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Abstract

A new distribution defined on (0,1) interval is introduced. Its probability density and cumula-

tive distribution functions have simple forms. Thanks to its simple forms, the moments,

incomplete moments and quantile function of the proposed distribution are derived and

obtained in explicit forms. Four parameter estimation methods are used to estimate the

unknown parameter of the distribution. Besides, simulation study is implemented to com-

pare the efficiencies of these parameter estimation methods. More importantly, owing to the

proposed distribution, we provide an alternative regression model for the bounded response

variable. The proposed regression model is compared with the beta and unit-Lindley regres-

sion models based on two real data sets.

1 Introduction

In the last decade, modeling of the bounded data sets is increased its popularity. These kinds of

data sets appear in many fields such as finance, actuarial and medical sciences. The statistics

literature has very limited distributions defined on (0,1). The best known distributions defined

on (0,1) are beta, Topp-Leone by Topp and Leone [1] and Kumaraswamy by Kumaraswamy

[2] distributions. To increase the modeling accuracy of the data sets on (0,1), several distribu-

tions have been proposed by researchers. For instance, the unit-Lindley by Mazucheli et al. [3],

unit-inverse Gaussian by Ghitany et al. [4], unit-Birnbaum-Saunders by Mazucheli et al. [5],

exponentiated Topp-Leone by Pourdarvish et al. [6], transmuted Kumaraswamy by Khan et al.

[7], log-xgamma by Altun and Hamedani [8], log-weighted exponential by Altun [9] and unit-

improved second-degree Lindley by Altun and Cordeiro [10].

Although the beta distribution is widely used to model data sets on bounded interval, it has

deficiency to model extremely left-skewed and leptokurtic data sets. The moments of the

Topp-Leone distribution are not in explicit forms which is important to make appropriate

parametrization on the density function for regression modeling. Additionally, even if the

moments of the Kumaraswamy distribution are in explicit forms, they contains gamma func-

tion which destroys the re-parametrization of the density function. We aim to introduce a new
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distribution on (0,1) interval to remove the deficiencies of the existing distributions for model-

ing the extremely skewed data sets. The Bilal distribution introduced by Abd-Elrahman [11] is

used to generate a new distribution employing the appropriate transformation. The resulting

distribution is called as log-Bilal distribution since we use Y = exp(−X) transformation. After

obtaining the log-Bilal distribution, we obtain its statistical properties such as moments,

incomplete moments and quantile function. The important question is that do we need this

distribution? To answer this question, we summarize the importance of the log-Bilal distribu-

tion: (i) the log-Bilal distribution has simple and closed-form expressions for its statistical

functions (ii) the properties of the log-Bilal distribution are derived in explicit forms without

any special mathematical functions, (iii) the proposed distribution provides more flexibility

than existing distributions for the shapes of hazard rate function, (iv) thanks to its simple

mathematical functions, we introduce a new regression model based on the log-Bilal density to

model the extremely skewed dependent variables with associated covariates.

We summarize the concepts of the remaining sections: the moments, incomplete moments,

quantile function, and exponential family property of the log-Bilal distribution are obtained in

the next section. Section 3 is devoted to the parameter estimation methods. The efficiencies of

these methods are compared in Section 4. The log-Bilal regression model is introduced in Sec-

tion 5. Section 6 contains the results of the data analysis. The paper is ended with concluding

remarks in Section 7.

2 The log-Bilal distribution

Let random variable (rv) X represents the Bilal distribution which has the following probability

density function (pdf)

f xð Þ ¼
6

y
exp �

2x
y

� �

1 � exp �
x
y

� �� �
; x > 0; ð1Þ

where θ> 0 is the scale parameter. The cumulative distribution function (cdf) of X is

F xð Þ ¼ 1 � exp �
2x
y

� �

3 � 2 exp �
x
y

� �� �
: ð2Þ

Following the idea of Altun and Hamedani [8] and Altun [9] and using the Y = exp(−X)

transformation on the Bilal distribution, the pdf of the log-Bilal distribution is

f y; yð Þ ¼
6

y
y2=y� 1 1 � y1=y

� �
; 0 < y < 1; ð3Þ

where θ> 0. Here, the parameter θ behaves like a shape parameter by contrast with the Bilal

distribution. From now on, the rv Y having density (3) is stated as Y* log- Bilal(θ). The cdf of

Y (for 0� y� 1) is

Fðy; yÞ ¼ 3y2=y � 2y3=y: ð4Þ

Some possible pdf shapes of the log-Bilal distribution are displayed in Fig 1. From these fig-

ures, it is clear that the proposed distribution can be used to model the different types of the

data sets defined on the unit-interval such as right and left skewed as well as nearly symmetric

data sets.
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Fig 1. The pdf shapes of the log-Bilal distribution.

https://doi.org/10.1371/journal.pone.0245627.g001
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The survival function (sf) and hazard rate function (hrf) of Y are, respectively,

SðyÞ ¼ 1 � 3y2=y þ 2y3=y; ð5Þ

h yð Þ ¼
6y2=y� 1ð1 � y1=yÞ

yð1 � 3y2=y þ 2y3=yÞ
: ð6Þ

Fig 2 displays hrf shapes of the log-Bilal distribution. As seen from these plots, the hrf

shapes of the log-Bilal distribution can be increasing and bathtub. The right side of Fig 2 gives

information about the hrf regions of the log-Bilal regression according to the different values

of the parameter θ.

The quantile function of Y is given by

Q uð Þ ¼
2

y
1þ ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u
p

� 2uþ 1Þ
1=3
þ

1

ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u
p

� 2uþ 1Þ
1=3

 !y

ð7Þ

where 0< u< 1. Using (7), we have the following algorithm to generate random variables

from the log-Bilal distribution.

Algorithm 1 Generating random variables from log- Bilal(θ) distribution
1. Set the parameter θ,
2. Generate ui * U(0, 1),

3. Calculate Xi ¼ 2

y
1þ ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
i � ui

p
� 2uiÞ

1=3
þ 1

ð1þ2
ffiffiffiffiffiffiffiffi
u2
i � ui

p
� 2uiÞ

1=3

� �y

4. Repeat steps 2 and 3 n times.

2.1 Moments

The kth raw moment of Y is

EðYkÞ ¼
Z1

0

6

y
ykþ2=y� 1 1 � y1=y

� �
dy

¼
6

ðkyþ 2Þðkyþ 3Þ

ð8Þ

Using (8), the first and second raw moments of Y are given, respectively, by

E Yð Þ ¼
6

ðyþ 2Þðyþ 3Þ
and E Y2ð Þ ¼

3

ðyþ 1Þð2yþ 3Þ
:

The variance of Y is obtained from the its first and second raw moments as

Var Yð Þ ¼
3y

2
ðy

2
þ 10yþ 13Þ

ðy
2
þ 5yþ 6Þ

2
ð2y

2
þ 5yþ 3Þ

:

It is easy to conclude that the mean and variance of the log-Bilal distribution decreases

when the parameter θ increases.
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Fig 2. The hrf plots (left) and hrf regions (right) of log-Bilal distribution for selected parameter values.

https://doi.org/10.1371/journal.pone.0245627.g002
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2.2 Incomplete moments

The rth incomplete moment of Y is

mrðtÞ ¼ E Yrjy < tð Þ ¼

Z t

0

6

y
yrþ2=y� 1 1 � y1=y

� �
dt

¼
6t2=yþr

ryþ 2
�

6t3=yþr

ryþ 3

ð9Þ

The incomplete moments of random variables are important tools to measure the inequali-

ties like Gini measure (see, Butler and McDonald [12] for details).

2.3 Exponential family

The pdf of any distribution should be expressed in the following form to be a member of expo-

nential family.

f ðy; yÞ ¼ exp ½QðyÞTðyÞ þ DðyÞ þ SðyÞ�:

The pdf of the the log-Bilal distribution can be expressed as follows

f ðy; yÞ ¼ exp ½ð2=y � 1Þ log ðyÞ� exp ½ log ð6=yÞ� exp ½ log ð1 � y1=yÞ�;

where Q(θ) = (2/θ − 1), T(y) = log (y), S(y) = log (1 − y1/θ) and D(θ) = log(6/θ). Therefore, the

log-Bilal distribution is a member of exponential family. Here, TðyÞ ¼
Xn

i¼1

log ðyiÞ is the suffi-

cient statistic for the parameter θ.

3 Estimation

We use four estimation methods to discuss the parameter estimation process of the log-Bilal

distributions. These estimation methods are maximum likelihood estimation (MLE), method

of moments (MM), least squares estimation (LSE) and weighted least squares estimation

(WLSE). Detailed pieces of information on these estimation methods are given in the rest of

this section.

3.1 Maximum likelihood

Let y1, . . ., yn be a random sample from the log- Bilal distribution. The log-likelihood function

of the log-Bilal distribution is

‘ðyÞ ¼ n ln ð6=yÞ þ nð2=y � 1Þ�y þ
Xn

i¼1

ln ð1 � y1=yÞ; ð10Þ

where �y ¼
Xn

i¼1

yi

�

n. By differentiating (10) with respect to θ gives

@‘

@y
¼ �

n
y
�

2n�y
y

2
þ

1

y
2

Xn

i¼1

y1=y

i ln ðyÞ
ð1 � y1=y

i Þ
ð11Þ

The MLE of θ, say, ŷ, is the solution of (11) for zero. There is no explicit form solution for

(11). Therefore, it should be solved iteratively or direct maximization of (10) can be viewed as

the other choice. Here, the direct maximization of (10) is preferred by using the optim func-

tion of R software.
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3.2 Method of moments

The MM estimation method is a popular method when the raw moments of the distribution

have simple forms. The MM estimator of θ can be easily obtained by equating the first theoreti-

cal moment of the log-Bilal distribution to the sample mean, which gives

ŷMM ¼
1

2

�y
�y þ 24

� �� 1=2

� 5

 !

;

where �y ¼
Xn

i¼1

yi

�

n.

3.3 Least squares

Assume that the y(1), . . ., y(n) be ordered sample of y1, . . ., yn following the log-Bilal distribu-

tion. The LSE of θ is obtained by minimizing

Xn

i¼1

FðyðiÞ; yÞ �
i

nþ 1

� �2

; ð12Þ

where F(y(i);θ) is in (4). Then, we have

Xn

i¼1

3y2=y

i � 2y3=y

i �
i

nþ 1

� �2

:

3.4 Weighted least squares

The minimization of the below function gives the WLSE of the parameter θ.

Xn

i¼1

ðnþ 1Þ
2
ðnþ 2Þ

iðn � iþ 1Þ
3y2=y

i � 2y3=y

i �
i

nþ 1

� �2

:

4 Simulation

We compare the efficiencies of the MLE, MM, LSE and WLSE methods in estimating the

parameter of the log-Bilal distribution. The algorithm given in Section 2 is used to generate

random variables from the log-Bilal distribution. The simulation results are interpreted based

on the following quantities.

Bias ¼
XN

j¼1

ŷ j � y

N
; MRE ¼

XN

j¼1

ŷ j=y

N
;

MSE ¼
XN

j¼1

ðŷ j � yÞ
2

N
:

These kind of statistical measures such as means square erros (MSEs) and mean relative

errors (MREs) are used to compare the different approaches deciding the best model under

pre-determined scenarios (see, Zeng et al., [13, 14]). The statistical software R is used to obtain

numerical results for the simulation study. We choose the parameter value θ = 1.7, the
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simulation replication is N = 10, 000 and the sample size is n = 20, 25, 30, . . ., 300. If the esti-

mation methods yield an asymptotically unbiased estimation of θ, we expect to see that MSEs

and biases approach the zero. On the other hand, MREs should be near the one. The simula-

tion results are displayed in Fig 3. As seen from these figures, MLE method approaches the

Fig 3. The simulation results of the log-Bilal distribution.

https://doi.org/10.1371/journal.pone.0245627.g003
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desired values of biases, MSEs and MREs faster than other estimation methods. Therefore,

MLE method is more appropriate than other methods for estimating the parameter of the log-

Bilal distribution.

5 The log-Bilal regression model

Now, we introduce a new regression model for bounded response variable as an alternative to

the beta and unit-Lindley regression models. Let θ = 2−1({μ/(μ + 24)}−1/2 − 5), then the pdf of

log-Bilal distribution takes the form

f y; mð Þ ¼
12

ðfm=ðmþ 24Þg
� 1=2
� 5Þ

y4=ðfm=ðmþ24Þg� 1=2 � 5Þ� 1 1 � y2=ðfm=ðmþ24Þg� 1=2 � 5Þ

� �

ð13Þ

where 0< y< 1, 0< μ< 1 and E(Y|μ) = μ. The logit link function is used to link the covariates

to the mean of response variable, as follows,

mi ¼
exp ðxTi βÞ

1þ exp ðxTi βÞ
; i ¼ 1; . . . ; n; ð14Þ

where xTi ¼ ðxi1; xi2; . . . ; xipÞ is the vector of covariates and β = (β0, β1, β2, . . ., βk)
T is the vector

of unknown regression coefficients. Substituting μi in (13) with (14), the log-likelihood func-

tion of the log-Bilal regression model is

‘ βð Þ ¼ n ln 12ð Þ �
Xn

i¼1

ln fmi=ðmi þ 24Þg
� 1=2
� 5

� �
þ
Xn

i¼1

ln yið Þ
4

ðfmi=ðmi þ 24Þg
� 1=2
� 5Þ

� 1

" #

þ
Xn

i¼1

ln ð1 � y2=ðfmi=ðmiþ24Þg� 1=2 � 5Þ

i Þ;

ð15Þ

where μi is given by (14). The unknown vector of regression parameters, β, is estimated by

minimizing the negative value of (15) which is equivalent to the maximization of (15). The

standard errors of the estimated parameters are obtained by means of observed information

matrix whose elements can be calculated numerically with fdHess function of R software.

5.1 Residuals analysis

To check the model accuracy of the fitted log-Bilal regression model, the randomized quantile

residuals introduced by Dunn and Smyth [15] is used. The randomized quantile residuals are

given by

r̂ i ¼ F� 1ðûiÞ;

where ûi ¼ Fðyi; β̂Þ and F−1(z) is the inverse of the standard normal cdf. When the fitted

model is valid for the used data set, ri is normally distributed with zero mean and unit

variance.

6 Empirical studies

In this section, the log-Bilal distribution and log-Bilal regression model are compared with

existing models. Two real data set are analyzed to prove the usefulness of proposed distribution

in modeling the real data sets.
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6.1 Dwellings without basic facilities

Better Life Index (BLI) is calculated for the OECD countries as well as Brazil, Russia and South

Africa to compare the countries based on 12 indicators which effect the quality of the life.

Here, we use one of the variable of BLI measured in the year of 2017, dwellings without basic

facilities which is defined as a percentage of the population living in a dwelling without indoor

flushing toilet. The data set is available at https://stats.oecd.org/index.aspx?DataSetCode=BLI.

This data set is used to compare the real data modeling performance of the log-Bilal distribu-

tion with the following competitive models: beta, Kumaraswamy, Topp-Leone and unit-

Lindley.

The competitive distributions as well as the log-Bilal distribution are fitted to the data used

by means of R software. After fitting the distribution to data, the MLEs of the parameters of

the fitted distributions with their standard errors (SEs) are obtained. Besides, the formal good-

ness-of-fit tests such as Kolmogorov-Smirnov (K-S), Cramér-von Mises (W�) and Anderson-

Darling (A�) are applied to decide the suitability of the distributions on the data used. Akaike

Information Criteria (AIC) and Bayesian Information Criteria (BIC) are widely used criteria

to choose the best statistical model. These statistics are used for comparison of the fitted mod-

els and selection of the best model (see, Chen et al., [16, 17]).

Table 1 shows the MLEs of the parameters for the fitted models to the dwellings without

basic facilities data, corresponding SEs, and goodness-of-fit statistics as well as AIC and BIC

values. As seen from the results of K-S tests with corresponding p-values, the all fitted distribu-

tions, except the unit-Lindley, provide adequate fits. However, the log-Bilal distribution has

the lowest values of the AIC, BIC, A� and W� statistics which indicate that the proposed distri-

bution is the best choice for the data used.

Fig 4 displays the estimated densities of the models on the histogram of data and estimated

functions of the log-Bilal distribution. The right panel of Fig 4 plays an important role to con-

vince the readers in favor of log-Bilal distribution.

6.2 Education attainment

Here, the performance of the log-Bilal regression model is compared with the beta and unit-

Lindley regression models. The used data set comes from the BLI of OECD countries, mea-

sured in the year of 2017. The data source is https://stats.oecd.org/index.aspx?DataSetCode=

BLI.

The educational attainment values of the OECD countries (y) is considered as response

(dependent) variable The goal is to explore the effects of following covariates on the

Table 1. The estimated parameters of the fitted models (SEs are on the second line).

Models Parameter estimations AIC BIC A� W� K-S p-value

Beta(α, β) 0.2847 1.4017 -114.1408 -110.8657 1.8818 0.2546 0.2032 0.0868

0.0518 0.3917

Kumaraswamy(α, β) 0.3367 1.6076 -117.0740 -113.7988 1.7423 0.2317 0.1610 0.2785

0.0599 0.3519

Topp-Leone(θ) 0.3069 -112.9418 -111.3042 2.2026 0.3074 0.1867 0.1414

0.0498

unit-Lindley(λ) 0.0732 492.8384 494.4760 7.9700 1.4892 0.9699 <0.001

0.0084

log-Bilal(λ) 4.7063 -118.9374 -117.2998 1.7032 0.2254 0.1504 0.3567

0.5491

https://doi.org/10.1371/journal.pone.0245627.t001
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Fig 4. The estimated pdfs of the fitted distribution (left-panel) and some fitted functions of the log-Bilal

distribution (right-panel).

https://doi.org/10.1371/journal.pone.0245627.g004
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conditional mean of the response variable: homicide rate (HR), dwellings without basic facili-

ties (DWBF), and labor market insecurity (LMI). The logit link function which ensures that

the estimated mean lies between 0 and 1, is used for all fitted regression models. The fitted

regression model is

logitðmiÞ ¼ b0 þ b1HRi þ b2DWBFi þ b3LMIi:

Table 2 lists the MLEs, SEs, and corresponding p-values, AIC and BIC for the beta, unit-

Lindley, and log-Bilal regression models. The parameter φ represents the dispersion parameter

of the beta regression model. Based on the figures in Table 2, all estimated regression parame-

ters are found statistically significant for beta and log-Bilal regression models. Based on the

estimated regression parameters of the log-Bilal regression model, it is concluded that when

the homicide rate and labor market insecurity increase, the educational attainment decreases

in the OECD countries. On the other hand, when the dwellings without basic facilities

increases, the educational attainment increases in the OECD countries.

The information criteria, AIC and BIC statistics, are used to select the best model for the

data used. Since the lowest values of the AIC and BIC statistics are belong to the log-Bilal

regression model, we conclude that it is best by comparison with the beta and unit-Lindley

regression models. Additionally, the residual analysis is done to evaluate the suitability of the

fitted models for the data used. Fig 5 displays the quantile-quantile plots of the randomized

quantile residuals. As seen from these figures, all fitted regression models provide adequate

fits, but, the plotted points for the log-Bilal regression model are more closer the diagonal line

than the beta and unit-Lindley regression models.

7 Conclusion

For the first time, a new one-parameter unit distribution is introduced for modeling the

extremely left-skewed data sets measured in unit-interval. The new model provides a reason-

ably better fit than the other one and two-parameter unit distributions such as Topp-Leone,

unit-Lindley, Kumaraswamy, and beta distributions when the data sets are extremely skewed

to left (right). The newly defined regression model is compared with the famous beta regres-

sion model as well as the recently proposed unit-Lindley regression model. The results of the

data analysis show that the proposed models work better than other existing models. As a

future work of the presented study, we plan to introduce the quantile regression model based

on the log-Bilal distribution. Additionally, we extend our model for modeling the longitudinal

data sets as an alternative to the longitudinal beta regression model.

Table 2. MLEs, SEs, corresponding p-values, AIC and BIC values for the fitted models.

Parameters Beta unit-Lindley log-Bilal

Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value

β0 1.9208 0.1570 <0.0001 1.6263 0.1887 <0.0001 2.1136 0.2122 <0.0001

β1 -0.0674 0.0173 <0.0001 -0.0543 0.0304 0.0739 -0.0705 0.0270 0.0089

β2 0.0434 0.0182 0.0172 0.0521 0.0263 0.0477 0.0724 0.0340 0.0334

β3 -10.9688 2.1804 <0.0001 -10.8607 2.6421 <0.0001 -14.8182 4.4554 0.0009

φ 15.6120 3.5320 <0.0001 - - - - - -

AIC -63.2794 -61.7153 -64.5549

BIC -55.0915 -55.1649 -58.0045

https://doi.org/10.1371/journal.pone.0245627.t002
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Appendix

1. Beta distribution:

f x; a;bð Þ ¼
Gðaþ bÞ

GðaÞGðbÞ
ya� 1ð1 � yÞb� 1

; a > 0;b > 0; 0 < y < 1:

Fig 5. The quantile-quantile plots of the randomized quantile residuals: Beta (left), unit-Lindley (middle) and log-Bilal (right).

https://doi.org/10.1371/journal.pone.0245627.g005
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2. Kumaraswamy distribution:

f ðy; a; bÞ ¼ abya� 1ð1 � yaÞb� 1
; a > 0; b > 0; 0 < y < 1:

3. Topp-Leone distribution:

f ðy; yÞ ¼ yð2 � 2yÞð2y � y2Þ
y� 1
; y > 0; 0 < y < 1:

4. Unit-Lindley distribution:

f y; yð Þ ¼
y

2

1þ y
ð1 � yÞ� 3 exp �

yy
1 � y

� �

; y > 0; 0 < y < 1:
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