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Abstract
This paper introduces a first-order integer-valued autoregressive process with a new innovation distribution, shortly 
INARPQX(1) process. A new innovation distribution is obtained by mixing Poisson distribution with quasi-xgamma dis-
tribution. The statistical properties and estimation procedure of a new distribution are studied in detail. The parameter 
estimation of INARPQX(1) process is discussed with two estimation methods: conditional maximum likelihood and Yule-
Walker. The proposed INARPQX(1) process is applied to time series of the monthly counts of earthquakes. The empirical 
results show that INARPQX(1) process is an important process to model over-dispersed time series of counts and can be 
used to predict the number of earthquakes with a magnitude greater than four.

Keywords Discrete distribution · Earthquake · Over-dispersion · INAR(1) process
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1 Introduction

Destructive earthquakes are one of the biggest problems 
of all humanity. Earthquakes are not only natural disas-
ters that threaten the people’s lives, but also affect the 
economies of the countries negatively. Therefore, statis-
tical modeling of the counts of earthquakes and taking 
measures according to the model results are of great 
importance. Many different statistical models have been 
used in the literature to model earthquake events. Turkan 
and Ozel [26] used the linear regression, beta regression, 
and semi-parametric additive regression to model the 
casualty rate of earthquakes and related covariates. The 
relation between the magnitude of an earthquake and 
the number of deaths was investigated in several piece 
of researches such as Samardjieva and Badal [22], Gutiér-
rez et al. [10], Wyss [30], Koshimura et al. [15], Zhao et al. 

[31], and Wu et al. [29]. Besides these regression models, 
stochastic models are also powerful tools to model earth-
quakes. Stochastic point process models for earthquakes 
were discussed by Brillinger [7], Vere-Jones [27], Ogata [19, 
20] and Zhuang et al. [32, 33]. Gospodinov and Rotondi [9] 
and Aktas et al. [1] used the compound Poisson process to 
model the cumulative energy release of mainshocks and 
the expected value of the earthquake, respectively. Ozel 
[21] introduced a bivariate compound Poisson model to 
predict the number of foreshocks and aftershocks.

The first-order integer-valued autoregressive process, 
shortly INAR(1), is an alternative model to predict the 
number of the time of series of counts such as monthly 
deaths from corona-virus, monthly counts of passen-
gers for a specific airline company or monthly counts of 
destructive earthquakes for a specific region or a country. 
The INAR(1) process with Poisson innovations, known as 
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INARP(1), was developed by McKenzie [17, 18] and Al-
Osh and Alzaid [2] and increased its popularity in the last 
decade. The time series of counts generally display over-
dispersion. The INARP(1) process can be used to model 
equi-dispersed time series of counts which means that 
the ratio of sample variance to sample mean should 
be one. The over-dispersion occurs when the sample 
variance is greater than the sample mean, the oppo-
site indicates the under-dispersion. After the important 
researches of McKenzie [17, 18] and Al-Osh and Alzaid 
[2], the researches have focussed on the distribution of 
an innovation process of INAR(1) to develop new mod-
els for over-dispersed or under-dispersed time series of 
counts. In what follows, we list some recent contributions 
on overdispersed INAR(1) processes: INAR(1) process 
with geometric innovations (INARG(1)) by Jazi et al. [13], 
INAR(1) with Poisson–Lindley innovations (INARPL(1)) by 
Lívio et al. [16], compound Poisson INAR(1) by Schweer 
and Weiß [23], processes INAR(1) process with Katz fam-
ily innovations by Kim and Lee [14], INAR(1) process with 
generalized Poisson and double Poisson innovations by 
Bourguignon et al. [6] , INAR(1) process with geometric 
marginals by Borges et al. [5] and INAR(1) process with 
Skellam innovations by Andersson and Karlis [4], INAR(1) 
process with a new Poisson-weighted exponential inno-
vations by Altun [3].

In this study, we first introduce a new two-parameter 
discrete distribution as an alternative distribution for 
the case of over-dispersion. The proposed distribution 
is obtained by mixing the Poisson distribution with a 
quasi-xgamma distribution of Sen and Chandra [24]. The 
resulting distribution is called as Poisson-quasi-xgamma 
(PQX) distribution. The statistical properties of the PQX 
distribution are studied in detail as well as its parameter 
estimation with different methods of estimations. Then, 
we introduce a new INAR(1) model by using the PQX distri-
bution as an innovation process and called this process as 
a INARPQX(1). The goal of the presented study is to open 
a new opportunity to model over-dispersed time series of 
counts with a more flexible innovation distribution than 
existing ones. To demonstrate the effectiveness of the pro-
posed process, we use the earthquake data set (magnitude 
4 and above) of Turkey. The earthquake data set is regular-
ized as a monthly basis to predict the monthly counts of 
the earthquakes with magnitude 4 and above occurred in 
Turkey. We model the monthly counts of earthquakes by 
INAR(1) processes with several innovation distributions as 
well as PQX distribution.

The ongoing sections of the study are organized as 
follows. In Sect. 2, the PQX distribution is presented with 
its statistical properties. In Sect. 3, we discuss the param-
eter estimation procedure of the PQX distribution with 
maximum likelihood and method of moments estimation 
methods. In Sect. 4, Expectation–Maximization (EM) algo-
rithm for the PQX distribution is given. Section 5 deals with 
the simulation study to compare the finite sample perfor-
mance of the estimation methods. In Sect. 6, we introduce 
a new INAR(1) process with PQX innovations. Section 7 
contains an application to the earthquake data of Turkey. 
We summarize the findings of the study in Sect. 8.

2  Poisson‑quasi‑xgamma distribution

Let the random variable (rv) X follows a Poisson distribu-
tion. The probability mass function (pmf ) of X is

where 𝜆 > 0 . The Poisson distribution is an attractive dis-
tribution and is widely used in many fields because of 
its tractable properties and software support. However, 
many count data sets exhibit over-dispersion or under-
dispersion in which case the Poisson distribution does 
not work well. When the empirical variance is greater 
than the empirical mean, the over-dispersion occurs, 
and opposite case represents the under-dispersion. The 
negative-binomial (NB) distribution is a common choice 
for over-dispersed count data sets. However, in the last 
decade, researchers have introduced more sophisticated 
discrete probability distributions to open a new oppor-
tunity to model fat-tailed over-dispersed count data sets. 
Here, we introduce an alternative distribution to model 
over-dispersed time series of counts. To do this, the quasi-
xgamma distribution, introduced by Sen and Chandra [24], 
is used as a mixing distribution for Poisson parameter � . 
The probability density function (pdf ) of quasi-xgamma 
distribution is

where 𝛼 > 0 and 𝜃 > 0 . The quasi-xgamma distribution 
is a special mixture of exponential and gamma densities 
and contains Gamma(�, 3) (for � = 0 ) and xgamma(�) 
(for � = � ), introduced by Sen et al. [25], distributions as 
its submodels. Now, we introduce a new two-parameter 

(1)Pr (X = x) =
e−��x

x!
, x = 0, 1, 2, ...,

(2)f (x;𝛼, 𝜃) =
𝜃

1 + 𝛼

(
𝛼 +

𝜃2

2
x2
)
e−𝜃x , x > 0
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discrete distribution by mixing Poisson distribution with 
quasi-xgamma distribution.

Proposition 1 Assume that the parameter � of the Poisson 
distribution follows a quasi-xgamma distribution. Then, the 
resulting distribution is

where 𝛼 > 0 and 𝜃 > 0 . Hereafter, we refer to (3) as PQX(�, �).

Proof The proof is straightforward.   ◻

Remark 1 The PQX distribution contains the below distri-
butions as its sub-models or limiting case. 

1. The PQX distribution reduces to Poisson-xgamma dis-
tribution for � = �,

2. The PQX distribution reduces to NB(3, �∕(� + 1)) for 
� = 0,

3. The PQX distribution reduces to Geometric(�∕(� + 1)) 
for � → ∞.

The corresponding cumulative distribution function 
(cdf ) to (3) is

The rest of the section is devoted to the inference of the 
statistical properties of PQX distribution and its parameter 
estimation.

2.1  Statistical properties

Proposition 2 Let the rv X follow a PQX distribution. The fac-
torial moments of X are given by

Proof The factorial moments of X can be obtained by using 
mixing formula, as follows

(3)
Pr (X = x) =

2��(� + 1)2 + �3(x + 1)(x + 2)

2(� + 1)(� + 1)x+3
,

x = 0, 1, 2, ...,

(4)F(x) =
2� + (� + 1)−x−3

(
−2�(� + 1)2 − �(x + 3)(�(x + 2) + 2) − 2

)
+ 2

2(� + 1)
.

(5)�[r] =
Γ(r + 3) + 2�Γ(r + 1)

2�r(� + 1)
.

The proof is completed.   ◻

Using (5), the mean and variance of PQX distribution are 
given, respectively, by

The dispersion index (Var(X)/E(X)) of PQX is given by

As seen from (8), since the parameter � and � are greater 
than zero, the dispersion index of PQX distribution is 
always greater than 1 which ensures that the PQX distri-
bution is over-dispersed.

Proposition 3 The probability generating function (pgf) of 
PQX distribution is given by

�[r] =

∞

∫
0
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(6)E(X ) =
2(� + 3)

�(2� + 2)
,

(7)Var(X ) =
�2 + (� + 1)(� + 3)� + 8� + 3

(� + 1)2�2
.

(8)DI = 1 +
�(� + 8) + 3

(� + 1)(� + 3)�
.

(9)G(s) =
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�
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Proof The pgf of X can be written in the form

Using (10), the pgf of X can be obtained as follows

  ◻

The moment generating function of PQX distribution 
can be easily obtained by substituting s with exp (t) in (9). 
Then, we have

The quasi-xgamma distribution is a special mixture of 
exponential(�) and gamma(3, �) distributions with mix-
ing proportion, p = �∕(� + 1) . This property of the quasi-
xgamma distribution can be used to generate rvs from 
PQX distribution. The below algorithm is given based on 
the mixture property of the quasi-xgamma.

(10)G(s) =

∞

∫
0

exp [�(s − 1)]f (�;��)d�.

G(s) =

∞

∫
0

exp [�(s − 1)]

(
� +

�2

2
�2
)
e−��d�

=
�

1 + �

∞

∫
0

(
� +

�2

2
�2
)
exp [�(s − � − 1)]d�

=
�

1 + �

[
�2

(� − s + 1)3
+

�

(� − s + 1)

]

(11)

M(t) =
�

1 + �

[
�2

(� − exp (t) + 1)3
+

�

(� − exp (t) + 1)

]
.

The skewness and kurtosis plots of the PQX distribution 
against the mean and dispersion values are displayed 
in Fig. 1. The parameter � is taken 1 and parameter � is 
increased in the interval (0.5, 15). From these figures, we 
conclude that the skewness and kurtosis decrease when 
the mean and dispersion increase.

The pmf of the NB distribution is

where 𝜃 > 0 , p ∈ (0, 1) . The mean, variance, skewness, and 
kurtosis values of the NB distribution are given, respec-
tively, by

(13)

K =

�4 �3 + 10 �4 �2 + 18 �4 � + 9 �4
+ 6 �3 �3 + 94 �3 �2

+264 �3 � + 192 �3
+ 12 �2 �3 + 206 �2 �2 + 516 �2 � + 306 �2

+10 � �3 + 170 � �2 + 360 � � + 216 � + 3 �3 + 48 �2 + 90 � + 45

(
8 � + 3 � + 4 � � + �2 � + �2 + 3

)2 .

(14)p(y;�, p) =
Γ(y + �)

Γ(y + 1)Γ(�)
(1 − p)�py ,

E(Y) =
�p

1 − p
,

Var(Y) =
�p

(1 − p)2
,

S(Y) =
1 + p√

�p
,

K (Y) =
6

�
+

(1 − p)2

�p
.

The skewness and kurtosis measures of PQX distribu-
tion can be easily obtained based on the first four raw 
moments by using

(12)

S =

�3 �2 + 3 �3 � + 2 �3 + 5 �2 �2 + 27 �2 �

+30 �2 + 7 � �2 + 33 � � + 18 � + 3 �2 + 9 � + 6

(
8 � + 3 � + 4 � � + �2 � + �2 + 3

) 3

2

,

The skewness and kurtosis plots of the NB distribution 
against the mean and dispersion values are displayed 
in Fig. 2. The parameter � is taken 0.5, and parameter p 
is increased in the interval (0.1, 0.9). From these figures, 
we conclude that the skewness and kurtosis decrease 
when the mean and dispersion increase. So, the NB and 
PQX distributions have the similar behaviors. However, to 
understand the differences between these distributions, 
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Fig. 1  The skewness and kurtosis plots of the PQX distribution against the mean and dispersion values
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Fig. 2  The skewness and kurtosis plots of the NB distribution against the mean and dispersion values
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we compare the mean-parametrized versions of both dis-
tributions. Substituting p = �∕(� + �) in (14), the mean-
parametrized NB distribution is given by

where 𝜃 > 0 ,  𝜇 > 0 and E(Y) = � .  Substituting 
� = (3 − ��)∕(�� − 1) in (3), we have the pmf of the mean-
parametrized PQX, given by

where 𝜃 > 0 , 𝜇 > 0 , 1 < 𝜃𝜇 < 3 and E(X ) = � . Figure 3 dis-
plays the skewness and kurtosis values of the mean-para-
metrized NB and PQX distributions against their dispersion 
values. The mean parameter is determined as 1 for both 
distributions. The parameter � and � are increased in the 
interval (1.5, 2.5) since we have condition on the param-
eter space of the mean-parametrized PQX distributions, 
such as 1 < 𝜃𝜇 < 3 . As seen from these figures, when the 
dispersion increases, the skewness and kurtosis increase 

(15)p(y;�,�) =
Γ(y + �)

Γ(�)Γ(y + 1)

(
�

� + �

)�(
�

� + �

)y

,

(16)

Pr (X = x) =
2(3 − ��)∕(�� − 1)�(� + 1)2 + �3(x + 1)(x + 2)

2((3 − ��)∕(�� − 1) + 1)(� + 1)x+3
,

x = 0, 1, 2, ...,

for both distributions. However, under these re-parametri-
zation, the PQX distribution is able to model wider range 
of skewness and kurtosis than the NB distribution.

We also compare the right-tail probabilities of the 
mean-parametrized NB and PQX distributions. Table 1 lists 
the tail probabilities of the NB and PQX distributions for 
some values of the mean parameter � and � . The results 
given in Table 1 indicate that the PQX has fatter right-tail 
than the NB distribution.

2.2  Shape of PQX(˛,�) distribution

Using (3), the ratio of successive probabilities 
P(X = x + 1)∕P(X = x) for PQX(�, �) is given as

Further, the ratio P(X=x+1)
P(X=x)

< (>)1 implies that the pmf is 

decreasing (increasing). Hence, solving the equation 
P(X=x+1)

P(X=x)
= 1 for non-integer x (say), the roots are given as

(17)

P(X = x + 1)

P(X = x)
=

(2 + x)(3 + x)�2 + 2�(1 + �)2

(1 + �)
(
(1 + x)(2 + x)�2 + 2�(1 + �)2

) ,

x = 0, 1, 2,…
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Fig. 3  The skewness and kurtosis comparison of the mean-parametrized NB and PQX distributions

Table 1  The comparison of tail probabilities of the NB and PQX distributions

Tail probabilities Models � = 1 � = 0.5

� = 1.5 � = 2 � = 2.5 � = 3 � = 4 � = 5

Pr(X > 5) NB 0.00973 0.00686 0.00524 0.00018 0.00012 0.00009
PQX 0.01552 0.01052 0.00666 0.00124 0.00065 0.00034

Pr(X > 10) NB 0.00013 4.704 × 10−5 2.117 × 10−5 2.979 × 10−8 8.406 × 10−9 3.379 × 10−9

PQX 0.00036 0.00011 3.329 × 10−5 2.943 × 10−6 5.431 × 10−7 1.164 × 10−7

Pr(X > 15) NB 1.566 × 10−6 2.710 × 10−7 6.643 × 10−8 3.449 × 10−12 3.757 × 10−13 7.394 × 10−14

PQX 6.717 × 10−6 8.492 × 10−7 1.215 × 10−7 5.384 × 10−9 3.337 × 10−10 2.901 × 10−11

Pr(X > 20) NB 1.819 × 10−8 1.434 × 10−9 1.838 × 10−10 4.441 × 10−16 2.220 × 10−16 2.220 × 10−16

PQX 1.097 × 10−7 5.672 × 10−9 3.778 × 10−10 8.508 × 10−12 1.747 × 10−13 6.106 × 10−15
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Hence, it can be easily verified as that 

 i. I f  
(
0 < 𝜃 <

2

3
∩ 𝛼 >

(2+𝜃)2

8(1+𝜃)2

)
∪
(

2

3
≤ 𝜃 < 2 ∩ 𝛼 >

𝜃(2−𝜃)

(1+𝜃)2

)

∪(𝜃 ≥ 2 ∩ 𝛼 > 0) , the ratio is less than 1; hence, the 
PQX(�, �) is unimodal with mode at 0.

(18)
x∗
0
=
2 − 3�

2�
−

� + 2

2�

√
1 − 8�

(
1 + �

2 + �

)2
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x∗∗
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=
2 − 3�

2�
+

� + 2

2�

√
1 − 8�

(
1 + �

2 + �

)2

 ii. If 2
3
≤ 𝜃 < 2 ∩ 𝛼 =

𝜃(2−𝜃)

(1+𝜃)2
 , then mode of PQX(�, �) is at 

1.
 iii. If 0 < 𝜃 < 2 ∩ 0 < 𝛼 <

𝜃(2−𝜃)

(1+𝜃)2
 , then the PQX(�, �) is 

unimodal and the mode is at ⌈x∗∗
0
⌉ , where ⌈.⌉ denote 

the ceiling function.
 iv. If 

(
0 < 𝜃 <

2

3
∩

𝜃(2−𝜃)

(1+𝜃)2
< 𝛼 ≤ (2+𝜃)2

8(1+𝜃)2

)
 , PQX(�, �) is 

bimodal with the mode at 0 and ⌈x∗∗
0
⌉.

The results given above are graphically summarized in 
Fig. 4 which displays the modality regions of the PQX 

Fig. 4  The modality of the PQX 
distribution
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distribution with respect to the values of the parameters 
� and �.

In Fig. 5, we depict different shapes of PQX(�, �) dis-
tribution for different parameters values. As seen from 
these figures, PQX distribution has bimodal and unimodal 
shapes with right skewness and symmetric. Moreover, for 
large value for � and � the PQX distribution can be used to 
zero inflated count data sets.

3  Estimation

3.1  Maximum likelihood

Let x1, x2,… , xn be a random observations from the PQX 
distribution. The log-likelihood function is

The partial derivatives of (19) with respect to � and � , the 
following score vectors are obtained.

The simultaneous solution of (20) and (21) gives the max-
imum likelihood estimates (MLEs) of � and � . However, 
since the likelihood equations contain nonlinear functions, 
there is no explicit form for the MLEs of the parameters 
of PQX distribution. Therefore, the log-likelihood function 
in (19) should be maximized by using statistical software 
such as R, S-PLUS, Mathematica or MATLAB. Here, nlm 
function of R software is used to minimize the minus of 
log-likelihood function which is equivalent to maximiza-
tion of log-likelihood. The inverse of observed informa-
tion matrix evaluated at MLEs of the parameters is used to 
obtain corresponding standard errors. To do this, fdHess 
function of R software is used. The asymptotic confidence 
intervals of the parameters are obtained by

where zp∕2 is the upper p/2 quantile of the standard normal 
distribution.

(19)

�(�, �) =

n∑
i=1

log
(
2��(� + 1)2 + �3

(
xi + 1

)(
xi + 2

))

− n log (2(� + 1)) − log (� + 1)

n∑
i=1

(
xi + 3

)

(20)

��

��
=

n∑
i=1

4�(� + 1)� + 2�(� + 1)2 + 3�2
(
xi + 1

)(
xi + 2

)

2��(� + 1)2 + �3
(
xi + 1

)(
xi + 2

)

+

n∑
i=1

xi + 3

� + 1
,

(21)
��

��
=

n∑
i=1

2�(� + 1)2

2��(� + 1)2 + �3
(
xi + 1

)(
xi + 2

) −
n

� + 1
.

�̂ ± zp∕2

√
Var(�̂), �̂ ± zp∕2

�
Var(�̂),

3.2  Method of moments

The method of moments estimators of the parameters � 
and � can be obtained by equating theoretical moments 
of PQX distribution to sample moments, given as follows

where m1 and m2 are the first and second sample moments, 
respectively. Simultaneous solution of (22) and (23) yields 
to following results

Proposition 4 For fixed � , the MM estimator �̂� of � is positively 
biased.

Proof Let �̂�MM = g(x̄) where g(t) = (� + 3)∕(t(1 + �)) for 
t > 0 . Taking the second partial derivative of g(t), we have

which ensures that the g(t) is strictly convex. Using the 
Jensen’s inequality,

So, since g
(
E
(
X̄
))

= g(𝜇) = g
[
2(𝛼 + 3)∕(𝜃(2𝛼 + 2))

]
= 𝜃 , 

we obtain E
(
�̂�MM

)
> 𝜃 .   ◻

Proposition 5 For fixed � , the MM estimator �̂� of � is consist-
ent and asymptotically normal

where

Proof Since g�(�) exists and is nonzero valued, by the delta 
method, we have

(22)��
1
=

(� + 3)

�(� + 1)
= m1,

(23)��
2
=
�� + 2� + 3� + 12

�2(� + 1)
= m2,

(24)�̂�MM =
�̂�MM + 3

m1

(
1 + �̂�MM

) ,

(25)

�̂�MM =
−7m2

1
+
√

25m4
1
+ 12m3

1
− 12m2

1
m2 − 3

(
m1 −m2

)

2m2
1
+m1 −m2

.

(26)g��(t) =
2(𝛼 + 3)

(𝛼 + 1)t3
> 0

(27)E
(
g
(
X̄
))

> g
(
E
(
X̄
))

(28)

(29)v2(�) =
�2[�(8 + �) + (� + 1)(� + 3)� + 3]

(� + 3)2
.

(30)
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where g(x̄) = �̂� , g(�) = � and

The proof is completed.   ◻

4  EM algorithm for PQX(˛,�) distribution

In this section, we deals in the estimation of parameter � and 
� of PQX distribution by another estimation method known 
as Expectation–Maximization (EM) (see Dempster et al., [8]). 
The EM algorithm consists of two steps: the E-step and the 
M-step. E-Step computes the expectation of the unobserv-
able part given the current values of the parameters and 
M-step maximizes the complete data likelihood and updates 
the parameters using the conditional expectations obtained 
in E-step. This procedure can be useful when there are no 
closed-form expressions for estimating the parameters and 
the derivatives of the likelihood are complicated.

To start with, a hypothetical complete-data distribution 
is defined with joint probability function

It is straightforward to verify that the E-step of an EM cycle 
requires the computation of the conditional expectations 
o f  

(
�2

2�+�2�2
|xi ;�(h), �(h)

)
 ,  

(
1

2�+�2�2
|xi ;�(h), �(h)

)
 a n d (

�|xi ;�(h), �(h)
)
 , say t(h)

i
 , s(h)

i
 and u(h)

i
 , respectively, where (

�(h), �(h)
)
 is the current value of (�, �) . Using,

(31)g�(�) = −
(� + 1)�2

� + 3

(32)

g(X , 𝜆;𝜃, 𝛼) =
𝜃𝜆xe−(1+𝜃)𝜆

(
2𝛼 + 𝜃2𝜆2

)
2(1 + 𝛼)x!

, 𝜃 > 0, 𝛼 > 0.

g(�|x;�, �) = e−(1+�)�(1 + �)x+3�x
(
2� + �2�2

)

x!
(
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2� + �2�2
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(h), �(h)

)

=
(xi + 1)(xi + 2)

2�(h)(1 + �(h))2 + (�(h))2(xi + 1)(xi + 2)
,
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i
= �

(
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)

=
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and
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(
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) .

The EM cycle completes with the M-step, involving com-
plete data maximum likelihood over (�, �) , with the miss-
ing � ’s replaced by their conditional expectations

5  Simulation

The finite sample performance of MM and MLE methods 
is compared via simulation study. The below simulation 
procedure is implemented for this purpose. 

1. Determine the sample size n and the parameter values 
of PQX distribution, � = (�, �),

2. Generate random observations from PQX distribution 
for given n and parameter vector,

3. Using the random sample in step 2, estimate � with 
MLE and MM methods,

4. Repeat the steps 2 and 3 based on the replication 
number, N,

5. Using the estimated parameter vector, �̂ , and true 
parameter vector, � , calculate the biases, mean rela-
tive estimates (MREs) and mean square errors (MSEs) 
by using, 

The simulation is carried out with statistical soft-
ware R. We generate n = 50, 55, 60,… , 300 sample 
of size from PQX distribution. The simulation replica-
tion number is N = 1000 . The true parameter vector is 
� = (� = 0.5, � = 1.5) . Figure  6 displays the simulation 
results. We expect that the estimated biases and MSEs 
should be near the zero for large n values. The results verify 
the expectation. The biases and MSEs approach the their 
nominal value, zero, for n → ∞ . Additionally, the MREs 
are near the one. The MLE and MM methods behave very 
similar for the parameter � . However, the MLE method 
approaches the nominal values of biases, MSEs, and MREs 
more faster than MM method for the parameter � . There-
fore, we suggest practitioners to use MLE method for esti-
mating the parameters of PQX distribution.

𝜃(h+1) =
ū(h) +

√
( ̄(u)

(h)
)2 − 8(t̄(h))2

4t̄(h)
,

𝛼(h+1) =
1

2s̄(h) − 1
.

(33)

Bias =

N∑
j=1

�̂i,j −�i

N
, MRE =

N∑
j=1

�̂i,j∕�i

N
,

MSE =

N∑
j=1

(
�̂i,j −�i

)2

N
, i = 1, 2.



Vol:.(1234567890)

Research Article SN Applied Sciences           (2021) 3:274  | https://doi.org/10.1007/s42452-020-04109-8

6  INAR(1) model with PQX innovations

Let the innovations 
(
�t
)
ℕ

 be an independent and iden-
tically distributed (iid) process with E

(
�t
)
= �� and 

Var
(
�t
)
= �2

�
 . The process, 

(
Xt
)
ℕ

 , is called as INAR(1) if it 
follows a recursion

where 0 ≤ p < 1 . The symbol, ◦ , represents a binomial thin-
ning operator and is defined as

(34)Xt = p◦Xt−1 + �t ,

(35)p◦Xt−1 ∶=

Xt−1∑
j=1

Zj ,

where 
{
Zj
}
j≥1 is referred to as a counting series and be a 

sequence of iid Bernoulli rvs with Pr
(
Zj = 1

)
= p . The 

INAR(1) process is stationary for 0 ≤ p < 1 . The process is 
non-stationary for the case p = 1 . The INAR(1) process is a 
homogeneous Markov chain with the one-step transition 
probabilities given by McKenzie [17], Al-Osh and Alzaid [2])

The mean, variance, and dispersion index of INAR(1) pro-
cess are given, respectively, by Weiß [28]

(36)

Pr
(
Xt = k||Xt−1 = l

)

=

min (k,l)∑
i=1

(
l

i

)
pi(1 − p)l−i Pr

(
�t = k − i

)
, k, l ≥ 0.
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Fig. 6  Estimated biases, MSEs, and MREs of the parameters of PQX distribution based on the MLE and MM estimation methods
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where �� , �2
�
 and DI� are the mean, variance, and disper-

sion index of innovation distribution, respectively. In real-
life problems, the empirical dispersion is greater than one 
(over-dispersion) in general. For instance, monthly counts 
of passengers, yearly number of destructive earthquakes, 
yearly number of goals of a and among others. To model 
these kind of datasets, the innovation distribution of 
INAR(1) process should be able to model over-dispersion. 
Here, we propose a new INAR(1) process with PQX innova-
tions to model such data sets. Let 

{
�t
}
ℕ

 follows a PQX dis-
tribution given in (3). The one-step transition probability 
of INARPQX(1) model is given by

Frow now on, this process is called as INARPQX(1) pro-
cess. Using the properties of INAR(1) process, the mean, 
variance, and dispersion index of INARPQX(1) process are 
given, respectively, by

According to the results given in Al-Osh and Alzaid [2], 
the conditional expectation and variance of INARPQX(1) 
process are given, respectively, by

(37)E
(
Xt
)
=

��

1 − p
,

(38)Var
(
Xt
)
=
p�� + �2

�

1 − p2
,

(39)DIX =
DI� + p

1 + p
,

(40)

Pr
(
Xt = k||Xt−1 = l

)
=

min (k,l)∑
i=1

(
l

i

)
pi(1 − p)l−i

2��(� + 1)2 + �3(k − i + 1)(k − i + 2)

2(� + 1)(� + 1)k−i+3

(41)�X =
(� + 3)

�(� + 1)(1 − p)
,

(42)

�2
X
=
�2(� + �p + 1) + 4�(� + �p + 2) + 3(� + �p + 1)

�2(� + 1)2
(
1 − p2

) ,

(43)DIX =1 +
�(� + 8) + 3

�(� + 1)(� + 3)(1 + p)
.

(44)E
(
Xt
||Xt−1

)
=pXt−1 +

2(� + 3)

�(2� + 2)

6.1  Estimation

The estimation procedure of INAR(1) process is discussed 
with three estimation methods. These are conditional max-
imum likelihood (CML), Yule–Walker (YL), and conditional 
least squares (CLS). The finite sample performance of these 
estimation methods is compared via extensive simulation 
study. The rest of this section is devoted to theoretical 
background of the used estimation methods.

6.1.1  Conditional maximum likelihood

Let X1, X2, ..., XT  be a random sample from the stationary 
process, INARPQX(1). The conditional log-likelihood func-
tion of INARPQX(1) is

The CML estimators of (p, �, �) can be obtained by direct 
maximization of log-likelihood function given in (46). The 
nlm function of R software is used to minimize the minus 
of log-likelihood function. The inverse of observed infor-
mation matrix is used to obtain corresponding standard 
errors of the CML estimation of the INARPQX(1) process. 
The observed information matrix is obtained by fdHess 
function of R software.

6.1.2  Yule–Walker

The YW estimators of INARPQX(1) process are obtained by 
equating the sample moments to the theoretical moments 
of the process. Since the autocorrelation function (ACF) of 
INAR(1) process at lag h is �x(h) = ph , the YW estimator of 
p is given by

(45)

Var
(
Xt
||Xt−1

)
=p(1 − p)Xt−1

+
�2 + (� + 1)(� + 3)� + 8� + 3

(� + 1)2�2

(46)

�(Θ) =

T�
t=2

ln
�
Pr

�
Xt = k��Xt−1 = l

��

=

T�
t=2

ln

⎡⎢⎢⎣

min (xt ,xt−1)�
i=1

�
xt−1
i

�
pi(1 − p)xt−1−i

2��(� + 1)2 + �3
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The YW estimators of � and � are obtained by equating the 
sample mean and sample dispersion to theoretical mean 
and theoretical dispersion of the process. The YW estima-
tor of � is given by

where X̄ =
∑T

t=1
Xt∕N . Substituting � with (48) in (43) and 

equating (43) to sample dispersion, D̂IX , we have

(47)p̂YW =

T∑
t=2

�
Xt − X̄

��
Xt−1 − X̄

�

T∑
t=1

�
Xt − X̄

�2
.

(48)�̂�YW =
�̂�YW + 3

X̄
(
1 + �̂�YW

)(
1 − p̂YW

) ,

(49)

�̂�YW =

⎛
⎜⎜⎜⎝

−3 �DIX + 4X̄ + p̂YW

�
−3 �DIX − 4X̄ + 3

�

−

�
X̄
�
p̂YW − 1

��
12 �DIX − 13X̄ + p̂YW

�
12 �DIX + 13X̄ − 12

�
− 12

�
+ 3

⎞
⎟⎟⎟⎠

�DIX − X̄ + p̂YW

�
�DIX + X̄ − 1

�
− 1

.

6.2  Model accuracy

The standardized Pearson residual is used to check the fit-
ted model accuracy. The standardized Pearson residuals 
are given by

where E
(
Xt
||xt−1

)
 and Var

(
Xt
||xt−1

)
 are given in (44) anf (45), 

respectively. When the model is adequate for fitted data 
set, the standardized Pearson residuals should be uncor-
related with zero mean and unit variance. If the variance of 
standardized Pearson residuals is higher/lower than one, it 

(50)et =
xt − E

(
Xt
||xt−1

)
√

Var
(
Xt
||xt−1

) , t = 2, 3, ..., T ,

Table 2  Simulation results of INARPQX(1) process for CML and YW estimation methods

Sample size p = 0.3 � = 0.5 � = 0.5

CML YW CML YW CML YW

100 Bias −0.0170 −0.0294 0.2888 0.0304 −0.0027 −0.0090
MSE 0.0033 0.0085 0.4373 0.4743 0.0067 0.0075
MRE 0.9661 0.9412 1.0578 1.0608 0.9945 0.9819

300 Bias −0.0070 −0.0118 0.0093 0.0636 0.0014 −0.0037
MSE 0.0012 0.0029 0.0711 0.2281 0.0016 0.0020
MRE 0.9861 0.9764 1.0187 1.1273 1.0028 0.9926

500 Bias −0.0020 −0.0067 0.0128 0.0259 0.0016 0.0008
MSE 0.0006 0.0015 0.0424 0.1243 0.0011 0.0014
MRE 0.9960 0.9866 1.0256 1.0518 1.0032 1.0017

p = 0.3 � = 0.5 � = 2

CML YW CML YW CML YW

100 Bias −0.0126 −0.0191 −0.0461 0.1417 0.1381 0.0375
MSE 0.0061 0.0097 0.1575 0.7691 0.2210 0.1819
MRE 0.9581 0.9364 0.9079 1.2834 1.0691 1.0188

300 Bias −0.0063 −0.0079 −0.0195 0.0977 0.0563 0.0229
MSE 0.0020 0.0034 0.1093 0.4875 0.0831 0.0926
MRE 0.9789 0.9735 0.9611 1.1955 1.0282 1.0115

500 Bias −0.0022 −0.0025 0.0005 0.0651 0.0357 0.0257
MSE 0.0014 0.0021 0.0794 0.2553 0.0475 0.0634
MRE 0.9928 0.9918 1.0009 1.1303 1.0179 1.0129
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shows that there is more or less dispersion considered by 
fitted model (see, Harvey and Fernandes, [11]).

6.3  Simulation

We compare the finite sample performance of CML and YW 
estimators of the parameters of INARPQX(1) process with a 
brief simulation study. We generate n = 100, 300 and 500 
sample of sizes from INAR(1) process with PQX innova-
tions. The simulation replication number is N = 1, 000 . The 
two parameter vectors are used: (p = 0.3, � = 0.5, � = 0.5) , 
(p = 0.3, � = 0.5, � = 2) . The simulation is carried out with 
R software. The results are interpreted based on the esti-
mated biases, MSEs and MREs. The required formulas of 
these measures are given in Sect. 4. We expect to see that 

the estimated biases and MSEs approach to zero for large 
values of n. Beside this, the estimated MREs should be 
near the one. The simulation results are given in Table 2. 
Based on the results given in this table, it is clear that the 
estimated biases and MSEs are very near the their desired 
value, zero. Moreover, all estimated MREs are near the one. 
However, the CML estimators approach to the nominal 
values of MSEs and MREs more faster than those of YW 
estimators. Therefore, we suggest practitioners to use CML 
estimation method to obtain the unknown parameters of 
INARPQX(1) process. Actually, the both estimation meth-
ods work well for large sample sizes. So, if the number of 
time series of counts are large enough, YW estimation 
method is also preferable.
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7  Empirical study

In this section, we illustrate the importance of the INAR-
PQX(1) by an application on the earthquake data of Turkey. 
Firstly, we describe the created earthquake catalog and its 
properties. In the second step, INAR(1) processes defined 
under different innovation distributions are used to model 
the monthly counts of the earthquake.

7.1  Study area and data

The earthquake data of the Turkey is obtained from the 
Disaster & Emergency Management Authority Presidential 
of Earthquake Department, Turkey. The data are available 
from https ://depre m.afad.gov.tr/?lang=en. The used data 
contain the earthquakes with magnitude 4 and above 
occurred in Turkey between the dates 6 January 2012 
and 14 October 2018. Firstly, the earthquake catalog of 
the Turkey is created by using the ETAS package of the 
R software. The detail on this package can be found in 
Jalilian [12]. The earthquake catalog is displayed in Fig. 7. 
The top-left figure shows the spatial distribution of the 
earthquakes under the study area. The three figures in the 
right part of Fig. 7 show the changes of the latitude, lon-
gitude, and magnitude of the earthquakes over the time. 
The two figures in the bottom-right part of Fig. 7 show 
the completeness and time stationary of the earthquake 
catalog. Here, Nm represents the number of earthquakes 
with magnitude ≥ m . If the plot of log(Nm) versus m shows 
linear trend, it represents the completeness of the earth-
quake catalog. Besides, the stationary of the earthquake 
catalog is evaluated based on the plot of Nt versus t. Here, 

Nt represents the number of earthquakes up to time t. If 
the plotted points of Nt versus t have a functional form 
such as Nt = �0t where 𝜆 > 0 , it is an evidence that the 
time series of the earthquake is stationary. Therefore, we 
conclude that the used earthquake catalog is stationary 
and complete.

7.2  Modeling of the number of earthquakes

The importance of INARPQX(1) model is demonstrated 
with an application to the monthly counts of earthquakes 
in Turkey. The proposed model, INARPQX(1), is compared 
with well-known INAR processes, INARP(1), INARPL(1), 
INARG(1), and INAR(1) with NB innovations shortly 
INARNB(1). The one-step translation probabilities of the 
used models are given, respectively, by

(51)
Pr

(
Xt = k||Xt−1 = l

)
=

min (k,l)∑
i=0

(
l

i

)
pi(1 − p)l−i

exp (−𝜆)𝜆k−i

(k − i)!
, 𝜆 > 0,

(52)

Pr
(
Xt = k||Xt−1 = l

)
=

min (k,l)∑
i=0

(
l

i

)
pi(1 − p)l−i

𝜃2(k − i + 𝜃 + 2)

(𝜃 + 1)k−i+3
, 𝜃 > 0,

Fig. 8  The plots of time series, 
autocorrelation, and partial 
autocorrelation functions for 
the monthly counts of earth-
quakes in Turkey
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To analyze the reported data set in the previous section, 
the earthquakes are grouped monthly to predict the 
monthly number of the earthquakes with magnitude 
≥ 4 . We use the −� , Akaike Information Criteria (AIC), and 
Bayesian Information Criteria (BIC) statistics to select the 
most appropriate model for the used data set. The lowest 

(53)
Pr

(
Xt = k||Xt−1 = l

)
=

min (k,l)∑
i=0

(
l

i

)
pi(1 − p)l−i𝜃

(1 − 𝜃)k−i , 0 < 𝜃 < 1,

(54)

Pr
(
Xt = k||Xt−1 = l

)
=

min (k,l)∑
i=0

(
l

i

)
pi(1 − p)l−i

(
n + k − i − 1

k − i

)
(1 − 𝜋)k−i𝜋n, n > 0, 0 < 𝜋 < 1.

values of these criteria show the best fitted model. The 
used data sets consist of 82 monthly counts of earth-
quakes with magnitude greater than 4 between the date 
of January 2012 and March 2018. Firstly, the possible over-
dispersion in the data set should be explored. For this aim, 
we use the hypothesis test for over-dispersion proposed 
by Schweer and Weiß [23]. The test statistic value of the 
over-dispersion hypothesis is 24.187, and its correspond-
ing p value is < 0.001 which indicates that the used data 
set displays over-dispersion. Therefore, the innovation dis-
tribution of the INAR(1) process should be able to capture 
the over-dispersion in the data set.

The some useful plots of the used data set displayed 
in Fig. 8. As seen from autocorrelation function (ACF) and 
partial ACF (PACF) plots, there is a clear cut of at first lag 
which ensures that the AR(1) process can be used to model 
this data set.

Table 3  The estimated 
parameters of the fitted 
INAR(1) models and 
corresponding goodness-of-fit 
statistics

Model Parameters Estimate SE −� AIC BIC �
X �2

X
DI

X

INARPQX(1) p 0.461 0.042 221.300 448.599 455.819 7.948 31.723 3.991
� 94.964 4.342
� 0.238 0.076

INARNB(1) p 0.427 0.058 223.887 453.774 460.994 7.966 26.711 3.353
� 0.229 0.053
n 1.358 0.460

INARG(1) p 0.460 0.041 224.299 452.599 457.412 7.948 42.084 5.295
� 0.189 0.022

INARPL(1) p 0.418 0.046 224.377 452.755 457.568 7.969 24.755 3.106
� 0.373 0.043

INARP(1) p 0.307 0.047 266.499 536.998 541.812 8.015 8.015 1
� 5.553 0.441

Empirical 8.183 33.978 4.152
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Fig. 9  The predicted values of the monthly counts of earthquakes in Turkey



Vol:.(1234567890)

Research Article SN Applied Sciences           (2021) 3:274  | https://doi.org/10.1007/s42452-020-04109-8

The estimated parameters of the fitted INAR(1) pro-
cesses and corresponding AIC, BIC values are listed in 
Table 3. As seen from the results reported in Table 3, the 
proposed INARPQX(1) process has the lowest values of 
AIC and BIC values which indicates the proposed model 
performs better than INARP(1), INARG(1), INARPL(1), and 
IARNB(1) models. Moreover, we analyze the departure 
from error distribution by means of residual analysis. For 
this aim, we use the Pearson residuals. The Pearson residu-
als can be calculated by using

where E
(
Xt
||Xt−1

)
 and Var

(
Xt
||Xt−1

)
 are given in (44) and 

(45), respectively. When the fitted model is correct, the 
mean and variance of the Pearson residuals should be near 
the zero and one, respectively. Also, there should be no 
autocorrelation problem for the estimated Pearson residu-
als. The mean and variance of the Pearson residuals are 
calculated 0.0009 and 0.9754, respectively, which are very 
near the desired values. Additionally, the ACF plot of the 
Pearson residuals is displayed in right side of Fig. 9 which 
indicates that there is no autocorrelation problem for the 
Pearson residuals. The fitted INARPQX(1) model is given by

where �
t
∼ PQX(94.964, 0.238) . The predicted values of 

the number of earthquakes can be obtained by using (56).

The predicted values of monthly counts of earthquakes 
are displayed in the left side of Fig. 9.

8  Conclusion and future work

This study introduces a new two-parameter discrete dis-
tribution, shortly PQX, for modeling the over-dispersed 
counts. The statistical properties of the PQX distribution 
are derived and estimation of the unknown parameters 
of the proposed distribution is discussed in detail. INAR-
PQX(1) processes are introduced based on the PQX distri-
bution to predict the monthly counts of the earthquakes 
with magnitude 4 and above in Turkey. Empirical results 
show that the INARPQX(1) processes perform better than 
INARP(1), INARP(1), INARG(1), and INARNB(1) processes 
for the data used. As a future work of this study, we will 
try to extend the INARPQX(1) to multivariate case for joint 

(55)rt =
Xt − E

(
Xt
||Xt−1

)

Var
(
Xt
||Xt−1

)1∕2

Xt = 0.461◦Xt−1 + �t .

(56)

X̂1 =
2(�̂� + 3)

2�̂�(�̂� + 1)(1 − p̂)
= 7.945

X̂t =p̂Xt−1 +
2(�̂� + 3)

2�̂�(�̂� + 1)
= 0.432Xt−1 + 4.287

modeling of the more than one region in predicting the 
monthly counts of earthquakes. We believe that the PQX 
distribution will increase its popularity find a wider appli-
cation area in different sciences such medical, finance, and 
actuarial.
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