.

5.2. Bootstrap estimation

The parameters of the fitted distribution can be estimated by parametric (resampling from
the fitted distribution) or non-parametric (resampling with replacement from the original
data set) bootstraps resampling (see Efron and Tibshirani (1994)). These two parametric
and nonparametric bootstrap procedures are described below.

Parametric bootstrap procedure:

• Estimate ψ (vector of unknown parameters), say ψ̂ , by using the MLE procedure based
on a random sample.

• Generate a bootstrap sample {X∗1 , . . . , X∗m} using ψ̂ and obtain the bootstrap estimate

of ψ, say ψ̂∗, from the bootstrap sample based on the MLE procedure.

• Repeat Step 2 NBOOT times.

• Order ψ̂∗1, . . . , ψ̂
∗
NBOOT as ψ̂∗(1), . . . , ψ̂

∗
(NBOOT ) . Then obtain η-quantiles and 100(1−

η)% confidence intervals for the parameters.

In case of the HMW distribution, the parametric bootstrap estimators (PBs) of α, β, λ and
θ, are α̂PB, β̂PB, λ̂PB and θ̂PB, respectively.

Nonparametric bootstrap procedure

• Generate a bootstrap sample {X∗1 , . . . , X∗m} , with the replacement from the original
data set.

• Obtain the bootstrap estimate of ψ with MLE procedure, say ψ̂∗, by using the bootstrap
sample.
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• Repeat Step 2 NBOOT times.

• Order ψ̂∗1, . . . , ψ̂
∗
NBOOT as ψ̂∗(1), . . . , ψ̂

∗
(NBOOT ) . Then obtain η-quantiles and 100(1−

η)% confidence intervals for the parameters.

In the case of the HMW distribution, the nonparametric bootstrap estimators (NPBs) of
α, β, λ and θ, are α̂NPB, β̂NPB, λ̂NPB and θ̂NPB, respectively.

5.3. Bayesian inference

Bayesian inference procedure has been used by many statistical researchers, especially re-
searchers in the field of survival analysis and reliability engineering. In this section, a complete
sample data is analyzed through Bayesian point of view. We assume that the parameters α,
β, λ and θ of HMW distribution have the following independent prior distributions

α ∼ Gamma(a, b), β ∼ Gamma(c, d), λ ∼ Gamma(e, f), θ ∼ Beta(n0, n1),

where a, b, e, f , n0 and n1 are positive. Hence, the joint prior density function is

π(α, β, λ, θ) =
bacdfe

Γ(a)Γ(c)Γ(e)Beta(n0, n1)
θn0−1(1− θ)n1−1αa−1βc−1λe−1e−(bα+dβ+fλ).(12)

In the Bayesian estimation, we do not know the actual value of the parameter, which may
be adversely affected by loss when we choose an estimator. This loss can be measured by a
function of the parameter and the corresponding estimator. For the Bayesian discussion, we
consider different types of symmetric and asymmetric loss functions such as squared error loss
function (SELF ), weighted squared error loss function (WSELF ), modified squared error loss
function (MSELF ), precautionary loss function (PLF ) and K-loss function (KLF ). These
loss functions, associated Bayesian estimators and posterior risks are presented in Table 1.

Table 1: Bayes estimator and posterior risk under different loss functions

loss function Bayes estimator Posterior risk

SELF = (ψ − d)2 E(ψ|x) V ar(ψ|x)

WSELF = (ψ−d)2

ψ (E(ψ−1|x))−1 E(ψ|x)− (E(ψ−1|x))−1

MSELF =
(

1− d
ψ

)2
E(ψ−1|x)
E(ψ−2|x)

1− E(ψ−1|x)2

E(ψ−2|x)

PLF = (ψ−d)2

d

√
E(ψ2|x) 2

(√
E(ψ2|x)− E(ψ|x)

)
KLF =

(√
d
ψ −

√
ψ
d

) √
E(ψ|x)
E(ψ−1|x)

2
(√

E(ψ|x)E(ψ−1|x)− 1
)

For more details see Ahmad, Mahmoudi, Hamedani, and Kharazmi (2020) and Kharazmi,
Saadatinik, and Jahangard (2019).

Next, we provide the posterior probability distributions for a complete data set. Let us define
the function ϕ as

ϕ(α, β, λ, θ) = θn0−1(1− θ)n1−1αa−1βc−1λe−1e−(bα+dβ+fλ), α > 0, β > 0, λ > 0, 0 < θ < 1.

The joint posterior distribution in terms of a given likelihood function L(data) and joint prior
distribution π(α, β, λ, θ) is defined as

π∗(α, β, λ, θ|data) ∝ π(α, β, λ, θ)L(data). (13)
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Hence, we obtain the joint posterior density of the parameters α, β, λ, θ for complete sample
data by combining the likelihood function and joint prior density (12). Therefore, the joint
posterior density function is given by

π∗(α, β, λ, θ|x) = Kϕ(α, β, λ, θ)L(x, ξ) (14)

where

L(x; ξ) =

n∏
i=1

β λxβ−1 e−αλx
β
i
α(1− θ) + θe−(α−1)λxβi(
1− θ(1− e−(α−1)λxβi )

)2 , (15)

ξ = (α, β, λ, θ) and K is given by

K−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ, θ)L(x, ξ)∂α∂β∂λ∂θ.

Moreover, the marginal posterior PDF of α, β, λ and θ assuming that Ψ = (Ψ1,Ψ2,Ψ3,Ψ4) =
(α, β, λ, θ), can be given

π(Ψi|x) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

π∗(Ψ|x)∂Ψj∂Ψk∂Ψl, (16)

where i, j, k, = 1, 2, 3, 4, i 6= j 6= k 6= and Ψi is the ith member of the vector Ψ.

It is clear from the equations (14) and (16) that there are no closed-form expressions for the
Bayesian estimators under the five loss functions described in Table 1. Because of intractable
integrals associated with joint posterior and marginal posterior distributions, we need to
use a software to solve integral equations numerically via MCMC method. The two most
popular MCMC methods are: the Metropolis-Hastings algorithm (Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller 1953; Hastings 1970) and the Gibbs sampling (Geman and
Geman 1984). Gibbs Sampling is a special case of the Metropolis-Hastings algorithm which
generates a Markov chain by sampling from the full set of conditional distributions.

The Gibbs sampling algorithm can be described as follows:

Suppose that the general model f(x|ψ) is associated with parameter vectorψ = (ψ1, ψ2, ..., ψp)
and observed data x. Thus, the joint posterior distribution is π(ψ1, ψ2, ..., ψp|x). We also as-

sume that ψ0 = (ψ
(0)
1 , ψ

(0)
2 , ..., ψ

(0)
p ) is the initial values vector to start Gibbs sampler. The

Gibbs sampler draws the values for each iteration in p steps by drawing a new value for each
parameter from its full conditional distribution given the most recently drawn values of all
other parameters. In symbols, the steps for any iteration, say iteration k, are as follows:

• Starting with an initial estimate (ψ
(0)
1 , ψ

(0)
2 , ..., ψ

(0)
p )

• Draw ψk1 from π
(
ψ1|ψk−1

2 , ψk−1
3 , ..., ψk−1

p , x
)

• Draw ψk2 from π
(
ψ2|ψk1 , ψ

k−1
3 , ..., ψk−1

p , x
)
; and so on down to

• Draw ψkp from π
(
ψp|ψk1 , ψk2 , ..., ψkp−1, x

)
.

In case of the HMW distribution, by considering the parameter vector Ψ = (α, β, λ, θ) and
initial parameter vector Ψ0 = c(α0, β0, λ0, θ0), the posterior samples are extracted by the
above Gibbs sampler where the full conditional distributions are given as

π
(
α|βk−1, λk−1, θk−1, x

)
∝ αa−1exp

(
−α(b + λ

n∑
i=1

xβi ) + Φ(x,Ψ)
)
,
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π
(
β|αk−1, λk−1, θk−1, x

)
∝ β exp

(
− β(d−

n∑
i=1

log(xi)) + αλ

n∑
i=1

xβi + Φ(x,Ψ)
)
,

π
(
λ|αk−1, βk−1, θk−1, x

)
∝ λeexp

(
− λ(f + α

n∑
i=1

xβi ) + Φ(x,Ψ)
)
,

and
π
(
θ|αk−1, βk−1, λk−1, x

)
∝ θn0(1− θ)n1exp(Φ(x,Ψ)),

where

Φ(x,Ψ) =
n∑
i=1

log
(
α(1− θ) + θe−(α−1)λxβi

)
− 2

n∑
i=1

log
(
1− θ(1− e−(α−1)λxβi )

)
.

Often Bayesian inference requires computing intractable integrals to generate posterior sam-
ples. Using Gibbs sampling, one can obtain samples from the joint posterior distribution.
In practice, simulations related to Gibbs sampling are conducted through a special software
WinBUGS. WinBUGS software was developed in 1997 to simulate data of complex posterior
distributions, where analytical or numerical integration techniques cannot be applied. Also,
we can use OpenBUGS software, which is an open source version of WinBUGS. Since there are
no prior information about the hyper parameters in (12), one can implement the idea of Cong-
don (2001) and these parameters can be chosen as a = b = c = d = e = f = n0 = n1 = 0.0001.
Hence, we can use MCMC procedure to extract posterior samples of (14) by means of Gibbs
sampling process in OpenBUGS software.

5.4. Monte Carlo simulation study

In this subsection, we assess the performance of the MLEs of the parameters with respect to
the sample size n for the HMW (α, β, λ, θ) distribution. The assessment of the performance
is based on a simulation study using the Monte Carlo method. First, we generate samples of
size n from (7). The inversion method is used to generate samples of the HMW distribution
generated as the root of

(1− U)(1− θ) + θ(1− U)
(
1− e−λxβ

)α−1
=
(
1− e−λxβ

)α
,

where U ∼ U(0, 1) is a uniform variate on the unit interval. Let α̂, β̂, λ̂ and θ̂ be the MLEs
of the parameters α, β, λ and θ, respectively. We compute the mean square error (MSE)
and bias of the MLEs of the parameters α, β, λ and θ, based on the simulation results of
N = 1000 independent replications. results are summarized in Table 2 for selected values
of n, α, β, λ and θ. From Table 2 the results verify that MSE and bias of the MLEs of
the parameters decrease as sample size n increases. Hence, the MLEs of α, β, λ and θ, are
consistent estimators.

6. The LHMW regression model

Let the random variable X follow a Weibull distribution with PDF and CDF , respectively
as

g (x;λ, k) =
k

λ

(x
λ

)k−1
exp

[
−(x/λ)k

]
, (17)

G (x;λ, k) = 1− exp
[
−(x/λ)k

]
. (18)

Inserting (17) and (18) in (2), we have

f (y, α, θ, λ, k) = k
λ

(
x
λ

)k−1
exp

[
−(x/λ)k

]
×
(

exp
[
−(x/λ)k

])α−1 α(1−θ)+θ(exp[−(x/λ)k])
α−1(

1−θ
(

1−(exp[−(x/λ)k])
α−1

))2 . (19)
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Table 2: MSEs and average biases(values in parentheses) of the simulated estimates

α = 0.5 β = 1.0 λ = 1.5 θ = 0.05

n 30 0.1297 (-0.2797) 0.0548 (-0.0137) 16.4499 (3.3032) 2.2918 (0.0956)
50 2.7672 (-0.2043) 0.0380 (-0.0263) 9.5995 (2.4463) 2.1054 (0.0462)
100 0.0893 (-0.2248) 0.0197 (-0.0202) 5.1211 (1.7123) 0.0464 (-0.0055)
200 0.0687 (-0.2025) 0.0105 (-0.0145) 2.8466 (1.2002) 0.0142 (0.0087)

α = 0.5 β = 1.5 λ = 1.0 θ = 0.05

n 30 14.5071 (-0.1397) 0.1328 (-0.0288) 7.9946 (2.1579) 0.4992 (0.0452)
50 0.1186 (-0.2384) 0.0833 (-0.0520) 4.3050 (1.6120 ) 5.6953 (0.1504)
100 0.0971 (-0.2182) 0.0472 (-0.0418) 2.4130 (1.1649) 0.0813 (0.0068)
200 0.0725 (-0.2035) 0.0261 ( -0.0184) 1.3738 (0.8408) 0.2781 (0.0324)

α = 0.7 β = 1.0 λ = 1.5 θ = 0.02

n 30 3.9228 (-0.1715) 0.0450 (-0.0415) 16.3084 (2.9951) 0.3217 (0.0508)
50 0.4666 (-0.2956) 0.0371 (-0.0635) 10.5131 (2.3362) 0.0213 (0.0234)
100 0.1670 (-0.2944) 0.0181 (-0.0417) 5.7535 (1.6320 ) 1.4583 (0.0651)
200 0.1425 (-0.2815) 0.0095 (-0.0339) 3.6115 (1.2757) 0.0183 (0.0378)

α = 0.7 β = 2.0 λ = 1.0 θ = 0.1

n 30 2.0483 (-0.1815) 0.2149 (-0.0642) 8.8041 (2.1723) 2.4038 (0.1016)
50 1.5281 (-0.2362) 0.1305 (-0.0808) 5.6843 (1.6985) 2.3599 (0.0502)
100 0.1830 (-0.2673) 0.0693 (-0.0749) 3.1972 (1.2292) 0.0759 (-0.0168)
200 0.1618 (-0.2543) 0.0426 (-0.0731) 2.0204 (0.9420) 0.0219 (-0.0138)

α = 0.7 β = 1.5 λ = 1.0 θ = 0.1

n 30 0.5811 (-0.2902) 0.1343 (-0.0467) 10.2552 (2.3453) 2.2400 (0.0338)
50 0.3308 (-0.2888 ) 0.0791 (-0.0832) 6.3385 (1.8259) 0.8307 (-0.0151)
100 0.1863 (-0.2718) 0.0367 (-0.0501) 3.6893 (1.3291) 0.1890 (-0.0073)
200 0.1689 (-0.2482) 0.0256 (-0.0472) 2.1637 (0.9487) 0.0615 (-0.0047)

The HMW (19) is considered as different parametrization of the HMW distribution. Assume
that the random variable X follows the HMW distribution, given in (19). We obtain the
log-HMW (LHMW ) distribution by applying Y = log(X) transformation and considering
the re-parametrization, k = 1/σ and λ = exp(µ). The resulting PDF is

f (y;α, θ, µ, σ) =
1

σ
exp

[(
y − µ
σ

)
− exp

(
y − µ
σ

)](
exp

[
− exp

(
y − µ
σ

)])α−1

×
α (1− θ) + θ

(
exp

[
− exp

(y−µ
σ

)])α−1(
1− θ

(
1−

(
exp

[
− exp

(y−µ
σ

)])α−1
)) , (20)

where µ ∈ < is the location parameter, σ > 0 is the scale parameter, and α > 0 and
θ > 0 are the shape parameters. We refer to equation (20) as the LHMW distribution, say
Y ∼ LHMW(α, θ, σ, µ). The survival function corresponding to (20) is given by

S (y) =

(
exp

[
− exp

(y−µ
σ

)])α
1− θ

(
1−

(
exp

[
− exp

(y−µ
σ

)])α−1
) , (21)

Let Z = (Y − µ)/σ, then the PDF of the standardized random variable is

f (y;α, θ, µ, σ) = exp [z − exp (z)] (exp [− exp (z)])α−1 α (1− θ) + θ(exp [− exp (z)])α−1(
1− θ

(
1− (exp [− exp (z)])α−1

))
(22)

Figure 9 displays the some possible shapes of the LHMW distribution. It is seen that the
LHMW distribution could be a good choice to model left skewed lifetime dependent variable
with some covariates.
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Figure 9: The PDF plots of the LHMW distribution

Now, using the LHMW density, we introduce a new location-scale regression model where
the regression structure is

yi = vᵀ
iβ + σzi, i = 1, . . . , n, (23)

and vᵀ
i is the explanatory variable vector and zi is the random error following the density

in (22). The regression parameters are represented by β = (β1, . . . , βp)
ᵀ. The location-

scale type regression models are very popular in the recent years. The authors have proposed
different location-scale regression models to model different characteristics of the lifetime data
sets with some covariates such as Alizadeh, Altun, Cordeiro, and Rasekhi (2018a); Alizadeh,
Lak, Rasekhi, Ramires, Yousof, and Altun (2018b); Altun, Yousof, and Hamedani (2018);
Korkmaz, Altun, Yousof, and Hamedani (2019b); Korkmaz, Altun, Alizadeh, and Yousof
(2019a); Korkmaz, Altun, Yousof, and Hamedani (2020); Esmaeili, Lak, and Altun (2020);
Nofal, Altun, Afify, and Ahsanullah (2019); Yousof, Altun, Rasekhi, Alizadeh, Hamedani, and
Ali (2019); Yadav, Altun, and Yousof (2019) and among others.

Here, we use the MLE method to estimate the unknown parameters of the LHMW re-
gression model. First, we define some useful mathematical notations. Let yi be a depen-
dent variable, distributed as LHMW , given in (19). The dependent variable is defined
as yi = min{log(xi), log(ci)} where log(xi) and log(ci) represent the log-lifetime and log-
censoring times, respectively. Additionally, we split the observations into the two set. These
are F and C which indicate the individuals with log-lifetime and log-censoring, respectively.
In view of these definitions, the log-likelihood function of the LHMW regression model is

` (τ) = r log

(
1

σ

)
+
∑
i∈F

(zi − ui) + (1− α)
∑
i∈F

ui +
∑
i∈F

log

 α (1− θ) + θ(exp [−ui])α−1(
1− θ

(
1− (exp [−ui])α−1

))


+
∑
i∈C

log

 (exp [−ui])α

1− θ
(

1− (exp [−ui])α−1
)
 (24)
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where τ = (α, θ, σ,βᵀ)ᵀ is the parameter vector, ui = exp(zi), zi = (yi − vᵀ
i β)/σ and r is

the number of uncensored observations. The MLEs of τ can be obtained by minimizing the
negative value of the log-likelihood function in (24). The optim function of R software is used
for this purpose.

6.1. Residual analysis

To decide the accuracy of the fitted regression model, we analyze the departure from error
distribution by means of the residual analysis. Here, two residuals are used. These are
martingale and modified deviance residuals. Residual analysis is an important step of the any
regression analysis to check the adequacy of the fitted model. The martingale residuals of the
LHMW regression model are

rMi =


1 + ln

(
(exp[−ui])α

1−θ(1−(exp[−ui])α−1)

)
, if i ∈ F

ln

(
(exp[−ui])α

1−θ(1−(exp[−ui])α−1)

)
, if i ∈ C

(25)

where ui = exp((yi−x>
i β)/σ). Using the martingale residuals, the modified deviance residuals

of the LHMW regression are

rDi =

{
sign (rMi) { −2 [rMi + log (1− rMi)]}

1/2, if i ∈ F
sign (rMi) { −2rMi}

1/2, if i ∈ C,
(26)

where rMi is the martingale residual. The modified deviance residuals are more acceptable
and used than martingale residuals. The reason is that the modified deviance residuals are
normally distributed with zero men and unit variance once the fitted regression model is
suitable and accurate for the given data.

7. Practical data applications

In this section, we provide two applications for modeling the HMW distribution to real data
sets for illustrative purposes. These applications will show the flexibility and usefulness of
the HMW distribution. In order to achieve this goal, first we consider the strengths of 1.5
cm glass fibres data set and the parameter estimations are done by means of three methods
(maximum likelihood, Bayesian and bootstrap) which are discussed in Section 5. Second
we show the performance of of survival regression model LHMW distribution via maximum
likelihood method by analyzing Kidney data set which is associated with covariate variables.

7.1. Univariate data modeling

The data set obtained from Smith and Naylor (1987) represents the strengths of 1.5 cm glass
fibres, measured at the National Physical Laboratory, England. The observations are as
follows;

Table 3: Strengths of glass fibres data set

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39
1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62
1.66 1.69 1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84
0.84 1.24 1.30 1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89

Graphical measure: The total time test (TTT ) plot due to Aarset (1987) is an important
graphical approach to verify whether the data can be applied to a specific distribution or not.
The TTT plot for this data set presented in Figure 10 indicates that the empirical hazard rate
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functions of the strengths of glass fibres data is increasing. Therefore, the HMW distribution
is appropriate to fit these data.
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Figure 10: Scaled-TTT plot of the strengths of glass fibres data set.

Bootstrap inference for HMW parameters

Here we obtain point and %95 confidence interval (CI) estimation of parameters for the
HMW distribution by parametric bootstrap method for the real data set. We provide results
of bootstrap estimation based on 1000 bootstrap replicates in Table 4. It is interesting to
look at the joint distribution of the bootstrapped values in a scatter plot in order to under-
stand the potential structural correlation between parameters. The corresponding plots of
the bootstrap estimation are shown in Figure 11.

Table 4: Bootstrap point and interval estimation of the parameters α, β, λ and θ

parametric bootstrap non-parametric bootstrap

point estimation CI point estimation CI

α 0.050 (0.000, 0.225) 0.046 (0.000, 0.152)
β 2.940 (1.854, 5.235) 2.613 (1.827, 4.242)
λ 1.152 (0.204, 2.519) 1.403 (0.455, 2.469)
θ 0.008 (0.002, 0.105) 0.007 (0.002, 0.073)

MLE estimation and comparison with other models

Here, we fit the HMW distribution to the strengths glass fibres data set and compare it with
the Marshall-Olkin Weibull (MOEW ), Log Logistic (LL) and Weibull densities. Table 5
shows the MLEs of parameters, log-likelihood, Akaike information criterion (AIC), Cramer-
von Mises (W ∗), Anderson-Darling (A∗) and p − value (P ) statistics for the data set. The
HMW distribution provides the best fit for the data set as it shows the lowest AIC, A∗ and
W ∗ than other considered models. The relative histogram, fitted HMW , MOEW , LL and
Weibull PDFs and corresponding empirical and fitted CDFs are plotted in Figure 13 for the
current data set. In addition, the Q − Q and P − P plots for the HMW and other fitted
distributions are also displayed in Figure 14. These plots support the results in Table 5. We
compare the HMW model with a set of competitive models, namely:
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Figure 11: Parametric (left) and non-parametric (right) bootstraped values of parameters of
the HMW distribution for the strengths of glass fibres data.

(i) The log-logistic distribution: The two parameter log-logistic (LL) distribution density
function is given by

f(x;α, β) = β αβ xβ−1 (αβ + xβ)−2, x > 0, α, β > 0.

(ii) The Marshall-Olkin extended Weibull distribution (Ghitany, Al-Hussaini, and Al-Jarallah
2005): The three parameter Marshall-Olkin extended Weibull (MOEW ) distribution
density function is given by

f(x;α, β, λ) =
αβ λ(λx)β−1 e−(λx)β

[1− ᾱ e−(λx)β ]2
, x > 0, α, β, λ > 0, ᾱ = 1− α.

(iii) The Weibull distribution: The Weibull (We) distribution with shape parameter α and
scale parameter β has density given by

f(x, α, β) =
α

β
(
x

β
)α−1 exp

(
− (

x

β
)α
)
, x > 0, α > 0, β > 0.

Table 5: Parameter estimates (standard errors), log-likelihood values and goodness of fit
measures

Model MLEs of parameters (s.e) Log-likelihood AIC BIC A∗ W ∗ K.S P

HMW α̂ = 0.041(0.020), β̂ = 2.501 (0.023) -10.80 29.60 38.18 0.28 0.07 0.07 0.81

λ̂ = 1.640 (0.420), θ̂ = 0.005 (0.003)

MOEW α̂ = 16.650 (20.769), β̂ = 3.201, (0.946) -12.03 30.06 36.49 0.56 0.08 0.09 0.55

λ̂ = 0.892 (0.196)

LL α̂ = 1.526 (0.040), β̂ = 7.924 (0.873) -22.78 49.57 53.86 2.37 0.30 0.15 0.10

Weibull α̂ = 5.780 (0.576), β̂ = 1.628 (0.037) -15.20 34.41 38.69 1.24 0.21 0.15 0.10

As mentioned in the inference section, there are no closed expressions for MLE estimators
of the parameters α, β, λ and θ. We use numerical methods to obtain MLE estimations of
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Figure 12: Profile-likelihood plots of parameters of HMW distribution for strengths of glass
fibres.

these parameters. To evaluate the results of MLE estimation, we provide profile-likelihood
plots of HMW distribution for each parameter in Figure 12.

Bayesian estimation under different loss functions

Here, we provide Bayesian estimation results for the parameters of HMW distribution.
Bayesian estimators associated with the parameters of HMW distribution are computed
based on the single chain of 20, 000 cycles of Gibbs sampler with a conservative burn-in pe-
riod of the first 5000 iterations. The corresponding Bayesian point and interval estimations
and posterior risk are provided in Table 6 for the Strengths of glass fibres data set. Table
7 provides 95% credible and HPD intervals for each parameter of the HMW distribution.
The convergence of Gibbs sampler process are verified through graphical inspection (Trace,
Autocorrelation and Histogram plots) of the posterior sampled values. It is observed that
Gibbs samples of all the parameter estimates achieve a good stationary phase for both data
sets. We provide the posterior summary plots for 10, 000 cycles of Gibbs sampler in Figures
15, 16 and 17 .
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Figure 13: Estimated densities and corresponding CDFs for the data set.
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Figure 14: Q-Q and P-P plots for the data set.

7.2. Data modeling with covariate variables: Kidney data set

In this application, we asses the performance of LHMW regression model via application to
a real data set. The data set represents the recurrence times to infection of Kidney patients.
The data set is avaliable in survival package of R software. The censoring rate of the data is
approximately 23%. The dependent variable, recurrence times to infection yi, is modeled by
age xi1 and gender xi2 (0=male, 1=female). The below regression model is fitted

yi = β0 + β1xi1 + β2xi2 + σzi,

where yi is distributed as LHMW .

Parameter estimation

The estimated parameters of the LHMW regression model is obtained by MLE method
using the optim function of R software. The estimated parameters, standard errors (SEs),
confidence intervals (CIs) as well as the corresponding p-values are listed in Table 8. From
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Table 6: Bayesian estimates and their posterior risks of the parameters of HMW distribution
under different loss functions based on the Strengths of glass fibres

Data Strengths of glass fibres

Bayesian estimation

Loss function α̂ (rα̂) β̂ (r
β̂
) λ̂ (r

λ̂
) θ̂ (r

θ̂
)

SELF 0.0404 (0.0002) 2.51628 (0.0922) 1.65984 (0.1019) 0.0052 (0.0001)

WSELF 0.0345 (0.0059) 2.47944 (0.0368) 1.59789 (0.0619) 0.0043 (0.0009)

MSELF 0.0274 (0.2060) 2.44239 (0.0149) 1.53561 (0.0390) 0.0035 (0.1891)

PLF 0.0429 (0.0051) 2.53454 (0.0365) 1.69027 (0.0609) 0.0056 (0.0008)

KLF 0.0373 (0.1649) 2.49779 (0.0148) 1.62857 (0.0384) 0.0047 (0.1920)
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Figure 15: Plots of Bayesian analysis and performance of Gibbs sampling for the Strengths
of glass fibres data set. Trace plots of each parameter of MHW distribution.

Table 7: Credible and HPD intervals of the parameters α, β, λ and θ for the strengths of
glass fibers data set

Credible interval HPD interval

α (0.030, 0.049) (0.013, 0.068)
β (2.313, 2.710) (1.952, 3.176)
γ (1.435 1.861 ) (1.058, 2.300)
λ (0.004, 0.006) (0.002, 0.009)

results, we conclude that the estimated regression parameters are statistically significant at
1% level. According to the estimated regression parameters, the recurrence times to infection
decreases when the age of patient increases. Additionally, the recurrence times to the infection
of female patients are higher than those of the male patients.

Results of residual analysis

The suitability of the fitted LHMW regression model is evaluated via residual analysis. The
plot of the modified deviance residuals and its quantile-quantile (Q − Q) plot are displayed
in Figure 18 which reveal that the fitted LHMW regression model provides a good fit to the
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Figure 16: Plots of Bayesian analysis and performance of Gibbs sampling for the Strengths
of glass fibres data set. Autocorrelation plots of each parameter of MHW distribution.
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Figure 17: Plots of Bayesian analysis and performance of Gibbs sampling for the Strengths
of glass fibres data set. Histogram plots of each parameter of MHW distribution.

Table 8: The estimated parameters of the LHMW regression model for the kidney data

Parameters Estimates SE CIs p-values

α 14.389 0.052 [14.287,14.489] -
θ 9.266× 10−9 6.854× 10−7 [−1.334× 10−6,−1.352× 10−6] -
σ 1.103 0.106 [0.895,1.310] -
β0 6.255 0.606 [5.067,7.443] < 0.001
β1 -0.003 3.238× 10−4 [-0.004,-0.003] < 0.001
β2 0.953 0.340 [0.286,1.621] 0.005

data used.
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Figure 18: (a) Index plot of the modified deviance residual and (b) Q −Q plot for modified
deviance residual.

8. Conclusion

A new family of lifetime distributions is introduced via harmonic mixture mean and its main
properties are derived. One of the interesting and important properties of the proposed family
is that it includes the Marshall-Olkin family of distributions, as a special case. An example
of this family is proposed by considering the Weibull as the baseline distribution. We provide
survival regression model of the special model and a comprehensive discussion about Bayesian
estimation of the parameters are studied under various loss functions. Numerical results of
a maximum likelihood, Bayesian and bootstrap procedures for a univariate real data set is
investigated. Moreover, the associated plots to evaluate the results obtained from the the three
methods are provided. The data analysis proves, empirically, that the proposed distribution
provides a better fit than its sub-models and other competing distributions for the current
data. Finally, the performance of the survival regression model of the special distribution is
examined by considering a real example with covariate variables.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some
d < b (a = −∞, b =∞might as well be allowed) . Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions defined on H
such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] ξ (x) , x ∈ H,
is defined with some real function ξ. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that
the equation ξq1 = q2 has no real solution in the interior of H. Then F is uniquely determined
by the functions q1, q2 and ξ , particularly

F (x) =

∫ x

a
C

∣∣∣∣ ξ′ (u)

ξ (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξq1−q2 and C is the nor-

malization constant, such that
∫
H dF = 1.

Note: The goal is to have the function ξ (x) as simple as possible.

We like to mention that this kind of characterization based on the ratio of truncated moments
is stable in the sense of weak convergence (see, Glänzel (1990)), in particular, let us assume
that there is a sequence {Xn} of random variables with distribution functions {Fn} such that
the functions q1n, q2n and ξn (n ∈ N) satisfy the conditions of Theorem 1 and let q1n → q1

, q2n → q2 for some continuously differentiable real functions q1 and q2. Let, finally, X be
a random variable with distribution F . Under the condition that q1n (X) and q2n (X) are
uniformly integrable and the family {Fn} is relatively compact, the sequence Xn converges
to X in distribution if and only if ξn converges to ξ, where

ξ (x) =
E [q2 (X) | X ≥ x]

E [q1 (X) | X ≥ x]
.

http://dx.doi.org/10.1093/biomet/45.3-4.504
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.2991/jsta.d.191030.001
http://dx.doi.org/10.2307/2347795
http://dx.doi.org/10.1007/s40745-019-00213-8
http://dx.doi.org/10.1080/03610918.2017.1377241
http://dx.doi.org/10.1080/03610918.2017.1377241
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This stability theorem makes sure that the convergence of distribution functions is reflected
by corresponding convergence of the functions q1, q2 and ξ, respectively. It guarantees, for
instance, the ’convergence’ of characterization of the Wald distribution to that of the Lévy-
Smirnov distribution if α→∞.

A further consequence of the stability property of Theorem 1 is the application of this theorem
to special tasks in statistical practice such as the estimation of the parameters of discrete
distributions. For such purpose, the functions q1, q2 and, specially, ξ should be as simple as
possible. Since the function triplet is not uniquely determined it is often possible to choose ξ
as a linear function. Therefore, it is worth analyzing some special cases which helps to find
new characterizations reflecting the relationship between individual continuous univariate
distributions and appropriate in other areas of statistics.

In some cases, one can take q1 (x) ≡ 1, which reduces the condition of Theorem 1 to
E [q2 (X) | X ≥ x] = ξ (x) , x ∈ H. We, however, believe that employing three functions
q1, q2 and ξ will enhance the domain of applicability of Theorem 1.
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