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Abstract
Background/Objectives Genetic contributors to obesity are frequently studied in murine models. However, the sample sizes
of these studies are often small, and the data may violate assumptions of common statistical tests, such as normality of
distributions. We examined whether, in these cases, type I error rates and power are affected by the choice of statistical test.
Subjects/Methods We conducted “plasmode”-based simulation using empirical data on body mass (weight) from murine
genetic models of obesity. For the type I error simulation, the weight distributions were adjusted to ensure no difference in
means between control and mutant groups. For the power simulation, the distributions of the mutant groups were shifted to
ensure specific effect sizes. Three to twenty mice were resampled from the empirical distributions to create a plasmode. We
then computed type I error rates and power for five common tests on the plasmodes: Student’s t test, Welch’s t test,
Wilcoxon rank sum test (aka, Mann–Whitney U test), permutation test, and bootstrap test.
Results We observed type I error inflation for all tests, except the bootstrap test, with small samples (≤5). Type I error
inflation decreased as sample size increased (≥8) but remained. The Wilcoxon test should be avoided because of hetero-
geneity of distributions. For power, a departure from the reference was observed with small samples for all tests. Compared
with the other tests, the bootstrap test had less power with small samples.
Conclusions Overall, the bootstrap test is recommended for small samples to avoid type I error inflation, but this benefit
comes at the cost of lower power. When sample size is large enough, Welch’s t test is recommended because of high power
with minimal type I error inflation.

Introduction

Murine (mouse and rat) models are widely used as pre-
clinical experimental research models. Rodents offer the

similarity of mammalian metabolic pathways, providing the
opportunity to pursue research with human relevance where
ethical and safety issues are involved. Researchers can
control and manipulate the animal’s genetic background
and environment, enabling randomized, controlled experi-
mentation, which is essential for drawing causal inference
from experimental results. Murine models lay the pre-
clinical foundation for translational research and provide
potential mechanistic insights into basic biology.
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A growing recognition of appropriate ethical considera-
tions for the design and implementation of preclinical
research using animal models has encouraged the scientific
research community to consider Replacement, Reduction,
and Refinement of animal models (the so-called 3Rs [1]).
This guidance includes the selection of the most appropriate
model with the fewest animals required and consideration of
alternatives to live animals when possible. In parallel with
dissemination and adoption of the 3Rs, concerns over
reproducibility of study results have increased in recent
years in science generally [2, 3] and in preclinical and
murine studies in particular [4–6]. For example, Kilkenny
et al. surveyed “reporting, experimental design, and statis-
tical analysis in published biomedical research using
laboratory animals” and found that “[m]ost of the papers
surveyed did not use randomization (87%) or blinding
(86%), to reduce bias in animal selection and outcome
assessment” [7]. Furthermore, Festing listed methodological
issues related to poor study design in animal models, such
as incorrect randomization, failure to blind, inadequate
external validity, and incorrect statistical analysis [4]. To
improve study design and minimize related errors, guide-
lines and checklists have been developed by various aca-
demic societies and organizations. For animal research, the
Planning Research and Experimental Procedures on Ani-
mals: Recommendations for Excellence and the Animal
Research: Reporting of In Vivo Experiments (ARRIVE)
guidelines are utilized in planning animal experiments and
reporting experimental results, respectively [8, 9].

Incorrect statistical analysis combined with small sample
size is one major source of failure in reproducing results.
The ARRIVE guidelines recommended checking three
points regarding statistical methods: “(1) Provide details of
the statistical methods used for each analysis. (2) Specify
the unit of analysis for each dataset (e.g., single animal,
group of animals, single neuron). (3) Describe any methods
used to assess whether the data met the assumptions of the
statistical approach” [8].

We need to “assess whether the data met the assumptions
of the statistical approach” because if the data do not, we

may report incorrect conclusions more or less frequently
than expected. For example, genetic alterations that do not
affect weight in reality might be wrongly reported as being
effective (also called type I errors or false positives) more
frequently if the assumptions are violated (see Supplemental
Information for a more detailed explanation of the type I
error rate).

There are many statistical tests for comparing means of
groups; herein, we limit our discussion to those used to
compare means of two groups. Table 1 summarizes five
commonly used statistical tests with their assumptions and
null hypotheses: (1) Student’s t test [10], (2) Welch’s t test
[11], (3) Wilcoxon test [12, 13], (4) permutation test [14],
and (5) bootstrap test [15]. Important differences in
assumptions are that Student’s and Welch’s t tests assume
normal distributions of each group. The permutation test
and the bootstrap test are similar in computational pro-
cesses; however, the permutation test assumes that the
shape of the distributions is identical [16, 17]. Conse-
quently, permutation tests assume equal variance as Stu-
dent’s t test. The null hypothesis of the Wilcoxon test is that
the distributions of the two groups are the same, whereas
that for the other four tests is that the means of the two
groups are the same. Although the Wilcoxon test is not a
test for mean or median, it has been frequently used to test
central tendency.

Unfortunately, the assumptions behind each statistical
test can themselves be difficult to test, especially when
sample sizes are small, which is typical in many animal
studies. For example, Student’s t test is commonly used to
test the difference in means between two groups. How-
ever, to use Student’s t test, the data from two groups are
assumed to follow a normal distribution with equal var-
iance. The equality of variance can be tested, and if the
test is significant (e.g., p < 0.05 for the test of equal var-
iance), equal variance assumption is rejected, and Stu-
dent’s t test should not be used. However, even if the test
of equal variance is not significant (e.g., p > 0.05), equal
variance is not guaranteed. To conclude, determining that
“equal variance” exists as opposed to “failing to reject

Table 1 Assumptions and hypotheses of five statistical tests commonly used to test for mean differences between groups.

Statistical tests Assumptions Null hypothesis

Student’s t test The distributions follow normal distribution.
The variances are the same.

Means of the two groups are the same.

Welch’s t test The distributions follow normal distribution.
The variances are not (necessarily) the same.

Means of the two groups are the same.

Wilcoxon test No assumptions for the distributions. Means of the two groups are the same given that all other characteristics of
the distributions are identical.

Permutation test The shape of the distributions (including
variances) is identical.

Means of the two groups are the same.

Bootstrap test No assumptions for the distributions. Means of the two groups are the same.
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equal variance” when the test is not significant is an error
of “accepting the null” [18, 19]. Because of the low power
to test the equal variance assumption with small sample
sizes, relying on such tests to determine whether Student’s
t test should be used may result in selecting inappropriate
statistical methods.

Murine genetic models of obesity pose such challenges
with assumptions. As presented herein, there is frequently
less variance in the distribution of body weight in control
animals than in their genetic mutant counterparts. Fur-
thermore, sex differences may be present, and weights are
not necessarily normally distributed. Studies and statis-
tical theory have established how selection of statistical
methods and sample size affect type I error and power
from theoretical perspectives or by using simulated data in
which population distributions are explicitly specified
(normal distribution is frequently used) [20–22]. How-
ever, whether and how the sample size and statistical test
influence type I error rates and power has not been
demonstrated using empirical data for murine genetic
models of obesity. Such tests can provide important
insights into the idiosyncrasies that animal researchers
will face. This is particularly important for research where
outcomes measured with high reliability and validity are
considered for translational impact (e.g., body weight in
nutrition and obesity research). Given that we cannot
know the true population distribution from which the
empirical data are created, and that the empirical data are
not necessarily created from commonly used probability
distributions (e.g., normal distribution), assessing type I
error rates and power using empirical data is more realistic
and practical.

In this study, therefore, we investigated the influence of
sample size and choice of statistical tests on the testing of
mean differences in body mass between control and mutant
murine groups. We assessed type I error rates and power for
“plasmodes,” which are simulated experiments created from
empirical mouse data.

Materials/Subjects and methods

What is a plasmode?

The plasmode was proposed by Cattell and Jaspers, defined
as “a set of numerical values fitting a mathematico-
theoretical model” [23]. In the age of bulky, complex,
high-dimensional data (such as sequence data), Mehta et al.
concisely defined the term as “a real dataset whose true
structure is known” [24]. On the other hand, classical
simulation data (as defined herein) are drawn from specific
distributions with specific parameters (i.e., mean, variance-
covariance). Compared with simulation data, a plasmode

has an advantage because it can preserve data structure,
without assuming distributions and interdependency of
variables: “Plasmodes may represent actual experimental
data sets better than simulations do” [24]. The plasmode
approach has been used to evaluate various statistical
methods [25–27]. Plasmodes can be constructed by con-
ducting experiments or resampling from empirical data. In
this study, we used empirical data from a mouse genetic
study of obesity, described in the next section, and resam-
pled from the data to create a plasmode. Although obesity
can be defined in multiple ways, we focused on body
weight.

Data source

We used the data of Bouchard et al., who investigated the
relationship between obesity and cholesterol chole-
lithiasis using three polygenic and five monogenic mouse
models of obesity. We focused on monogenic strains and
available controls. We included two monogenic mouse
models of obesity (carboxypeptidase E [Cpefat], leptin
receptor [Leprdb]) and their control with the same genetic
background (C57BLKS/J) and four monogenic mouse
models (agouti yellow [Ay], tubby [tub], leptin [Lepob],
leptin receptor [Leprdb]) and their control with the same
genetic background (C57BL/6J). All animals were
reported to be treated in the same condition: “Animals
were provided free access to Rodent Laboratory Chow
(Purina Mills, Richmond, VA) and acidified water
(adjusted with HCl to a pH of 2.8–3.2) to retard microbial
growth. Mice were housed in a temperature (22–23 °C)
controlled room with alternating 14:10 h light–dark
cycles of regular diurnal periodicity. When 10 weeks old,
the mice were weighed and fed a lithogenic diet con-
taining 15% butter fat, 1% cholesterol, and 0.5% cholic
acid for 8 weeks” [28]. We investigated the influence of
genetic differences on body mass (weight). To avoid the
effect of the different diets after baseline assessment (the
diets before and after the baseline assessment were not
the same), we used weight at baseline (10 weeks old).
The data were downloaded from the Mouse Phenome
Database at The Jackson Laboratory [29]. In the follow-
ing analysis, each monogenic mouse model was com-
pared against its corresponding control.

Plasmode simulation

We assume in the plasmode simulation that the empirical
data represent a whole population. Therefore, we treated
each sex × genotype combination as representing the whole
population of those animals. An overview of the simulation
process to compute type I error rates and power is sum-
marized in Fig. 1.
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To compute type I error rates using the empirical data,
we reformed the empirical weight distributions to realize
the null hypothesis (i.e., there is no mean difference
between the groups) in two ways. In the first case
(Case 1), we added a constant value to each animal’s
body weight in the control group such that the means of
the control and the mutant animals were the same. In the
second case (Case 2), we combined the data from the
control and the mutant groups into one pooled distribu-
tion and assumed that both the control and the mutant
data were generated from the combined distribution. To
compute power (or type II error rates) using the
empirical data, we reformed the empirical distributions
to realize a nominal Cohen’s d (1.0, 1.5, 3.0) by adding a
constant value to each animal’s body weight in the
control group.

Because “[a]nalysis of a single plasmode is minimally
compelling,” we created numerous plasmodes and ana-
lyzed each plasmode independently. The results obtained
from the analyses were combined and used to assess the
quality of each statistical test (described in the next sec-
tion). Each plasmode is composed of k1 mice of the mutant
group and k2 mice of the control group of the same sex.
These mice are resampled from the empirical populations
with replacement. For simplicity, we enforced equal sam-
ple sizes between groups: k1= k2= k. We repeated the
entire process separately for different k (3–5, 8, 12, 16, and
20). The simulation was stratified by sex within mutant-
control comparisons.

Five different statistical tests on each plasmode

Because murine studies frequently focus on the mean dif-
ference between treatment and control groups, we compared
mean differences in body weight between mutant groups
and their corresponding control groups stratified by sex
using five common statistical tests: (1) Student’s t test [10],
(2) Welch’s t test [11], (3) Wilcoxon test [12, 13], (4)
permutation test [14], and (5) bootstrap test [15]. These
statistical tests were performed on each plasmode.

Summarize plasmode results

For computation of the type I error rate, we created plas-
modes N (=15,352), and obtained p values for each of the
five tests. The point estimates of the type I error rates were
computed using nominal significance levels (α; the value is

one of {0.05, 0.01, 0.005, 0.001}): α̂ ¼
PN

i¼1
Iðpi<αÞ
N . The

95% CI of the type I error rates were calculated using a

single proportion: α̂± 1:96
ffiffiffiffiffiffiffiffiffiffiffi
α̂ð1�α̂Þ

N

q
. Using N= 15,352 pro-

vides a 95% CI of ±0.0005 for an α of 0.001, and thus is
within rounding error for estimating the 95% CI for that α
value. For the power computation, we created 1000 plas-
modes. To obtain reference values of power for each test,
we created 1000 samples randomly sampled from normal
distribution N(0, 1) and N(d, 1), where d (the value is one of
{1.0, 1.5, 3.0}) corresponds to nominal effect size, and
performed each test on the samples.

Fig. 1 Summary of the
simulation protocol. The data
were extracted from a
genetically modified murine
model published in Bouchard
et al. [28] and stratified by sex.
After the creation of populations
of control and mutant animals,
N plasmodes (each plasmode
consists of k control animals and
k mutant animals) were created
by resampling from the
populations. The five different
tests were implemented for each
of the plasmodes, and the
p values obtained were
summarized to compute type I
error rates or power.
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We mainly argue the case with α= 0.05 given that it is a
standard threshold used in many domains, though we
recognize 0.05 has been challenged as the appropriate
threshold (cf. [30]), and others have argued against using
bright line significance testing altogether (cf. [31]). We used
the Karst high-throughput computing cluster at Indiana
University (Bloomington, IN) and the statistical computing
software R 3.4.1 (R Development Core Team) for all
simulations and calculations. All statistical tests are two-
tailed. The simulation protocol and the analytic procedures
including the parameters (i.e., sample size, significance
level, and effect size) were internally prespecified. The
codes used in this study will be available online (https://doi.
org/10.5281/zenodo.1488359).

Results

Characterization of weight distributions of mutant
and control animals

Table S1 and Fig. 2 summarize the data. A number of
animals of each strain (stratified by sex) ranged from 19 to
34. Mean weights of all the mutant groups were heavier
than those of the corresponding control groups, and this
difference was statistically significant by use of any of the
four tests testing mean difference. The distributions are also
statistically significantly different by use of the Wilcoxon
test. The effect size was assessed by Cohen’s d, which
ranged from 1.10 to 13.57. In light of the rules of thumb for

effect size proposed by Sawilowsky, the weight difference
between the controls and the mutants was considered to be
“very large” or “huge” (0.01= “very small,” 0.2= “small,”
0.5= “medium,” 0.8= “large,” 1.2= “very large,”
2.0= “huge”) [32]. We note that the equal variance
assumption was rejected for all the comparisons (p < 0.05;
F-test).

Type I error rates

The computed type I error rates with α= 0.05 for 11 sex ×
strain combinations are shown in Fig. 3. For Student’s t test,
Welch’s t test, and the permutation test, substantial type I
error inflation (i.e., the lower bound of 95% CI was over
0.05; inflated) was observed for small sample sizes (n= 3
or 4) for Case 1, whereas the bias in the type I error rate was
relatively smaller for Case 2. The magnitude of type I error
inflation was mitigated as the sample size increased
regardless of sex or strain for all tests except the bootstrap
test, which rarely had inflated type I error rates (see Fig. 3).
When type I error rate inflation was observed for the
bootstrap test, the magnitude of inflation was relatively
small compared with the other tests, even with small sample
sizes. However, bootstrap tests were frequently con-
servative (i.e., type I error rates lower than significance
levels), particularly at low sample sizes. The proportions of
strain × sex combinations for each sample size with inflated
or conservative type I error rates from Fig. 3 are summar-
ized in Fig. 4. For Case 1, inflated error rates were reduced
by increasing sample size for Student’s t test, Welch’s t test,

Fig. 2 Summary of baseline
body mass (weight). Baseline
body masses (weights) were
used from four monogenic
murine models of obesity
(agouti yellow [Ay], tubby [tub],
leptin [Lepob], and leptin
receptor [Leprdb]) and their
control with the same genetic
background (C57BL/6J; B6) and
two monogenic murine models
of obesity (carboxypeptidase E
[Cpefat] and leptin receptor
[Leprdb]) and their control with
the same genetic background
(C57BLKS/J; BK). The open
red circle and closed black
circles correspond to female and
male mice, respectively. The
error bars correspond to the 95%
confidence intervals of each
group (female mice for Leprdb

(B6) were not available).
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and permutation test, but some inflation still remained with
sample sizes of 20. The magnitude of reduction was larger
for Welch’s t test, which is reasonable because difference in
variances is accounted for.

The interpretation of the type I error rate for the Wilcoxon
test is complicated because it tests the difference in distribu-
tion rather than only the central tendency. For Case 1, the two
plasmode groups were resampled from different distributions

with different characteristics but with the same mean. As the
sample size increased, the type I error rate increased for dif-
ferences between the two because the increased sample
allowed increased power to detect differences between the
two distributions, not just differences in means. However, as
the plasmodes were resampled from a pooled population for
Case 2, this type I error was not inflated because the plas-
modes were drawn from the same distribution.

Fig. 3 Estimated type I error rate from the plasmode-based
simulation (significance level= 0.05). Estimated type I error rates for
each case (Case 1: both distributions are centered on the same mean,
maintaining other characteristics of the individual-group distributions
including variances; Case 2: the two distributions are pooled into a
single distribution) with nominal significance level, 0.05. Open red and

closed black circles with bars are type I error rates and the 95% CI of
female and male mice for different mutants (five and six strains for
each sex), respectively. A horizontal dotted line corresponds to the
significance level. Note that the scale of the y-axis is different only for
the bootstrap test and is shown on the right.

Fig. 4 Summary of type I error rate for each sample size (sig-
nificance level= 0.05). The length of the red bar over and under the
dashed line is the proportion of strain × sex combinations for each
sample size with significant inflated (the lower bound of 95% CI of

type I error rate is above the significance level) or conservative (the
upper bound of 95% CI of type I error rate is below the significance
level) type I error rates for each sample size.

Murine genetic models of obesity: type I error rates and the power of commonly used analyses as. . . 1445



We observed qualitatively similar results for the other
nominal significance levels (Figs. S1–S3); however, we
highlight a few differences. As α becomes lower, the ability
of the Wilcoxon, permutation, and bootstrap tests to reject
the null hypothesis diminishes. When sample sizes become
too low, the type I error rates of these tests become 0
because there is no set of results capable of rejecting the null
hypothesis at that level.

Overall, the results presented in Figs. 3 and 4 suggest
that the bootstrap test controlled the type I error inflation
even for small sample sizes. However, the bootstrap test
was conservative for small sample sizes, and at some αs and
sample sizes, the tests were unable to ever reject the null.

Statistical power and type II error rates

The power (Fig. 5) was computed by adjusting the mean
difference between mutant and control mice to the same
effect size (Cohen’s d of 1.5) for all strain × sex combina-
tions. Figure 5 shows the power for each strain × sex
combination, and each panel corresponds to a different test.
For each test, the power increased as the sample size
increased. The power of the reference values approached or
reached 80% with a sample size (n) of 8 for any test. Again,
the power for the Wilcoxon test was zero for sample size 3
because of the inherent properties of the test. Comparing the
reference values of the other four tests, the power of the
bootstrap test was the lowest. Departure from the reference
was not observed for large sample sizes (≥12) for any of the
tests except the Wilcoxon test, for which the power was
markedly below the reference for some strain × sex com-
binations. With small sample size (≤5), departure (both

higher and lower) from the reference was observed for all
the tests for some strain × sex combinations. Figure S4
shows the powers for each test, and each panel corresponds
to a single strain × sex combination (note: the reference line
is drawn based on the Student’s t test). The power of the
bootstrap test was consistently the lowest (except for the
Wilcoxon test) for any strain × sex combination. This was
not surprising because a large type I error rate contributes to
a larger power of the test because rejections of the null from
type I errors are counted in the calculation of the type II
error as well.

The results for the other effect sizes are shown in Figs.
S5–S8. The power increased as the effect size and sample
size increased. For an effect size of 1.0, the departure from
the reference value became clearer for large sample sizes
for the Wilcoxon test for some strain × sex combinations.
For a large effect size (d= 3.0) and small sample size, the
powers of Welch’s t test and the bootstrap test were lower
than reference values, whereas those for the permutation
test were higher than the reference values.

Discussion

We examined type I error rates and power using a plas-
mode approach, which allowed us to assess both the
magnitude and the direction of the bias in these statistical
variables in body weight in murine genetic models of
obesity. For type I error rates, inflation was observed for
Student’s t test, Welch’s t test, and the permutation test,
especially with small sample sizes (<8) for Case 1. The
inflation in the type I error was mitigated as sample size

Fig. 5 Estimated power with
effect size set to Cohen’s d of
1.5 for each test. Different
colors correspond to different
strain × sex combinations. The
black thick and dotted lines
correspond to the reference
values assuming normal
distributions for each test and
the Student’s t test, respectively.
To obtain reference values for
each test, we created
1000 samples randomly sampled
from normal distributions N(0,1)
and N(1.5,1) and tested with
each test and Student’s t test.
Significance level is 0.05.

1446 K. Ejima et al.



increased for those three tests; however, for the Student’s t
test and the permutation test, the inflation remained,
though smaller, because equal variance assumptions
behind those tests were violated. This result is consistent
with previous studies in which normal distributions with
the same mean and different variances between groups
were used as population distributions, and Student’s t test
was applied for sample data [33–35]. The Wilcoxon test is
not appropriate for small sample sizes when setting a small
significance level, as p values theoretically cannot be
below the significance levels at small sample sizes (i.e., n
= 3 or 4). Thus, recommendations to use smaller α (e.g.,
0.005) need to account for the requirement for sufficiently
large samples. Furthermore, type I error inflation was
observed for large sample sizes with the Wilcoxon test
when the distributions except mean differed (Case 1). The
bootstrap test was consistently conservative, especially for
small sample sizes.

These observations for type I error rates are consistent
with different significance thresholds. The powers for the
bootstrap test were the lowest compared with the other tests,
except the Wilcoxon test, for any sample sizes, and even
lower compared with the simulated references. As sample
size increased, the power consistently increased. Variation
in power was observed among strain × sex combinations,
especially for small sample sizes. Welch’s t test and boot-
strap were underpowered, and the permutation test was
overpowered, for small sample sizes. Departure from
reference values was observed for any sample size for the
Wilcoxon test.

We enforced equivalent sample sizes for the group
comparisons in this study. However, unequal sample sizes
can lead to biased power and type I error rates [33–35]. This
could be a problem in murine genetic models, where
mutants can be expensive or fewer in number due to
breeding outcomes.

A strength of this study is that we used a plasmode
simulation approach instead of parametric or contrived
distributions. Given that the data generation process and
population distributions are unknown in general (i.e., only
sample distributions are available), a plasmode approach is
useful for computing reliable type I error rates and power
without parametric assumptions of the underlying data
distributions. Furthermore, we used multiple mutants paired
to their respective controls for our simulation and obtained
qualitatively similar results, which strengthens the gen-
eralizability of our results.

A few limitations of this study should be stated.
Although we assumed that the samples represented the
populations, we have no data to confirm this. If the sample
distributions differ from the population distributions (such
as through selection bias or by chance), type I error and
power computed on the basis of the samples may differ

from what is expected from the population. To avoid and
minimize errors due to sampling, minimizing differences
between animals (i.e., genetic background and treatments)
and increasing sample size are recommended. In the data
used for this study, the mice shared a genetic background,
were treated in the same environment, and constituted a
relatively large sample compared with most preclinical
studies (often >20 per sex × strain combination). Another
issue is potential limitations in the generalizability of our
findings. We focused on weight as an outcome, and type I
error rates and power might differ numerically for different
outcomes (e.g., fat mass). Because the plasmode approach
is adaptable, the same simulation can be implemented on a
case-by-case basis. Furthermore, we compared only two
groups using tests permitting head-to-head comparisons.
Analyses for more groups (e.g., ANOVA) or more com-
plex designs (e.g., repeated measures) are warranted.

Although the plasmode simulation is useful, it may not
be easily accessible for many nonstatisticians. We published
the code used in the study (https://doi.org/10.5281/zenodo.
1488359) to enhance the reproducibility of this study. A
potential future direction of this work is to design turnkey
plasmode-based simulation utilities.

In the meantime, the simplest advice is to increase
sample size, because differences in power and type I error
control converge. However, given budgetary constraints,
difficulties in making some genetic mutants, and the spirit
of the Reduction part of the 3Rs [1], choosing a sufficiently
powered sample that is as small as possible is desirable. We
therefore make the following recommendations in planning
a study:

(1) Consult a statistician for advice given expectations for
distributions of outcomes, such as whether the
outcomes are expected to be normally distributed,
and whether equal variance is a reasonable assump-
tion. Herein, we show that in most cases assuming
equal variance in genetic mutants compared against
wildtype animals is unreasonable (Fig. 2).

(2) Given the likelihood that distributions will differ
between strains, Wilcoxon and related tests should not
be used unless there is an interest in differences in
distributions as opposed to differences in means or
central tendency per se.

(3) Determine the statistical test taking the consequences
of type I or type II errors rates into account.

Acknowledgements This study was supported in part by NIH grants
3P30DK056336 (DBA), R25DK099080 (DBA), R25HL124208
(DBA) and Japan Society for Promotion of Science (JSPS) KAKENHI
grant 18K18146 (KE). The data analyses and simulation were per-
formed using a supercomputer, Karst, which was supported in part by
Lilly Endowment, Inc., through its support for the Indiana University

Murine genetic models of obesity: type I error rates and the power of commonly used analyses as. . . 1447

https://doi.org/10.5281/zenodo.1488359
https://doi.org/10.5281/zenodo.1488359


Pervasive Technology Institute, and in part by the Indiana METACyt
Initiative. The Indiana METACyt Initiative at IU was also supported in
part by Lilly Endowment, Inc. The opinions expressed are those of the
authors and do not necessarily represent those of the NIH or any other
organization. All the code which was used in this study will be
available through the following webpage: https://doi.org/10.5281/
zenodo.1488359. Supplementary information is available at the
International Journal of Obesity’s website.

Author contributions DBA designed the research. DLSJ and AWB
gathered the data. KE and AWB performed statistical analysis. DBA,
DLSJ, and UB assisted in data analysis. All authors were involved in
writing or editing the paper and had final approval of the submitted and
published versions

Compliance with ethical standards

Conflict of interest UB has no conflicts of interest. In the last
12 months, DBA has received personal payments or promises for
same from for-profit organizations including: Biofortis; Gelesis; Fish
& Richardson, P.C.; IKEA; Law Offices of Ronald Marron; Sage
Publishing; Tomasik, Kotin & Kasserman LLC; Medpace; Nestle;
WW (formerly Weight Watchers International, LLC) and was an
unpaid member of the International Life Sciences Institute North
America Board of Trustees. In the last 12 months, AWB has received
personal payments or paid travel from: American Society for Nutri-
tion, Indiana University, Kentuckiana Health Collaborative, Rippe
Lifestyle Institute, Inc. Indiana University has received grants from
the following entities to support some of the authors’ research or
educational activities: NIH; Alliance for Potato Research and Edu-
cation; American Federation for Aging Research; Dairy Management
Inc; Herbalife; Laura and John Arnold Foundation; Oxford University
Press; Sloan Foundation; University of Alabama at Birmingham. In
the last 12 months, DLSJ has received personal payments or paid
travel from: University of Alabama at Birmingham. University of
Alabama at Birmingham has received grants from the following
entities to support some of the authors’ research or educational
activities: NIH; Alliance for Potato Research and Education. In the
last 12 months, KE has received personal payments or paid travel
from: The University of Tokyo. The University of Tokyo has received
grants from the following entities to support some of the authors’
research or educational activities: Japan Society for the Promotion of
Science.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. National Centre for the Replacement, Refinement and Reduction
of Animals in Research (NC3Rs). https://www.nc3rs.org.uk/.
Accessed 12 Feb 2019.

2. Allison DB, Brown AW, George BJ, Kaiser KA. Reproducibility:
a tragedy of errors. Nature. 2016;530:27–9.

3. Brown AW, Kaiser KA, Allison DB. Issues with data and ana-
lyses: errors, underlying themes, and potential solutions. Proc Natl
Acad Sci. 2018;115:2563–70.

4. National Academies of Sciences, Engineering, and Medicine.
Reproducibility issues in research with animals and animal mod-
els: workshop in brief. Washington, DC: The National Academies
Press; 2015. p. 8.

5. Begley CG, Ioannidis JP. Reproducibility in science: improving
the standard for basic and preclinical research. Circ Res.
2015;116:116–26.

6. Begley CG, Ellis LM. Raise standards for preclinical cancer
research. Nature. 2012;483:531.

7. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG.
Improving bioscience research reporting: the ARRIVE guidelines
for reporting animal research. PLoS Biol. 2010;8:e1000412.

8. ARRIVE guidelines. https://www.nc3rs.org.uk/arrive-guidelines.
Accessed 12 Feb 2019.

9. Smith AJ, Clutton RE, Lilley E, Hansen KEA, Brattelid T.
PREPARE: guidelines for planning animal research and testing.
Lab Anim. 2018;52:135–41.

10. Student. The probable error of a mean. Biometrika. 1908;6:1–25.
11. Welch BL. The generalisation of student’s problems when several

different population variances are involved. Biometrika.
1947;34:28–35.

12. Mann HB, Whitney DR. On a test of whether one of two random
variables is stochastically larger than the other. Ann Math Stat.
1947;18:50–60.

13. Wilcoxon F. Individual comparisons by ranking methods. Biom
Bull. 1945;1:80–3.

14. Pitman EJG. Significance tests which may be applied to samples
from any populations. J R Stat Soc. 1937;4:119–30.

15. Hall P, Wilson SR. Two guidelines for bootstrap hypothesis
testing. Biometrics. 1991;47:757–62.

16. GEP Box, Andersen SL. Permutation theory in the derivation of
robust criteria and the study of departures from assumption. J R
Stat Soc Ser B. 1955;17:1–34.

17. Hayes AF. Permutation test is not distribution-free: Testing H0:
ρ = 0. Psychol Methods. 1996;1:184–98.

18. Gibbons JD, Chakraborti S. Comparisons of the Mann-Whitney,
Student’s t, and Alternate t tests for means of normal distributions.
The J Exp Educ. 1991;59:258–67.

19. Zimmerman DW, Zumbo BD. Parametric alternatives to the
Student t test under violation of normality and homogeneity of
variance. Percept Motor Skills. 1992;74:835–44.

20. Zimmerman DW. Statistical significance levels of nonparametric
tests biased by heterogeneous variances of treatment groups.
J Gen Psychol. 2000;127:354–64.

21. Rogan JC, Keselman HJ. Is the ANOVA F-test robust to variance
heterogeneity when sample sizes are equal? An investigation via a
coefficient of variation. Am Educ Res J. 1977;14:493–8.

22. Box GEP. Some theorems on quadratic forms applied in the study of
analysis of variance problems, I. Effect of inequality of variance in
the one-way classification. Ann Math Stat. 1954;25:290–302.

23. Cattell RB, Jaspers J. A general plasmode (No. 30-10-5-2) for
factor analytic exercises and research. Multivar Behav Res
Monogr. 1967;67-3:211.

24. Mehta T, Tanik M, Allison DB. Towards sound epistemological
foundations of statistical methods for high-dimensional biology.
Nat Genet. 2004;36:943.

25. Gadbury GL, Xiang Q, Yang L, Barnes S, Page GP, Allison DB.
Evaluating statistical methods using plasmode data sets in the age
of massive public databases: an illustration using false discovery
rates. PLoS Genet. 2008;4:e1000098.

26. Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differ-
ential gene expression with a semiparametric hierarchical mixture
method. Biostatistics. 2004;5:155–76.

27. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed
TP. Summaries of Affymetrix GeneChip probe level data. Nucleic
Acids Res. 2003;31:e15–e.

28. Bouchard G, Johnson D, Carver T, Paigen B, Carey MC. Cho-
lesterol gallstone formation in overweight mice establishes that

1448 K. Ejima et al.

https://doi.org/10.5281/zenodo.1488359
https://doi.org/10.5281/zenodo.1488359
https://www.nc3rs.org.uk/
https://www.nc3rs.org.uk/arrive-guidelines


obesity per se is not linked directly to cholelithiasis risk. J Lipid
Res. 2002;43:1105–13.

29. The Jackson Laboratory. Mouse Phenotype Database. The Jack-
son Laboratory; 2018. https://phenome.jax.org/projects/Paigen3.
Accecced 31 May 2018.

30. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagen-
makers EJ, Berk R, et al. Redefine statistical significance. Nat
Hum Behav. 2018;2:6–10.

31. Goodman SN. How sure are you of your result? Put a number on
it. Nature. 2018;564:7.

32. Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat
Methods. 2009;8:26.

33. Zimmerman DW. Comparative power of Student t test and Mann-
Whitney U test for unequal sample sizes and variances. J Exp
Educ. 1987;55:171–4.

34. Zimmerman DW. A note on homogeneity of variance of scores
and ranks. J Exp Educ. 1996;64:351–62.

35. Zimmerman DW. Invalidation of parametric and nonparametric
statistical tests by concurrent violation of two assumptions. J Exp
Educ. 1998;67:55–68.

Murine genetic models of obesity: type I error rates and the power of commonly used analyses as. . . 1449

https://phenome.jax.org/projects/Paigen3

	Murine genetic models of obesity: type I error rates and the power of commonly used analyses as assessed by plasmode-based simulation
	Abstract
	Introduction
	Materials/Subjects and methods
	What is a plasmode?
	Data source
	Plasmode simulation
	Five different statistical tests on each plasmode
	Summarize plasmode results

	Results
	Characterization of weight distributions of mutant and control animals
	Type I error rates
	Statistical power and type II error rates

	Discussion
	ACKNOWLEDGMENTS
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




