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ABSTRACT Cyberattacks targeting Internet of Things (IoT), have increased significantly, over the
past decade, with the spread of internet-connected smart devices and applications. Routing Protocol for
Low-Power and Lossy Network (RPL) enables messages to be routed between nodes for the Wireless
Sensor Network in the network layer. RPL protocol, which is sensitive and difficult to protect, is exposed
to various attacks. These attacks negatively affect data transmission and cause great destruction to the
topology by consuming the resources. Hello Flooding (HF) attacks against RPL cause consumption of
constrained resources (memory, processing and energy) in nodes. Therefore, in this study, a Gated Recurrent
Unit network model based deep learning has been proposed to predict and prevent HF attacks on RPL
protocol in IoT networks. The proposedmodel has been compared with Support VectorMachine and Logistic
Regression methods, and different power states and total energy consumptions of the nodes have been taken
into consideration and experimented with. The results confirm the promised and expected performance from
the model in terms of source efficiency and IoT security. In addition, attack detection has been carried out
with a much lower error rate than literature studies for HF attacks from RPL flood attacks.

INDEX TERMS Deep learning, gated recurrent unit, hello flooding, Internet of Things.

I. INTRODUCTION
Internet of Things (IoT) refers to devices, machines and
software that communicate with each other when considered
in a system, on the other hand everything connected to the
internet [1]. The interaction of objects that communicate
and transfer data, which are connected to the Internet
via 6LoWPAN (IPv6 over Low-Power Wireless Personal
Area Networks) is used to improve the quality of life
(e.g. smart cities, smart buildings, smart cars) and increase
job opportunities [2], [3]. However, due to its ad-hoc and
limited resource structure, IoT systems are very vulnerable
to attacks. Generally, attacks target the usability and energy
consumption of a node connected to a heavy data stream.
Attack detection systems are one of the security measures and
are crucial in an IoT ecosystem.

The primary function of attacks on Routing Protocol for
Low-Power and Lossy Network (RPL) based IoT networks,
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FIGURE 1. Well known RPL attacks against resources [4].

the most common type encountered in the literature, is to
route messages between nodes. The most known RPL attacks
targeting resource consumption [4] are given in Fig. 1. The
purpose of source-side attacks is that the malicious node,
which is harmful in our highly sensitive network structure,
creates energy consumption, process crowd, and excessive
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memory density to disturb the stability of the Quality of
Service (QoS) of the network. Flood attacks, one of the most
known attack types, aim to render the nodes dysfunctional by
damaging the network topologywith the help of themalicious
node. They perform this by transmitting or broadcasting
DODAG Information Solicitation (DIS) messages.

Hello Flooding (HF) attacks are the RPL protocol attacks,
which are not emphasized enough in terms of the energy
consumption in nodes in the literature. The values of the
Central Processing Unit (CPU; used for calculations data
processing), Low Power Mode (LPM; idle device waiting for
events), Radio Transmission (Tx; data transmission), Radio
Reception (Rx; data reception) and Total Energy (TE; total
energy consumption) power states that affect the energy of
the network topology are calculated and the changes in the
energy after the attacks are observed in this study.

The fact that significant amount of data is received from
devices that lack resources and computing abilities has
rendered the classical methods ineffective and led to the
emergence of new systems [5], [6]. Therefore, it is reported
in the literature that machine learning methods are more
useful in terms of interpreting data in IoT attacks and making
accurate predictions. For this reason, unlike similar studies
for real-time attack detection on devices in the IoT ecosystem,
the nodes have been classified using GRU (Gated Recurrent
Unit)-based deep learning method with Recurrent Neural
Network (RNN) architecture and achieved a high accuracy
of 99.96%. On the other hand, 3 different datasets, whose
designations start with ‘‘SSN’’, have been created as a result
of the simulations conducted in Contiki OS / Cooja Simulator.
In summary, the main contributions of this study are as
follows:

a) ‘‘A GRU-based deep learning approach’’ is used to
classify malicious nodes in HF attack detection and also to
protect the constrained energy sources.

b) Each dataset, named ‘‘SSNx’’, includes CPU, LPM, Tx,
Rx and TE data calculated for each node, and can be used
to prevent attacks after classification. GRU is proven to yield
more dominant results than Support Vector Machine (SVM)
and Logistic Regression (LR). The packet of the node with
a value received outside the specified value range will be
dropped from the network after checking the threshold value
of the properties calculated within the attack prevention
method.

c) ‘‘Detection of HF attacks with a high accuracy rate’’ that
can inspire attack detection and prevention methods in other
IoT ecosystems.

The remainder of this paper is organized as follows:
next section presents current studies made on IoT attacks,
their detection and prevention approaches. Section III gives
detailed information about HF attacks on RPL Protocol, deep
learning-based attack detection, simulation of IoT ecosystem
and dataset used in the experiment. The proposed model is
explained in Section IV and the results are summarized and
discussed in Section V. Conclusions are drawn in the final
section.

II. RELATED STUDIES AND BACKGROUND
Integrity, reliability, confidentiality, and security are signif-
icant parameters for the sustainability of a system. IoT has
been the focus of attention with its recent popularity, but
has brought some problems along with it. Security is at the
forefront of these problems [6]–[8]. In the classification of
attacks, HF attacks are a type of routing attacks and are
carried out in the network layer. Sinkhole, Sybil, Rank, HF,
Spoofing, Blackhole, and Wormholes are known as common
attacks in routing services [9].

Considering resource consumption, flood attacks come to
the forefront. Although HF attacks are among the attacks that
are effective, the energy consumption calculation of resources
when detecting the malicious nodes has been the subject of
not many studies in the literature. Therefore, this study will
contribute novelty to the literature with the methods proposed
and the effective attack prevention system recommended.

A. RPL AND RESOURCE ATTACKS
1) 6 LoWPAN (IPv6 OVER LOW-POWER WIRELESS
PERSONAL AREA NETWORKS
There are insufficient IPv4 addresses and it creates conflicts
in the current communication system due to increase in
the number of IoT devices. IPv6 provides billions of
unique IP addresses for the IoT ecosystem with 128-bit
addressing [10]. 6LoWPAN[11] protocol is a communication
protocol of IEEE 802.15.4 [12] standards that provides
minimum resource consumption, long battery life, and high
data capacity.

2) RPL (IPv6 ROUTING PROTOCOL FOR LOW-POWER AND
LOSSY NETWORKS
RPL protocol [13] is a dynamic, distance - vector protocol
and seeks to find paths between nodes on the network
using routing protocols [14]. Its key features are automatic
configuration, self-healing and loop avoidance, and its main
function is to direct data traffic with minimum energy
consumption and minimum loss of packets. In addition,
it can be used in point-to-point (P2P), multipoint-to-point
(MP2P), and point-to-multipoint (P2MP) topology types.
In the tree-based topology, the data flow is root-to-nodes
or vice versa. The position where each node is located in
the topology is called ‘‘Rank’’. Nodes are positioned in the
topology based on their levels calculated with the help of
an ‘‘objective function’’. This function uses algorithms that
calculate the quality of the route with the help of metrics.

Main concepts used in RPL protocol;
Destination Oriented Directed Acyclic Graphs (DODAG):

The nodes are interconnected according to a specific
topology that incorporates tree and mesh topologies called
DODAG [4]. This is a special kind of Directed Acyclic
Graphs (DAG) where each node wishes to reach a single
destination.

DODAG Information Object (DIO): This message is
used to discover new nodes, transmit configuration and
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communicate. If a node receives a DIO message, it also emits
a DIO message, taking into account the rank value and link
metrics of the incoming node. In this way, the parent-child
relationship is also determined.

DODAG Information Solicitation (DIS): It can be consid-
ered as a message to discover neighbors. A node, not included
in the DODAG network, broadcasts a DIS message. It sends
it to ask ‘‘Are there any DODAGs?’’.

DODAGAdvertisement Object (DAO): It is sent by a child
to its parent. This message includes a request to allow the
child to join a DODAG. DAO-ACK: This message includes
‘‘Yes’’ or ‘‘No’’ response from parent or root to the child.

FIGURE 2. RPL control messages from node to root [15].

The message relationship between the root node and a new
node that wants to join DODAG is given in Fig. 2 [15].

3) ROUTING AND RESOURCE ATTACKS
Routing protocol resource attacks in wireless sensor net-
works (WSN) are typically based on consuming the limited
resources (energy, memory or process density) of the nodes
in the topology through unnecessary operations. Thus, the life
of a network decreases and loses its functionality. As shown
in Fig. 3, resource attacks can be classified in 3 groups as
wireless network attacks, routing attacks and denial of service
attacks [4].

FIGURE 3. Classification of attacks.

In HF attacks, each node creates the neighborhood list by
sending a packet with a ‘‘Hello’’ message to their neighbors.
Any malicious node in the network ecosystem attempts to
strike network traffic by sending ‘‘Hello’’ messages to many
othe nodes, and imposes itself to other nodes, transmits
the messages that will go through other nodes all the
way to the server and performs the transmission [16]–[19].
The malicious node set in DODAG increases the network

traffic and sends messages to the nearby nodes more than
usual. When the HF attack begins, it increases the resource
consumption by directing the data traffic on the neighboring
nodes via itself. In the network ecosystem where huge data
traffic occurs, the energy consumption of the limited nodes
increases and data losses occur. The repair mechanism that
corrects the RPL’s data flow resolves this problem after a
certain period, but the nodes around the malicious node will
continue to be affected by this attack.

B. DETECTION AND PREVENTION APPROACHES
Attacks on WSN are carried out in IoT and their protocol
structures, designs, and messages are different. Therefore,
prevention or reduction of the attacks may differ. In other
words, the methods applied to one type of attack may be
invalid for others [20].

There are many anomaly-based, signature-based and
encryption methods, machine learning, deep learning, neural
network types and classification methods are used for detec-
tion and prevention of IoT attacks in the literature. Current
studies using these methods and outputs are presented
in Table 1. Cryptographic and non-cryptographic methods
are used for HF detection but they are not suitable for
the resource-constrained IoT ecosystem [21]. New detection
methods are needed in terms of limited storage space,
processing capacity, and energy source. Attack prevention
systems are generally in the form of mitigating or minimizing
the attacks.

III. DEEP LEARNING BASED RPL ATTACK DETECTION
‘‘Deep learning’’, first used by Igor Aizenberg and col-
leagues, is a subfield of machine learning and is based on
Artificial Neural Networks (ANNs). The distinction of deep
learning from ANN is the hidden layers in its structure.
Consecutive layers take the output of the previous layer as
input and its structure is based on learning the representation
of the data [27]–[29]. Deep learning methods give better
results than traditional data processing techniques for the
data in very large sizes [1], [5], [6], [28], [29], [36].
Therefore, deep learning methods are suitable for big
data created by IoT devices. Traditional authentication
methods or RSS-based approaches cannot always provide
security for resource-restricted IoT devices in HF attacks.
Detection methods for HF attacks (bidirectional verification
technique [30]), prevention solutions (identity verification
protocol [31], multi-path multi-base station routing [30] and
µ-Tesla [32]), and both attack detection and prevention
approaches (deep learning methods [1], [28], [29]) have
presented for HF attacks on IoT devices in the literature.

In the proposed methodology, the Cooja simulator in the
Contiki operating system is used for simulation scenarios, and
the data packets of the attacker and normal nodes have been
created in Zonguldak Bülent Ecevit University Kdz. Eregli
Vocational School. Total energies of nodes, CPU, LPM,
Tx and Rx power values have been calculated from the IoT
routing attacks based on the characteristics of the HF attacks

183680 VOLUME 8, 2020



S. Cakir et al.: RPL Attack Detection and Prevention in the IoT Networks Using a GRU Based Deep Learning

TABLE 1. Summary of flooding attacks and countermeasures on RPL.
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and recorded in a dataset. The learning algorithm has been
implemented with the support of KERAS [33] Tensorflow
from Python libraries.

A. DEEP LEARNING ARCHITECTURE
RNN is a type of ANN where the units in the system
are connected to each other with a loop and based on the
logic of receiving raw data in a certain order [29]. RNN
has a short-term memory problem [34]. If a time series
data is quite long, it may be difficult to remember the
previous data during the move of the information from the
previous step to the next step, and it becomes difficult to
forward the information. Therefore, the information that
is important in the prediction can be missing. LSTM
(Long Short – Term Memory), developed by Hochreiter and
Schmidhuber in 1997 to solve this problem [35], is a special
type of RNN that can learn in long arrays, However, its
complex structure and time-consuming analysis, compared
to neural networks, led to the emergence of the GRU in
2014. Features such as fast training, simplified structure,
and being easy-to-analyze make GRU stand out compared to
LSTM [36].

GRU has a similar structure when compared to LSTM
units. Unlike LSTM, GRU has a reset and update gateway
instead of the entrance, exit and forget gate. The purpose
of the reset gate is how the new entry will be combined
with the previous memory, and the update gate describes how
much of the previous memory will be stored. These vectors
decide what information is to be transferred as the output
and can be trained to remove information that is irrelevant
for prediction. Briefly, it can be learned which of the data
in the series is important to store and delete and also the
learned information can be used for predictive purposes. The
general structure and architecture of GRU neural networks
are illustrated in Fig. 4 and Fig. 5, respectively.

The terms shown in Fig. 5 are explained as fol-
lows [39], [40]:

Update gate helps determine how much of the past
information for the model needs to be passed into the future.
With this feature, it prevents the model from copying all the
information from the past. The model may decide to copy
all the information from the past and gradient can eliminate
the risk of eliminating the problem. Equation (1) is used to
calculate the update gate zt for time step t .

zt = σ × (Wz × ht−1 + xt×U z) (1)

Here, xt is the input vector and ht−1 holds the output for the
previous time step t − 1. When xt and ht−1 are attached into
the model unit, they are multiplied by their weights Uz and
Wz, respectively. The multiplication results are summed and
then a sigmoid activation function σ is applied to match the
results between 0 and 1.

Reset gate rt is used to decide how much of the past
information in the model is forgotten and determined by (2)

rt = σ × (Wr×ht−1 + xt×U r ) (2)

FIGURE 4. Structure of GRU cells [37].

FIGURE 5. The GRU architecture [38].

where, ht−1 and xt are multiplied by their corresponding
weights Wr and Ur , respectively. Then σ sigmoid function
is applied on the sum of the results.

Currentmemory content:A newmemory content ĥt uses
the reset gate to store the relevant information from the past.
The formula is given in (3)

h̃t = tanh× (Wh × (ht−1 × r)+ Uc×x t ) (3)

where the input xt is multiplied with the weight Uc, ht−1
is multiplied with the reset gate r and with the weight Wh.
That will assign what to extract from the previous time steps.
And then the results are summed up and nonlinear activation
function tanh is finally applied.
Last memory at the current time: The model needs to

calculate the ht vector, which holds the information for the
current unit and passes it to the model. An update gate is
required for this. It determines what to gather from the current
memory content ĥt and what from the previous steps ht−1 and
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calculates it with the help of (4).

ht =
(
zt × h̃t

)
+ ((1− zt)×ht−1) (4)

B. SIMULATION OF IoT ECOSYSTEM AND SSN
The variety of use of WSN technology in different environ-
ments has enabled it to take place in the IoT ecosystem.
Possible aspects of this technology can be examined through
the simulators that offer real-life environments. Contiki -
Cooja simulator [41] is an ideal tool to develop the simulation
platforms for RPL and WSN. It is open for research purposes
and has been chosen thanks to its functionality and scalability
features. The simulation control window supports start,
pause, reload and stop buttons for the simulation in addition
to the simulation time and speed of the running simulation.
Parameters of the Cooja simulator have been designated for
different scenarios (1, 2 and 3) and are presented in Table 2.

TABLE 2. Simulation parameters.

Sky mote is equipped with 8 MHz MSP430 low power
microcontroller, 10 KB RAM and 48 KB flash memory and
also has 4 MHz of clock speed. The initial values of the
simulation of each sensor node’s output can, too, be saved
to a file via menu options present in it, which will later
be used for the machine learning methods. In the proposed
model, the simulation was started and run for 10-hours for
all scenarios. During the simulation, the ‘‘Mote output’’
window shows the outputs for each sky mote sensor nodes
according to the timeline and displays the DODAG message
details such as when the message is sent or received, and the
node identification (ID) information. The Cooja simulation
generates raw packet capture ‘‘.pcap’’ files, then these files
can be converted into Comma Separated Values ‘‘.csv’’ files

using Python. The proposed approach works independently,
thus saving the nodes resources.

Energy consumptionE (mW) value is the amount of energy
used to send and receive data packets between motes (nodes)
and calculated by (5)

E =
energest_value× I× V
rtimer_second × runtime

(5)

where the runtime is the time interval, rtimer_second is the
number clock frequency, energest_value is the energy usage
in two-time intervals (runtime) for a defined power state (e.g.
CPU, LPM, transmit), I is current and V is voltage. So the
total energy consumption, TE, is determined as follows.

TE =
V
t
× ((ICPU × ECPU )+ (ILPM × ELPM )

+ (ITx × ETx)+ (IRx × ERx)) (6)

ECPU is the total CPU energy consumption, ELPM is
the accumulated LPM energy consumption, ETx is the
accumulated transmission energy consumption and ERx is
the accumulated listen energy consumption in time t . The
other parameters in (6) are defined in Table 3 and their
values are taken from the Tmote Sky mote datasheet [42].
In addition, Contiki-Cooja simulation provides rimeaddr and
transmitted values. Due to success rate of 99.96% of the
proposed model, other features have not been included in this
resource-constrained IoT environment.

TABLE 3. Energy consumption parameters for a constrained mote.

CPU, LPM, Tx (transmit), Rx (receive) and TE values
obtained from the motes during the simulation have been
stored in datasets named ‘‘SSN1’’, ‘‘SSN2’’ and ‘‘SSN3’’,
respectively based on the three scenarios created. The total
numbers of normal and malicious motes/nodes are different
in the scenarios.

In the simulation, new nodes join the network by
broadcasting a ‘‘Hello’’ message with ID number and signal
power, and announce their existence to their neighbors. Then
all the other nodes update their routing table and send their
own messages. In HF attack, malicious nodes frequently
broadcast ‘‘Hello’’ messages by DIS packets looking like a
neighbor and become themost available node for other nodes.
So they cause their neighbors to spend their resources on
processing wasteful packets [1]. Figure 6 shows the situations
before and after HF attack in the simulation.

The average number of DIO, DIS and DAOmessage trans-
missions increases as the node’s degree or rank increases.
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FIGURE 6. The situations a) before b) after HF attack.

As network size grows, transmission time increases due to
the multiplicative effect of a greater hop count between the
root and any other node. If the HF malicious node is in the
first rank, for example, 40 × 8 = 320 bits of data will be
transferred for a packet of 40 bytes. In addition, the bandwidth
is equal to 10 Kbyte= 10240 bits. It is assumed that the value
of h for a packet of 40 bytes (for sky mote) is 320 / 10240 =
0.031 s [43].

IV. PROPOSED MODEL
Attacks on routing protocols can cause great damage to
resource-restricted networks, just like any other attack type.
In this study, a model for detection and identification of
attacks is proposed for a resource-constrained IoT environ-
ment. The overall architecture of the proposed model is
illustrated in Fig. 7.

The architecture of the proposed model consists of three
parts: network simulation, data preprocessing and attack
detection. Firstly, the network is simulated by the Cooja
simulator based on the scenario incorporating root, normal
and malicious nodes. CPU, LPM, Tx, Rx and TE values
of each node are calculated (see Section III). The message
packets from the nodes are captured and filtered based on
their contents. Secondly, all the data with relation to the result
of the simulation are recorded in a ‘‘.csv’’ file. The data on
the selected features (ID number, CPU, LPM, Tx, Rx, and TE)
and operation time are stored in datasets named ‘‘SSNx’’, (an
Excel file) depending on the scenario. Finally, the data set is
normalized in the range of [0, 1] to improve the performance
and is analyzed by GRU, Support Vector Machine (SVM),
and LR machine learning methods. The output obtained
indicates whether the node is normal or malicious depending
on value range of Rx determined by statistical operations.
Thus the packets of the attacking nodes will be dropped
from the network when they are detected using the algorithm
below. In the literature, drop and quarantine processes have
been observed, so the drop process has been preferred. In this
study, different combinations of features are also used to
determine the most effective method in the detection of HF
attacks.

In terms of using CPU, LPM, Tx, Rx and TE power
calculations, and GRU deep learning method together,
the proposed model will add novelty to the literature in the
detection of HF attacks, which are one of the effective attack
types in IoT.

The time complexity of the proposed method has been
computed and presented as follows:

The time complexity of the GRU is O(NI (H2
+ HNo)),

where NI is the number of features in inputs,H is the number
of hidden units, and No is the number of outputs [44]. The
time complexity of operations performed in Cooja simulation
has been computed as O(n). It is similar to [45] but higher
accuracy value is obtained in this study. While attacks can
be detected with 99.5% accuracy in [1], it is achieved using
a single feature (Rx) and thus the computational load of the
algorithm is also reduced. The solutions for HF attacks have
been proposed in [19] but these are mainly cryptographic
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FIGURE 7. The architecture of HF attack detection and prevention model.

HF Attack Prevention Algorithm
Start
1st Step: Root node ‘‘R’’ broadcast the DIO
2nd Step: Other nodes ‘‘N’’ gets the message DIO
3rd Step: Other nodes ‘‘N’’ sends DAO to the root node ‘‘R’’
4th Step: Root node ‘‘R’’ multicast the DAO-ACK to node
‘‘N’’

If Can join the DODAG
Else Cannot join the DODAG

5th Step: DODAG will be constructed by repeating the steps
1-4
6th Step: Root node ‘‘R’’ sends the DIO (to receive the CPU,
LPM, Tx, Rx, and TE values)
7th Step: Node ‘‘N’’ sends DAO (CPU, LPM, Tx, Rx, and TE
values)
8th Step: Node ‘‘R’’ sends DAO-ACK
If max(Rx) > Rx > min(Rx)
Normal Nodes (makes an ‘‘N’’)

Else Malicious node detected and DROP Packet (make as
‘‘M’’ Hello Flood (HF) node)
End

and cause heavy computational complexity. So they are
not suitable for constraint devices in IoT. As can be seen
in Table 1, GRU deep learning method proposed in the study
yields better performance values than that of the other studies
carried out on HF attacks.

In this study, there will be no resource and energy
constraints on the nodes as the simulation and deep learning
operations are performed in different servers. The average
number of DIOmessage transmissions increases as the node’s
degree or rank increases. As network size grows, transmission
time increases due to the multiplicative effect of a greater hop
count between the root and any other node.

There is no modification in DIO, DIS or DAO messages,
Contiki has a software-based power profiling system that

mainly measures the time during which various components
are activated. Some features belonging to each node (CPU,
LPM, Tx and Rx) can be requested from the server via
DIO message within the network. These features are used
to determine TE value of each node in Contiki OS Cooja
Simulator. The feature values of the sensor nodes for
power consumptions will be collected and printed for every
10 seconds of the Contiki clock (clock_second × 10).
The RPL incurs control overheads (DIO, DAO, and DIS)
during the DODAG construction. Each node transmits DIO
messages using the trickle timer based on the network status
and the frequency of DIO messages also depends on the
network stability [44].

In this study, GRU method has been applied manually
after the nodes have been created in the Cooja simulator.
The obtained results have been optimized and the intrusion
detection threshold has been determined through the machine
learning methods (GRU, SVM, LR) used in the study. In the
proposed method, the simulation and deep learning methods
do not create high computational loads as they run separately.

V. RESULTS AND DISCUSSION
In this study, dealing with the types of HF attacks, the power
states of the nodes have been examined before and after
the attack. Time-dependent energy consumption values of
non-malicious (normal) and malicious nodes are presented
graphically in Fig. 8 and Fig. 9, respectively.

As can be seen Fig. 8, the changes in LPM and Rx occurs
at very large intervals, but in CPU and Tx at smaller intervals.
Fig. 9 shows that the energy usage of the malicious node in
the LPM varies at a certain level and especially in Rx, this is
quite low compared to the non-attack situation. CPU energy
usage is quite low in both graphs, but the change in malicious
node is clearly seen.

Packet Delivery Rate (PDR) and delay have also been
considered to evaluate the network performance. Networks
with different number (2-4-8 and 16) of HF malicious nodes
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FIGURE 8. Energy consumption of non-malicious nodes.

FIGURE 9. Energy consumption of malicious node.

have been created and then simulated 900000 ms. The
changes of PDR and delay based on the number of malicious
nodes have been computed and illustrated in Fig. 10 and
Fig. 11, respectively.

FIGURE 10. The changing of PDR with the number of malicious node.

It is clear from the figures that when the number of
HF malicious nodes is increased, the performance of the
network decreases (e.g. as increase in the time for all
packets to reach their destination and in the number of lost
packets). In addition, the delay is less in the proposed study,
although there are more packets sent compared with that of
Khosravi et al. [22]. This study estimating better results can
be used for overcoming HF attacks.

FIGURE 11. Average end-to-end delay with number of malicious node.

In this study, GRU neural networks are used to accurately
detect HF attacks in all scenarios. The dataset containing
ID, CPU, LPM, Tx, Rx and TE data has been divided
into 2 subsets for training and test of GRU networks:
80% for training set and 20% for testing. GRU network
models have been developed using Keras in Python. Dropout
value is chosen as 20% to prevent overfitting and tangent
hyperbolic activation function is preferred. As a result of
the experimental evaluations to determine the best network
model and architecture for the GRU method used in attack
detection, the values given in Table 4 are determined.

TABLE 4. Network model characteristics.

SSN1 dataset has been used to compare the performance
of GRU, SVM, and LR machine learning methods and the
size of the data set is 10519 x 6. GRU, SVM, and LR
are run separately 50 epochs for combinations of different
features, the accuracy rates changing by used features are
presented in Table 5. The best results are obtained with GRU
deep learning method for each combination and it has also
performed better than SVM and LR in most cases. When the
accuracy rates obtained using one feature are compared, it is
seen that the highest accuracy value is obtained with Rx and
the worst performances for all methods are the ones the Tx is
used only.

As can be seen in Table 5, the highest accuracy (99.95%)
has achieved by GRU using CPU, Tx, Rx and TE values.
The accuracy rate has decreased by 0.15 with the addition
of LPM value (CPU, LPM, Tx, Rx, TE). Accuracy rates
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TABLE 5. Performance comparison for different features.

obtained using the (Tx, Rx), (LPM, Tx, Rx), and (CPU,Tx,
Rx) combinations are equal to %99.81.When the CPU, LPM,
Tx andRx values are fed into the network as input, an increase
of approximately 0.09 has occurred in the accuracy.

The use of Rx values has provided high accuracy value,
and Tx and LPM values have increased the performance
less compared to Rx, respectively. 99.52% success rate has
been achieved only with the Rx value rather than monitoring
parameters (CPU, LPM, Tx, Rx and TE) for the nodes.
Therefore, it can be said that Rx feature provides strong
superiority over other ones in order to drop the packets
after detecting node. The minimum and maximum Rx values
obtained from the dataset have been used to detect HF
attacks and malicious nodes as given in the algorithm (see
Section IV).

The SSN1, SSN2 and SSN3 datasets created as a result of
simulations made according to different scenarios are given
as inputs to GRU, SVM and LR. Then the obtained results
using ACC (Accuracy), MSE (Mean Squared Error), MAE
(Mean Absolute Error) and RMSE (Root Mean Square Error)
evaluation metrics are presented comparatively in Table 6.

As seen, the accuracy values have increased with the
increase in the number of nodes for both of the feature sets.
The best reported result is 99.96% and the differences in the
number of nodes do not cause major changes in detecting
malicious nodes. The proposed method for HF detection has
successful compared to the existing and related studies (see
Table 1) using GRU deep learning method regardless of the
number of nodes.

MSE, MAE and RMSE values are less in most cases,
by about 0.01, 0.05 and 0.05 in three scenarios with two
feature sets, respectively. Based on a rule of thumb, it can
be said that the lower the value, the better the performance of

TABLE 6. Performance of GRU in different scenarios.

the model would be. The best result of ACC, MSE, MAE and
RMSE is reported in 3rd scenario. This also shows that the
model can accurately predict the attacks.

VI. CONCLUSION
Deep learning methods yield the most successful results
in IoT routing attack detection systems as in many areas.
In this study, GRU neural networks-based deep learning are
preferred due to their simple structure (e.g. adding new gates
with fewer codes), ability to learn the model faster with less
data compared to LSTM. Different combinations of CPU,
LPM, Tx, Rx and TE power states used for the training of
GRU in order to detect HF attacks. The results obtained
using GRU, SVM and LR methods are given comparatively
in Table 5. Different scenarios have been created and the
performance of GRU is compared for different number of
the normal/malicious nodes. As can be seen in Table 5 and
Table 6, the highest accuracy rate of this study is 99.96%
and GRU is more successful in terms of delay and PDR
for attack detection (see Fig. 10 and Fig. 11). Certainly,
it is predicted that there could be a scalability problem
when the number of nodes is increased heavily. This is
identified as the subject of a further study. In addition,
the proposed model may also give new insights and trigger
new attempts on detection and prevention of routing attacks in
IoT environments. GRU based deep learning method can be
usedwith high performance to detect and prevent RPL attacks
in IoT. In the future studies, themethod proposed is planned to
be used in the detection and prevention of other attack types.
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