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Abstract: In this paper, using the notions of 4*2-quantum integral and 4*2-quantum derivative, we
present some new identities that enable us to obtain new quantum Simpson’s and quantum Newton's
type inequalities for quantum differentiable convex functions. This paper, in particular, generalizes
and expands previous findings in the field of quantum and classical integral inequalities obtained by
various authors.
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1. Introduction

Thomas Simpson developed crucial techniques for numerical integration and esti-
mation of definite integrals, which became known as Simpson’s law during his lifetime
(1710-1761). However, ]. Kepler used a similar approximation nearly a century before, so
it is also known as Kepler’s law. Since Simpson’s rule includes the three-point Newton-
Cotes quadrature rule, estimations based entirely on a three-step quadratic kernel are often
referred to as Newton-type results.

(1) Simpson’s quadrature formula (Simpson’s 1/3 rule):

K1 + Ko

> >+.7:(K2)].

(2) Simpson’s second formula or Newton—-Cotes quadrature formula (Simpson’s 3/8
rule):

/ 2]:(x)clx ~2 N g il |:]:(K1) +4F<
K1

K —
/ P Flr)dy~ 2N ! {}'(m) +3}"(2K13+K2> +3}"(K1 J;ZKZ) +f(x2)}
K1

Within the literature, there are a plethora of estimations correlated with certain quadra-
ture laws, one of which is the following estimation known as Simpson’s inequality:
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Theorem 1. Let a mapping F : [K1, k2] — R be four times continuously differentiable on (x1,1x2),
and let H]:(‘L)H = sup .7:(4)(x)‘ < oco. Then, one has the inequality

x€(kq,K7)

FW HDO(Kz — )™

. < L
Ko — K1 Jig 2880

A (o) L[

Many authors have concentrated on the Simpson’s type inequality in different cate-
gories of mappings in recent years. Since convexity theory is an easy and efficient way
to solve a large number of problems from various branches of pure and applied math-
ematics; some mathematicians have worked on the results of Simpson’s and Newton's
type in obtaining a convex map. Dragomir et al. [1], for example, introduced the recent
Simpson’s inequalities and their applications in numerical integration quadrature formulas.
In addition, Alomari et al. in [2] determined several inequalities of Simpson’s type for
s-convex functions. The variance of Simpson’s type inequality dependent on convexity
was then noted by Sarikaya et al. in [3]. The authors presented Newton'’s inequality for
harmonic convex and p-harmonic convex mappings in [4,5]. Iftikhar et al., in [6], described
a new Newton-type inequality for functions with the local fractional derivative, which is
generalized and convex.

On the other hand, several works in the field of g-analysis are being carried out,
beginning with Euler, in order to achieve mastery in the mathematics that drives quantum
computing. The link between physics and mathematics is referred to as g-calculus. It has
a wide range of applications in mathematics, including number theory, combinatorics,
orthogonal polynomials, basic hypergeometric functions, and other disciplines, as well as
mechanics, relativity theory, and quantum theory [7,8]. Quantum calculus is also useful in
quantum information theory, which is an interdisciplinary field that includes computer
science, information theory, philosophy, and cryptography, among other things [9,10].
This important branch of mathematics is thought to have been invented by Euler. The
g-parameter was used by Newton in his work on infinite series. Jackson [11] was the
first to develop the g-calculus, which knew no limit calculus, in a systematic way. Al-
Salam [12] introduced a g-analogue of the g-fractional integral and a g-Riemann-Liouville
fractional in 1966. Since then, the amount of research in this area has steadily increased.
Specifically, Tariboon and Ntouyas [13] demonstrated the x, D;-difference operator and
gx, -integral in 2013. The notions of the *2D, difference operator and g*2-integral were given
by Bermudo et al. [14] in 2020. In [15], Sadjang generalized to quantum calculus and in-
troduced the notions of post-quantum calculus or (p, q)-calculus. Soontharanon et al. [16]
introduced the concepts of fractional (p, g)-calculus later on. In [17], Tung and Gov gave
the post-quantum variant of the , D;-difference operator and gy, -integral. Recently, in
2021, Chu et al. introduced the notions of the ®2D,, ; derivative and (p, q)"?-integral in [18].

For various types of functions, quantum and post-quantum integrals have been used to
investigate many integral inequalities. The authors used , Dq,"2 Dg-derivatives and gy, , q*2-
integrals to prove HH integral inequalities and their left-right estimates for convex and co-
ordinated convex functions in [19-28]. Noor et al. presented a generalized version of quan-
tum integral inequalities in [29]. Nwaeze et al. proved certain parameterized quantum inte-
gral inequalities for generalized quasi-convex functions in [30]. In [31], Khan et al. proved
quantum HH inequality using the green function. For convex and coordinated convex
functions, Budak et al. [32], Ali et al. [33,34], and Vivas-Cortez et al. [35] developed new
quantum Simpson’s and quantum Newton’s type inequalities. For quantum Ostrowski’s
inequalities for convex and co-ordinated convex functions one can consult [36-38]. Using
the x, Dy 4-difference operator and (p, 9), -integral, Kunt et al. [39] generalized the results
of [21] and proved HH type inequalities and their left estimates. Recently, Latif et al. [40]
discovered the right estimates of HH type inequalities, which had previously been proven
by Kunt et al. [39]. Chu et al. [18] used the concepts of the *2D,, ,-difference operator
and (p, q)"-integral to prove Ostrowski’s inequalities. Recently, Vivas-Cortez et al. [41]
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generalized the results of [14] and proved HH type inequalities and their left estimates
using the 2D, ;-difference operator and (p, q)"?-integral.

Inspired by the ongoing studies, we use the g-integral to develop some new quantum
Simpson’s and quantum Newton’s formulas type inequalities for g-differentiable convex
functions, and these inequalities can be helpful for finding the bounds of Simpson’s and
Newton’s formulas for numerical integration. We also show that the newly developed
inequalities are extensions of some previously known inequalities.

The following is the structure of this paper: Section 2 provides a brief overview of the
fundamentals of g-calculus as well as other related studies in this field. In Section 3, we
establish two crucial identities that play an essential role in developing the main results of
this paper. The Simpson’s and Newton's type inequalities for g-differentiable functions via
g-integrals are described in Section 4. The relationship between the findings reported here
and similar findings in the literature are also taken into account. Section 5 concludes with
some recommendations for future research.

2. Preliminaries of g-Calculus and Some Inequalities

In this section, we first present the definitions and some properties of quantum
derivatives and quantum integrals. We also mention some well-known inequalities for
quantum integrals. The following notation will be used frequently in this work (see [8]):

q' -1
q—1"

], =

Jackson defined the g-Jackson integral from 0 to x; for 0 < g4 < 1 as follows:

/‘.F(x) dgx = (1—-qg)x2 i qk}"(quk) 1
0 k=0

provided the sum converges absolutely [11].
In [11], Jackson also defined the g-Jackson integral on any closed interval [k, k]

7.7-"(x) dgx = 7?(3{) dgx 7.7—"(9() dgx . (2)
K1 0 0

Tariboon and Ntouyas defined the following gy, -derivative and gy, -integral:
Definition 1 ([13]). The gy, -derivative of the mapping F : [k1,x2] — R is defined as:

F(x) = Flgx + (1 —q)x1)
(1=g)(x —x1)

If x = k1, we write Dy f (k1) = limy s, «, Dgf(x) if it exists and it is finite.

xDgF(x) = ;X F K. (©)

Definition 2 ([13]). The qy,-definite integral of the mapping F : [k1,k2] — R on [K1,k] is
defined as:

/Z}'(x) xdgx = (1—q)(x2 —x1) ]i)qk}"(quz + (1 - qk)Kl).

K1

Alp et al. proved quantum Hermite-Hadamard inequalities for gy, -integrals by
utilizing the convex functions, as follows:
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Theorem 2 ([21]). For a convex mapping F : [k1, k2] — R that is differentiable on (i1, k3], the
following inequality holds:

f(q’cg]r KZ) < K;Kl [ F() wdgx < "F(’“H T, )
q

K1 q

where q € (0,1).

On the other hand, Bermudo et al. defined a new quantum derivative and a quantum
integral, which are called the g*2-derivative and g*2-integral:

Definition 3 ([14]). The q*2-derivative of mapping F : (K1, k2] — R is defined as:

_Flax i 0 -gr) - F@
T-lo-v 7™

2D, F(x)

If x = xp, we write 2Dy f (x2) = limy s, *2Dgf(x) if it exists and it is finite.

Definition 4 ([14]). The q*2-definite integral of mapping F : [x1,x2] — R on [kq, k2] is defined

as:
K2

/]—"(x) 2dox = (1—q)(x2 —x1) ]iqk}"(qul + (1 - qk)K2).

K1

Bermudo et al. also proved the corresponding quantum Hermite-Hadamard inequali-
ties for the g*2-integral:

Theorem 3 ([14]). For a convex mapping F : [k1, k2] — R that is differentiable on [i1, k3], the
following inequality holds:

F<Kl ;}tm) < [ 70 e < TR o
q

K1 q

where g € (0,1).
Moreover, we will need to use the subsequent Lemma in our key results:

Lemma 1 ([8]). We have the equality

K2 )a-i-l

a _ (k2 — K1
/(x—;q) K dgX = W

fora € R\{-1}.

3. Identities

We deal with identities, which is necessary to attain our main estimations in this
section. We first establish an identity based on a two steps kernel in the following Lemma.

Lemma 2. Let F : [k, k2] — R be a g*2-differentiable function on (x1,%) and 0 < q < 1. If
2Dy F is continuous and integrable on [kq, k2], then one has the identity

1 7 . 1 K] + gx
(Kz_Kl)KZ}—(S) dgs _[6]‘1[]:(K1)+‘12[4]q}-< 1[2] 2

) +‘17:(K2)] (6)

q
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1
q(xy — 17 /A 2D, F(sky + (1 —s)xp) dys,
0

where:
s— A, s€ (0,4
B [6l,” 7121,
A(s) = 5l )
,1

S—W, ES m

Proof. Using Formula (2), from the definition of the function A(s), we find that

1
/A(s) 2Dy F(sx1 + (1 —s)xp) dgs (7)
0
5, -1 7
— B / "ZDq]-'(sxl + (1 —5)Kp) dgs
7 0
1

+ O/ <s - iﬁ) 2D F(sxy + (1 —s)kp)  dgs.

By Definition 3, one also has

Fgsxq + (1 —gs)xp) — F(sx1 + (1 —s)Kp)
(1—q) (k2 —x1)s '

Now, if we substitute the above Equation into (7), we obtain:

2D F(sky + (1 —s)kp) =

1
/ A(s) 2D F(sky + (1—5)Kp)  dys @®)
0

1
ap

1/]-'qs;<1+ (1 —gs)x2) — F(sk1 + (1 —s)Kp) gs
B / (1—q)(x2 —x1)s !

O\&

F(gsx1 + (1 —gs)xp) — F(sxk1 + (1 —s)kp) Qs
(1—q)(x2 —x1) i

+
o—_

5

—q)(K2 —K1)s

=

1
/]—"qs;q—i— (1—gs)xa) — F(sk1 + (1 —s)xp) i
0

Calculating the first integral in the right-hand side of (8) by taking into account the
case when x1 = 0 of Definition 2, it is found that

1
[7
(gsx1 + (1 —gs)xp) — F(sky + (1 —s)x2)

d 9

0/ (1—q)(x2 —x1)s 9 ©)

}_( k+1K +<1 qu)K)
1 1 | 2], "1 o, )"
= = L4 —

q

(2 —x1) [2], i
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=

_ 1 o) — K1 + gx2
<Kz—m>{” ? f( )}

If we similarly observe the other integrals in the right-hand side of (8), from Definition 4,
then we obtain

/l F(gsx1 + (1 —gs)xp) — F(sx1 + (1 —s)Kp)

(1) (k2 — 1) Ao {10)

0

1 1 7 . 1
= (Kz—Kl){q(Kz_Kl)K{]:(S) dqs —qf(Kl)}

and

1
@(gsx1 + (1 —gs)xa) — @(sk1 + (1 — s)K2) p

(1—q)(k2 —x1)s 7 ah

0
1
= ——{F(0) - F(1)}
ey F) — F )
Substituting Expressions (9)—(11) into (8), and later multiplying both sides of the
resulting identity by g(x2 — x1), Equality (6) can be captured. O

We now observe how an equality comes out when we use the kernel mapping with
three sections.

Lemma 3. Let F : [k, k2] — R be a g*2-differentiable function on (x1,%2) and 0 < q < 1. If
2D, F is continuous and integrable on [kq, k2], then one has the identity

17
—— [ F(s) *2d,s
(Kz—K1)K[ (®) i

3[6 K 2] 2[6 2] x 2k
¥ WH (i) # ()
q

q q q q

1
q(xy — 17 /A 2Dy F(sx1 + (1 —s)xp) dgs,
0

where:
1 1
S — @, s€ |0 W
A(s) =< s— ﬁ, s € ﬁ, 3>
(7] 2]
- WZ/ S TZ/ :|

Proof. Using Formula (2), from the definition of the function A(s), we find that

1
/A(s) 2Dy F(sky + (1 —s)kp) dys
0
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1
B

=

= i i / 2D, F(sk1 + (1 —s)k2) dys

12
Bl

0

1
+ O/ (s - Q’) 2Dy F(sxq + (1 —s)xp)  dgs.

q

/ 2D, F(sk1 + (1 —s)kp) dys

If the same steps in the proof of Lemma 2 are applied for the rest of this proof, the

desired result can be obtained. [

4. Main Results

For brevity, we start this section with the following notations, which will be used in

the new results:

) _zﬂ%+@xmgwm
21313],[6
ql3l,l6], — 4> 1 <q+q2 7> +2q
B = 2 4+ _
1@ 2,86 22\ B, 0,
2251 16, (1+1213) — [3],150, (1+ [2]
Ax(g) = ! 5
2], 131,61 213(3],l6]
gl5206), 3], - B2 g
B = _
) 2,6,68 2,0,
1[[5}q(2‘7+‘7) q+ ¢
PREGT Ep
&@__Mm%wy?m—m)
BHEHED
981,181, — 4> BBl> -2
B(q) ) qt1q + q q
’ 82028, B,
17[3]17[2}17
+ ,

A =
7 EHEE
B = -

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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and
_aRB,BEl, - 2 e,
TN TR N R FIN N v
LB(BE-2) @+,
5l 3L2[8],

4.1. Simpson’s Inequalities for q*2-Quantum Integral

In this subsection, we prove some Simpson’s type inequalities by using Lemma 2.

Let us start to find some new quantum estimates by using Lemma 2. We first examine
a new result for functions whose §*2-derivatives in modulus are convex in the following
theorem.

Theorem 4. Let F : [k1,kp] — R be a g*2-differentiable function on (x1,x3) such that 2Dy F
is continuous and integrable on (K1, x2]. If |*2Dy F| is convex on [ky, k)], then we have following
inequality for q*2-integrals:

(22)

(K;Kl) [ Fis) s - [61 F(K1)+q2[4]q]-'<m [;]ZK2> +qf(K2)]

< gy —x1){| 2Dy F (x1)|[A1(q) + A2(q)] + | 2Dy F (x2)|[B1(9) + B2(9)]},

where 0 < q < 1,and A1(q), A2(q), B1(q), B2(q) are given as in (12)—(15), respectively.

Proof. On taking the modulus in Lemma 2, because of the properties of modulus, we find
that

(Kzi K1) / F(s) "2dgs — [61} lf (k1) +q°[4],F <K1 [;]%) +qF (Kz)] (23)
P q q
< q(xy —x7) /OW 5 — [61] | 2Dy F(sx1 + (1 —s)Ko) |dqs
q
1 5
+q(x2 — K1) /L s — Hq 2Dy F (sc1 + (1 — s)kz) | dys.
2 q

, it

To calculate integrals in the right-hand side of (23), using the convexity of 2D, F
follows that

B
T1s
/0 [6]q

1
< ’ Kqu]:(Kl)| /O[Z]q s

1
| 2Dy F (sic1 + (1 —s)k2) |dgs

B
s — ‘ dgs + 2Dy F (12) | /0[2]'7 (1 —s)|s— 1

1
6, i, [

Now, if we apply the concept of Lemma 1 for x; = 0 to the above quantum integrals,

we attain
1 1
"Fly 1 2l 1
dgs = /0 q s<[6—s>dqs+/lq s(s—[6]>dqs
ol q

ly

w1 By 1
= 2/0 s<m—s)dqs+/0 s<s—m]>dqs

q

1

By | L
ISR
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and

B 2q[3]q[6]q—q2 1<q+q2_q2+2q>'

8] [6]

q q

Thus, we obtain

/u L
0 (6],

21~12 2 o
¢ o ()

o q(3],[6], — 7* 1<q+q2_q2+2q>>
+ DqF(KZ)’G 2,860 I\ B,  ©, ))

| 2Dy F (sc1 + (1 —s)k2) |dgs (24)

Similarly, using Equation (2) in addition to the convexity of |*2D,F | and Lemma 1,

we have
/1 S—@’KZD]:(SK + (1 —=s)Kp)| dys (25)
ﬁ [6}11 q 1 2 q
B IS FL S
Bl 21,131,167 2]713],16],
o q[51216],8], — 2?5, 2 9151,
Dy )] (2 2], (3], 612 T @,E, e,
1[[5]q(2q+q2) g+ )
2); [6], Bl, |/)

By putting (24) and (25) into (23), we attain Inequality (22), which finishes the
proof. O

Corollary 1. Under the assumptions of Theorem 4 with g — 17, we have the following inequality
of Simpson’s type for the function whose modulus values of first derivative are convex (see [2]):

‘2[]-"(K1)+4}‘<K1+K2) +}"(K2)] - KZiKl /KKZJ:(S)dS
5(kp — K1) 1

S [|]:/(K1)}+|]:/(K2)H.

72
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Now, we observe how the inequalities come out when we use the mappings whose
powers of g*2-derivatives in absolute value are convex.

Theorem 5. Let F : [Kq, k2] — R be a q*2-differentiable function on (k1,2 ) such that 2Dy F is
continuous and integrable on [k1,x5]. If 2Dy F|P" is convex on [k1, %3] for some py > 1, then we
have following inequality for q*2-integrals:

K1 + qK2

[f(Kl)+q2[4]qf< [2]

K2
1 K
7(1(27;{1) /.7-"(5) 2dgs —

1
1 B ; >+qf(xz)H (26)

1

q2r1 [4}71 n
q q

2 2
X( 13 KZqu<K1)‘P1+q +32q,Kquf(K2)‘P1>
2] 2]

1

. ( 2Bl — [41;1) "

21 6]y

1
2 3 2 Iz}
+2q « 40—« !
o R )
22 212

1,1 _
whereO<q<1andE+ﬁ—1.

Proof. Applying the well-known Hoélder’s inequality for quantum integrals to the integrals
in the right-hand side of (23), it is found that

lf(m) + U, F (’“ ;{7"2) + qf(m)] |

S P 1
(12 — K1)K[}-(S) A - [6], g

q
1
S Q(KZ—Kl) (/O[Z]q s —

1

[el,

r %
dqs>

1
N [
" (/[Zlq | 2Dy F(s1c1 4 (1 = 5)K2) |pldq5> ]
0

o (/1

2

1

X (/1 2Dy F (sx1 + (1 —s)ip) | dqs) :

2l

By using the convexity of |2D,F|"!, we obtain

[f(m) + P4, F (’“;ﬂ’”) +q]:(K2)] (27)

q q

(U 1
(k2 — K1)K{}-(S) A5 = [6],
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1
1 1 r
<| %2 D F () |7 /qu sdgs + | 2D, F(xz)|"" /qu (1 —s)dqs> ]

+ilr— 1) ( /

2l

o i

1 1 &
(yKZqu(Kl)Vl/l sdqs+|’<2qu(;<2)yf“/1 (1—s)dqs) .

To calculate the integrals in the right-hand side of (27), if we first use Rule (1), then we

obtain
1 n ) K n
Pl L 4, — 1-4 |12 1
= q (28)
J S o e i DU [t o
"
1—qg & 1 1
< 1 Kol _—
< @ BT
(1 1)\
2], [e],) [2,
Ay
- ri+1lr1r1°
2] [6]y!
Similarly, we have
1 5], |™ 2t 5] — g 4]
[ o g G
X m [ ]El [2]q1 [6]171

For the other integrals in the right-hand side of (27), using the case when x; = 0 of
Lemma 1, we find that

1
Pl sd;s = 1 30
A o (30)
1 2
W1 —s)ds = T2 31
[Tra=s4, o Q)
Similarly, we get
1 2
Csdgs = T2 (32)
on (2,)
1 3 2 _
/ (1-s)dys = T4 (33)

e (12,)’

By substituting (28)—(33) into (27), we obtain the desired Inequality (26), which com-
pletes the proof. [
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Theorem 6. Let F : [kq, k2] — R be a g*2-differentiable function on (x1,x2) such that 2Dy F is
continuous and integrable on [x1,13]. If |2 Dy F P! is convex on [y, 3] for some py > 1, then we
have following inequality for q*2-integrals:

lfwo+%mhf<“;ﬂ“>+qfwgu

(U 1
(k2 — K1)K[}-(S) A5 = [6], q

q

. 2q B\ 7
= ”Km¢+wuﬁ

al 1

q q
< (A1) =Dy F )" + Ba(g)| 2Dy (k) ) en
52 1_m“mm%my”
%%w%+% GHNGNA

1
% (A2(@)] 2Dy F (1) |"* + Ba(q)| =Dy F(x2) ") ",

where 0 < q < 1,and A1(q), A2(q), B1(q), B2(q) are given as in (12)—(15), respectively.

Proof. Utilizing from the results in the proof of Theorem 4 after applying the well-known

Power mean inequality to the integrals in the right-hand side of (23), owing to the convexity
of "‘2 Dq]-"|P1, we find that

(Kzi’(l)/f(s) s — [élf(xl)+q2[4]qf<’“ [er]m) +qf(K2)H
K1 q q
1 1-5-
< q(rp—1x7) (/Oma s — [61}‘7 dqs)
X <]K2Dq}'(1<1)|pl /om s|s — [61]{1 dgs
+’K2qu(K2)|P1 /Om (1—s)|s— [61},1 qu> ”1]
+q (ko — K1) (/1 s—@ d 5)1”11
= ]
1 [5]
X (‘KZDq]:(Kl)‘pl /pl]q s|s — ﬁ dgs
. L s, \"
+|"2DyF (2) |V /pl]q(l_s) s_ﬁ dqs)

1
[6]

1 -5
_ B 2 J
= q(xy —x1) (/0 s qs>

% (A1(q)] 2Dy F (k2| + Ba(q)] 2Dy F (12)| ™) pl}

q
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1—L
1 5], "
+q (KZ_Kl) /1 S—qus
2l q
1
x(As(@)] =Dy F (x1)|"* + Ba(q)| 2Dy F () ') " } : (35)

We also observe that

/[zl]”s— dgs 22/[61% 1_Sds+/[21]q S_i “e o
A q 0 [6][1 q 0 [6]11 !

L
[6],

2],l6]2 (6],
and by using similar operations, we have
B, BE 1 B, BLRE-E,
N R N A ol R e 7

By substituting (36) and (37) into (35), we attain the required Inequality (34). Hence,
the proof is completed. [

Corollary 2. Under the given conditions in Theorem 6 with g — 17, we have following inequality
given by Alomari et al. (see [2]):

e (U2 )| - L [P Feas

KZ_K] K1

1 5\

< — | = (12 — x1)
(1296)71 \7?

1 1
X [61]F (1) " + 29| F (1) || ™ + [29]F (e0) [P + 61| F(12) "] .

4.2. Newton’s Inequalities for g*2-Quantum Integral

In this subsection, we establish some new Newton’s type inequalities by using
Lemma 3.

In the next theorems, we will present new quantum estimates by using the convexity
of g*2-derivatives in modulus and Lemma 3.

Theorem 7. Let F : [Kq, k2] — R be a q*2-differentiable function on (k1,2 ) such that 2Dy F is
continuous and integrable on [i1, k7). If |2 Dy FF | is convex on [icy, k3], then we have the following
inequality for q*2-integrals:

3 K K
[ﬂw 7 [%F( | +al2], 2> o

(S P 1
(52— ) / F(s) By =gy 3,

q
2[6 2| x 2
q[Z[]q]qu h a;q 2) +qF ()

< q(r2 — x1){| Dy F (x1)|[A3(q) + Aa(q) + As(q)]
+| 2Dy F (x2)|[Bs(q) + Ba(q) + Bs(q)]},

where 0 < q < 1, and A3(q), As(q), As(q), B3(q), Ba(q),Bs5(q) are given as in (16)—(21),
respectively.

+
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Proof. On taking the modulus in Lemma 3, we gain

Ko are ) ,
1)/]—'(5) 2dys — [8}]{]:(7(1)"" q[z[]}q]__< 1+4] ]qK;_) )
K1 q

(k2 — 11 .

2 2
4+ [6]qf<[2]q"l T

2 3, )*”f“”

q

1
Bl 1
< g(ky —x1) /0[3]‘7 s — oh | 2Dy F (scr + (1 — s)ky)|dys
q
2,
B, 1
+q(x2 —x1) ES]” s — o | 2Dy F (s1 + (1 —s)kp)|dgs
B, q
1 7]
+q(r2 —%1) [, |5 — ﬁ | 2Dy F(sxq + (1 — s)KZ)qus.
Bl q

q

From now on, it is sufficient to use the same methods as in the proof of Theorem 4 in
order to reach desired result (38). O

Remark 1. Under the given conditions of Theorem 7 with the limit g — 1=, we have following

inequality:
1 ¥2 _ 1 2K1 + 12 K1 + 2K3
- /K1 F(s)ds — [F(K1)+3}"< - > +3]-'( - ) +f(;<2)H
25
< %(Kz — ) [|F' (k1) | + | F' (x2)|],

which is given by Noor et al. in [5].

Theorem 8. Let F : [Kq, k2] — R be a q*2-differentiable function on (x1,x3) such that 2Dy F is
continuous and integrable on [i1, 1], If |2 Dy F |p1 is convex on [y, ky| for some py > 1, then we
have the following inequality for q*2-integrals:

U R 76y . (*1+q2)x
(KZ_Kl)K[]:(S) dgs [S]q [f(K1)+ [2]q .7:< [3]q ) (40)
26 2 2
+q[2[]jq]-"<[ ]qKH;‘? K2> +¢]f(1<z)] ’
4" [5]7 g
< gk — K1) (W)

1 8,12}, - 1 z
2D F(ir)|P1 9+-49 2D F(i,) P
X(Bﬁmﬂ FOT gy, 1P )

. qu [z]q _ qul n
BT

X g’ +2 2D, F (k1) |7
<Bﬁpb' T T,
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C o
8222 o Bl 2R N
x <[3]$[2]q| Dy F(x1)|™ + [3}5[2]‘1 | 2Dy F (x3)| ) ,

1 1 _
whereO<q<landE+E—1.

Proof. If we apply Holder’s inequality to the expressions in the right-hand side of (39),

then we obtain
. P°l6l, _(x1+4q[2]x
[“ U, f( 3, )

K2

1 ogs _ L
(Kzf;q)/ﬂs) 995~ 1

K1 q

2 K1 + g7
L [%}_([z]q 144 z) +‘1}-(K2)H

2, g
o N P
< q(Kz—K1)</OHq SR dqs> (/0[]‘7’KZDq]:(SKl+(1—S)K2)|p1dqs>
q
1 1
% " r % P1
[S]q 1 d [S]q KZD F 1 pld
+q(e —x) | [ [7]s - oL 45 72Dy F(sk1 4 (1 - s)ka) | dgs
Bl 1 By
1 [7] 1 % 1 ﬁ
+q(rp — K1) ﬁz]q s — ﬁ dys /[zh, | 2Dy F(sk1 + (1 — s)Kz)‘Pldqs .
It ] Jat

For the rest of this proof, if the same procedure that was used in the proof of Theorem 5
is applied to the above inequality, then Result (40) can be captured. [J

Theorem 9. Let F : [kq, k2] — R be a q*2-differentiable function on (x1,x2) such that 2Dy F is

continuous and integrable on [k1,x5]. If 2Dy F|P! is convex on [k1, %3] for some py > 1, then we
have the following inequality for q*2-integrals:

f 36 K 2| x
O{zliq)/]:(s) “2dgs —Bl]ql}'(m)qu[z[]}q}'( 1 +402], 2) 1)

g 131,
2 K 21{
1 [6]qf<[2]q 144 z) ”H’Q)H
3],

_ -4
< q(Kz—Kl)[<[8]§q + 8ly [3},4[2]57)

22, B2,

< (Aa()| 2Dy F ()" + Ba(g)| Dy F ()|

1

8 (A4(‘7)‘ 2Dy F (x1)|" + Ba(q)] KZqu(K2)|p]>E
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Ly B (8, 12,) o
822l 2,50 81, B,

1
x (As(q)] 2Dy F (k2)|" + Bs(q)] 2Dy F(x2)| "),

where 0 < q < 1, and As(q), A4(q), As(q), B3(q), Ba(q),Bs(q) are given as in (16)—(21),
respectively.

Proof. If the strategy that was used in the proof of Theorem 6 is applied by taking into
account Lemma 3, the desired Inequality (41) can be attained. O

Remark 2. Under the conditions of Theorem 9 with the limit g — 1=, we obtain the following
inequality:

! /KZ F(s)ds — é {f(m) +3f(2K1+K2> +3f(w> HWZ)H

Ky — K1 Jiy 3 3
1-1 1
o —ry [(17\T (251, o 973\
< fuldl el 7
= 36 {(16) (1152|F(K1)’ 11521 ()]
1
1 1 r
+(SI1F @)+ 5 F ) )"
2 2
17\'"* / 973 251 i
d ! / p1 / p1 |1
+<16) (1152|F(K1)’ 115217 ()] ) }
which can be found in [5].

5. Conclusions

We conclude our work by stating that, using the concepts of quantum derivative
and quantum integral, we proved some new Simpson’s and Newton’s type quantum
integral inequalities for quantum differentiable convex functions, and these inequalities
can be helpful for finding the bounds of Simpson’s and Newton's formulas for numerical
integration. It is important to note that by considering the limit 4 — 17 in our key results,
our results were transformed into some new and well-known results. We believe it is
an interesting and creative problem for upcoming researchers who will be able to obtain
similar inequalities for various types of convexity and co-ordinated convexity in their
future work.
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