GROWTH CHARACTERISTICS OF Tilia tomentosa Moench. FROM DIFFERENT DISTRICTS IN THE REGIONS OF MARMARA AND WESTERN BLACK SEA IN TURKEY

Cengiz YÜCEDAĞ ${ }^{1}$, Halil Barış ÖZEL ${ }^{2}$, Sezgin AYAN ${ }^{3 *}$, Fulvio DUCCI ${ }^{4}$, Vasilije V. ISAJEV 5, Muhidin ŠEHO ${ }^{6}$
${ }^{1}$ Department of Landscape Architecture, Mehmet Akif Ersoy University, Burdur, Turkey
${ }^{2}$ Department of Forest Engineering, Bartın University, Bartın, Turkey
${ }^{3}$ Department of Silviculture, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
${ }^{4}$ Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Forestry and Wood Research Centre (CREA FL), Arezzo, Italy
${ }^{5}$ Institute for Forestry, Belgrade, Serbia
${ }^{6}$ Bavarian Office for Forest Seeding and Planting (ASP), Teisendorf, Germany

Yücedağ C., H. B. Özel, S. Ayan, F. Ducci, V. Isajev, M. Šeho (2019): Growth characteristics of Tilia tomentosa Moench. from different districts in the regions of Marmara and Western Black Sea in Turkey - Genetika, Vol 51, No.2, 731-742.
Climate change will affect all ecosystem services of green areas in the districts. In many cases, the tree species in parks and districts are suffering from the increasingly warmer and drier summers and newly immigrated pests and diseases. Tilia tomentosa Moench. is considered as an important tree species under climate change for dry and warm conditions in Central and Southeastern Europe countries. This tree species is often used as valued urban tree. In the present study we investigate the growth patterns of T. tomentosa Moench. in relation to their growing conditions in order to evaluate its interactions in urban contexts. All the studied characters varied significantly among the sampled districts. Within each of the regions, number of flowers showed a wide range 72-104 per m^{2} in Marmara region and 54-124 per m^{2} in Western Black Sea region. All studied characters, beyond number of flowers, positively correlated with each other. This study revealed that especially fruit length had a strong and positive correlation with altitude and

[^0]a high negative correlation with temperature. Further researches are required to quantify more growth flower characters of the species from Turkey.
Keywords: Flower, growth, Tilia tomentosa, climate change, Urban forestry, Turkey.

INTRODUCTION

The aesthetic value of plants is very important in landscape practices. The more extraordinary and the higher visual quality a plant is, the more valuable it is. Therefore, the use of plants is a common occurrence in landscape practices (YÜCEDAĞ et al., 2018). Hence, the importance of plant existence in urban centers has increased, and this plant existence has been regarded as an indicator of the quality and livability of districts (CETIN, 2016; YÜCEDAĞ et al., 2017).

One of the plants often used as valued park trees along avenues and roads as they offer good compromises in urban areas is genus Tilia L. (PAWLIKOWSKI, 2010; WERYSZKOCHMIELEWSKA and SADOWKA 2010; JACQUEMART et al., 2018). The genus is also represented by economic and ecological important tree species (IVANOV et al., 2014). It is in the family of Tiliaceae with about thirty tree species, native throughout most of the temperate northern Hemisphere, in Asia, Europe and eastern North America with the exception of western North America. Only four of these species occur naturally in Europe, i.e. Tilia dasystyla Stev., T. tomentosa Moench., T. cordata Mill. and T. platyphyllos Scop. (DALEMSKA et al., 2016). T. tomentosa (Syn: T. alba, T. argentea D.C.) is native to southeastern Europe and southwestern Asia, from Hungary and the Balkans east to western Turkey (Marmara and around the Black Sea Regions), occurring at moderate altitudes (TOKER, 1995; FILIZ et al., 2015; PETROVA et al. 2017).
T. tomentosa Moench. is a deciduous tree growing to $20-35 \mathrm{~m}$ tall, with a trunk up to 2 m in diameter (PETROVA et al., 2017). It appears to tolerate drought better than other Tilia species (GILMAN and WATSON, 1994). As a young three it has a pyramidal form but develops into an upright silhouette with an oval canopy. The leaves turn yellow before dropping in autumn. In early summer, the trees are perfumed with extremely fragrant clusters of small, yellow/white blossoms but these are difficult to see due to the dense cover of the large leaves. The flowers attract large numbers of bees and a small, egg-shaped fruit follows the blooms. It could be quite popular for use as a shade, specimen, or residential street tree. Moreover, it could be better considered in urban landscaping to cope with stressing conditions

The species is widely planted outside its native range across Europe and North America. Its high drought and pest tolerance qualifies T. tomentosa as an excellent urban tree (KOCH and STEVENSON, 2017). The species considered as a top species for improving air quality (SELMI et al., 2016) has been successfully grown in urban areas where air pollution, poor drainage, compacted soil, and/or drought are common (GILMAN and WATSON, 1994).

Among the other Tilia species, T. tomentosa is the last species to flower (WERYSZKOCHMIELEWSKA and SADOWSKA, 2010; JACQUEMART et al., 2018). The flowers of T. tomentosa used quite prevalent in traditional treatment methods (DALEMSKA et al., 2016), have great potential to in industries such as food, medicine and cosmetics due to the rich content of phenolic compounds. It also possesses spasmolytic, diuretic and sedative effects due to flavonoids, essential oil and mucilage components and have been used to treat disorders such as nervous tension, cough, flu, migraine (KIVRAK et al., 2017). The fragrant flowers of this tree are toxic to bees (KOCH and STEVENSON, 2017). Trees are usually attacked by aphids which cover the ground and the leaves with a sticky honeydew (BRICKELL, 1990) which may be a negative issue for
urban uses. Rarely produces suckers. Quite tolerant of root disturbance, semi-mature trees up to 5 metres tall have been transplanted successfully. Plants in this genus are notably resistant to honey fungus (HUXLEY, 1992).

Recently, there are some studies completed on the morphology and anatomy of T. tomentosa fruits (TOKER et al., 1997), main flavonoids of leaves (TOKER et al., 2004), its pollen release and flowering phenology (WERYSZKO-CHMIELEWSKA and SADOWSKA, 2010; (DABROWSKA et al., 2016), morphological differentiation based leaf and twig descriptors (IVANOV et al., 2014), genetic variation by RAPD markers (FILIZ et al., 2015), phenolic composition of flowers (KIVRAK et al., 2017).

No genetic differentiation was detected between wild and urban materials (FILIZ et al., 2015). By contrast, no detailed research on growth characters of the species in question was done in Turkish populations. The first purpose of the study is to analyze the growth patterns of T. tomentosa in relation to their growing site conditions. Second purpose is to determine the relations between the growth characters and environmental variables. A general purpose is using this information as an indicator of the species adaptability in urban stressing contexts.

MATERIAL AND METHODS

The study was done for 47 districts located 14 provinces of the Marmara (M) and Western Black Sea (WBS) regions in Turkey (Table 1; Figure 1). All measured trees were park or street trees. Each site was represented by 3 individuals. A minimum distance of 50 m was kept between trees to avoid the sampling of related trees. Average age for each site was determined by the measurement of 10 individuals measured by diameter increment. Altitude and aspect of sites were detected through handheld GPS. Their gradient was measured via a manual inclinometer.

Figure 1. Distribution of Tilia tomentosa Moench. on the world (above) and provinces of sampled areas (below)

In total 141 trees from both regions were chosen to measure total height (H), diameter at breast height (DBH), crown length and width (CL and CW), leaf length and width (LL and LW), fruit length (FL) and number of flowers (NF). Three fresh and fully expanded leaves were collected in the mid-to-upper crown of the trees and from the first flush of the year for the
measurements of LL and LW. All leaf samples were taken from north side of the trees. The measurements of NF were conducted during the term coinciding with the peak of the blooming of the studied species depend on the study site.

Table 1. Basic information for the study sites in the regions of Marmara and Western Black Sea

No	Site	Region	Altitude (m)	Age	Aspect	Gradient $\left({ }^{\circ}\right)$	Slope	$\begin{gathered} \text { Temperature* } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Precipitation* } \\ & (\mathrm{mm}) \end{aligned}$
1	ÇanakkaleEzine		75	38	SW	15	Lower	15	616.3
2	ÇanakkaleLapseki		47	62	S	18	Medium	15	616.3
3	TekirdağŞarköy		225	48	W	32	Upper	14	581.8
4	TekirdağSüleymanpaşa	M	232	67	NE	30	Upper	14	581.8
5	Kocaeli- Kefken	M	312	53	E	15	Medium	14.9	813.0
6	Bursa- Karacabey		637	78	W	21	Medium	14.6	706.9
7	Balıkesir- Sindırgı		713	83	NE	16	Lower	14.6	583.0
8	Yalova- Mudanya		63	57	N	18	Lower	10.5	545.5
9	Bolu- Mudurnu		572	45	W	18	Lower	14.5	838.3
10	Sakarya- Akyazı		234	76	NW	34	Upper	14.5	838.3
11	Sakarya- Karasu		346	61	N	28	Medium	14.5	838.3
12	Sakarya- Hendek		348	57	E	32	Upper	14.5	838.3
13	DüzceAkçakoca		80	36	NW	10	Lower	13.3	825.5
14	Düzce- Yığılca		336	72	NE	25	Medium	13.3	825.5
15	Düzce-Çilimli		955	53	SW	21	Upper	13.3	825.5
16	Zonguldak- Alaplı		69	65	N	10	Lower	13.6	1218.1
17	Zonguldak- Kocaman	WBS	37	73	E	15	Medium	13.6	1218.1
18	Zonguldak- Kilimli		563	58	N	32	Upper	13.6	1218.1
19	Zonguldak- Devrek		462	75	NE	24	Medium	13.6	1218.1
20	Zonguldak- Gökçebey		572	71	W	16	Medium	13.6	1218.1
21	Zonguldak- Çaycuma		523	43	NW	21	Lower	13.6	1218.1
22	Karabük- Yenice		315	76	SW	35	Upper	13.4	489.8
23	Karabük- Safranbolu		492	36	S	15	Medium	13.4	489.8
24	Karabük- Eflani		637	63	NE	28	Medium	134.	489.8
25	KarabükOvacuma		645	81	NW	32	Upper	13.4	489.8

26	BartınAbdipaşa	445	59	E	12	Lower	12.8	1046.2
27	Bartın-Ulus	568	67	SW	26	Upper	12.8	1046.2
28	Bartın- Karaçaydere	265	63	NW	18	Lower	12.8	1046.2
29	BartınGürgenpınarı	257	41	N	23	Medium	12.8	1046.2
30	BartınAmasra	134	75	N	36	Upper	12.8	1046.2
31	Bartın- Kurucaşile	126	69	N	32	Upper	12.8	1046.2
32	KastamonuCide	175	83	NW	28	Medium	9.8	480.0
33	Kastamonu- Şenpazarı	425	76	E	34	Upper	9.8	480.0
34	Kastamonu- Pınarbaşı	543	74	NE	37	Upper	9.8	480.0
35	Kastamonu- Azdavay	637	91	E	32	Upper	9.8	480.0
36	KastamonuDaday	618	87	NW	24	Medium	9.8	480.0
37	Kastamonu- Araç	548	90	W	36	Upper	9.8	480.0
38	Kastamonuİhsangazi	553	84	E	42	Upper	9.8	480.0
39	Kastamonu- Devrekani	667	74	SE	35	Upper	9.8	480.0
40	Kastamonuİnebolu	63	65	NW	21	Medium	9.8	480.0
41	KastamonuBozkurt	175	86	N	15	Lower	9.8	480.0
42	Kastamonu- Abana	54	41	NE	18	Lower	9.8	480.0
43	Sinop-Türkeli	61	54	N	14	Lower	14.1	686.3
44	SinopAyancık	78	69	NW	18	Medium	14.1	686.3
45	Sinop- Bektaşağa	92	37	SW	25	Lower	14.1	686.3
46	Sinop-Erfelek	327	92	SE	45	Upper	14.1	686.3
47	Sinop-Gerze	60	75	N	10	Lower	14.1	686.3

*Climate records were obtained from ANONYMOUS (2018).

The model of two level nested ANOVA (SOKAL and RHOLF, 1995) was performed to test for significant differences in character mean values between regions and among districts within regions as districts within two regions are not the same as each other. In this variance analysis, both regions and districts were considered as fixed variables. Furthermore, the mean values and standard errors of the mean for all studied characters for each of the districts were calculated. Pairwise comparison of correlations between the studied characters, and between the studied characters and environmental variables were evaluated by using Pearson's correlation coefficients. Component loading plots by using eight variables were obtained with Principle component analysis of factor analysis. Furthermore, to visualize the degree of similarity among districts, morphological differences among districts were visualized with both an unweighted pair group method with hierarchical cluster analyses based on Squared Euclidean distances. All statistical analyzes were carried out by using SPSS program (SPSS Inc., 2011).

RESULTS

Significant differences were found for all growth characteristics between the two regions and between districts within regions (Table 2). The average values of all characters in Marmara region beyond number of flowers were lower than those in Western Black Sea region (Table 3). The lowest characters were found at Sakarya-Hendek with height (10.8 m), diameter at breast height (20.4 cm), crown width (1.7 m) and leaf length $(4.2 \mathrm{~cm})$. As shown in Table 3; the highest at Sinop-Bektaşağa had the highest height (21.8 m), diameter at breast height (55.6 cm), crown width $(8.8 \mathrm{~m})$ and leaf length $(11.8 \mathrm{~cm})$. Leaf width ranged from 1.8 cm (BartınKaraçaydere) to 8.3 cm (Kastamonu-Pınarbaşı). Fruit length varied between 3.5 mm and 12.4 mm . Within each region, number of flowers (per m^{2}) shown a wide range between 72 and 104 per m^{2} in Marmara region and 54 to 124 per m^{2} in Western Black Sea region. As considered the overall means, it was found as 16.3 m for $\mathrm{H}, 42.5 \mathrm{~cm}$ for $\mathrm{DBH}, 6.3 \mathrm{~m}$ for $\mathrm{CL}, 4.8 \mathrm{~m}$ for $\mathrm{CW}, 7.8$ cm for LL, 5 cm for LW, 8.7 mm for FL, and 82 per m^{2} for NF (Table 3).

Table 2. Variance analysis results by all studied characters

Characters	Variance Source	Degree of freedom	F ratio	P
H	Between districts within region	45	1167.7	0.000
	Between regions	1	2698.7	0.000
DBH	Between districts within region	45	949.6	0.000
	Between regions	1	796.6	0.000
CL	Between districts within region	45	1280.2	0.000
	Between regions	1	2652.9	0.000
CW	Between districts within region	45	676.0	0.000
	Between regions	1	220.0	0.000
LL	Between districts within region	45	2944.5	0.000
	Between regions	1	5581.0	0.000
LW	Between districts within region	45	22182.7	0.000
	Between regions	1	28757.1	0.000
FL	Between districts within region	45	567.8	0.000
	Between regions	1	595.4	0.000
NF	Between districts within region	45	535.1	0.000
	Between regions	1	1410.8	0.000

Correlation results between pairs of all studied characters are presented in Table 4. There were strong positive correlations between pairs of all studied characters apart from number of flowers ($P<0.001$). Number of flowers had no correlation with the other characters. The highest and lowest correlation coefficients ($r=0.96$ and $r=0.81$) was found between diameter at breast height and crown length, and crown width and leaf width, respectively.

Correlation results between each of all studied characters and environmental variables are given in Table 5. Accordingly, altitude positively correlated with crown length, crown width and fruit length ($P<0.05$). Yet, it had no correlation with the other growth characters. All studied characters had a negative correlation with temperature $(P<0.05)$. On the contrary, precipitation had a negative correlation only with leaf width ($\mathrm{r}=-0.37$).

Table 3. Means and Standard errors of all studied characters

Site	Mean and Standard Error							
No Region	H (m)	DBH (cm)	CL (m)	CW (m)	LL (cm)	LW (cm)	FL (mm)	$\mathrm{NF}\left(\right.$ per m ${ }^{2}$)
M	11.4 ± 0.7	21.3 ± 0.6	3.8 ± 0.4	1.9 ± 0.6	4.5 ± 1.2	1.8 ± 0.8	5.9 ± 1.1	72 ± 1.8
	14.2 ± 0.3	43.7 ± 0.7	6.1 ± 0.4	3.5 ± 0.3	7.3 ± 0.8	5.5 ± 1.1	8.4 ± 0.8	78 ± 2.1
	12.7 ± 0.4	37. 2 ± 0.5	4.9 ± 0.5	3.3 ± 0.3	5.4 ± 0.6	3.2 ± 1.4	5.6 ± 1.3	85 ± 1.5
	14.9 ± 1.1	41.6 ± 0.1	6.3 ± 0.2	4.2 ± 0.4	7.8 ± 0.6	5.6 ± 0.7	8.4 ± 0.6	82 ± 1.6
	13.2 ± 0.4	40. 5 ± 0.5	5.2 ± 0.6	4.0 ± 0.8	6.1 ± 1.3	3.7 ± 1.2	7.5 ± 0.6	96 ± 0.9
	19.2 ± 0.6	46.3 ± 0.6	7.3 ± 0.6	6.2 ± 1.0	8.4 ± 1.5	5.9 ± 0.6	9.2 ± 1.2	104 ± 0.6
	20.4 ± 0.6	48.2 ± 0.6	8.1 ± 0.8	6.7 ± 0.6	9.4 ± 0.7	6.5 ± 0.6	10.4 ± 1.8	83 ± 1.4
	13.1 ± 0.2	35.6 ± 0.6	4.9 ± 0.5	3.2 ± 0.5	5.6 ± 0.6	3.2 ± 1.0	6.3 ± 1.6	75 ± 1.7
Mean	14.9 ± 0.2	39.3 ± 0.4	5.8 ± 0.3	4.1 ± 0.3	6.8 ± 0.8	4.4 ± 0.7	7.7 ± 0.5	84 ± 1.3
Range	11.4-20.4	21.3-48.2	3.8-8.1	1.9-6.7	4.5-9.4	1.8-6.5	5.6-10.4	72-104
WBS	18.4 ± 0.5	45.9 ± 0.4	6.8 ± 0.5	5.3 ± 0.6	8.3 ± 1.4	6.4 ± 1.3	9.2 ± 1.3	124 ± 1.0
	15.7 ± 0.6	41. 3 ± 0.6	5.9 ± 0.4	4.4 ± 0.7	7.1 ± 0.7	5.2 ± 1.8	8.4 ± 0.5	118 ± 1.5
	13.9 ± 0.1	40.8 ± 0.6	5.8 ± 0.4	3.6 ± 0.4	6.4 ± 1.3	3.6 ± 1.2	7.9 ± 0.6	106 ± 2.4
	10.8 ± 0.4	20.4 ± 0.5	3.4 ± 0.8	1.7 ± 0.4	4.2 ± 1.6	2.3 ± 0.5	6.8 ± 0.8	92 ± 1.7
	17.5 ± 0.6	44.3 ± 0.8	6.1 ± 0.3	5.1 ± 0.8	8.2 ± 1.2	6.7 ± 0.8	10.3 ± 0.4	94 ± 0.8
	13.8 ± 0.6	40.9 ± 1.1	5.3 ± 1.1	4.8 ± 0.9	6.1 ± 1.4	3.9 ± 0.6	9.5 ± 1.2	87 ± 1.6
	15.9 ± 0.6	42.6 ± 1.4	6.2 ± 0.4	5.3 ± 1.0	7.4 ± 0.6	4.8 ± 1.2	8.6 ± 1.1	56 ± 1.4
	17.8 ± 0.5	45.2 ± 0.6	6.3 ± 0.6	4.8 ± 1.1	8.6 ± 0.8	5.3 ± 1.2	9.7 ± 1.8	75 ± 1.2
	14.2 ± 0.3	41.2 ± 0.8	6.4 ± 0.6	5.6 ± 0.3	6.5 ± 0.6	3.2 ± 1.4	7.2 ± 0.8	64 ± 1.0
	18.4 ± 0.1	45.7 ± 0.6	6.7 ± 0.7	5.9 ± 0.3	8.7 ± 1.0	5.7 ± 1.7	9.8 ± 0.6	72 ± 1.7
	18.2 ± 0.4	45.1 ± 0.5	6.5 ± 0.6	5.8 ± 0.8	8.2 ± 1.1	5.5 ± 0.6	10.4 ± 0.6	93 ± 2.0
	11.9 ± 0.4	33.4 ± 0.5	4.9 ± 0.4	3.7 ± 0.7	5.1 ± 0.5	2.4 ± 1.2	6.9 ± 0.6	97 ± 1.6
	17.8 ± 0.6	45.9 ± 0.6	6.8 ± 0.2	5.3 ± 0.5	8.9 ± 0.6	6.3 ± 0.8	9.3 ± 0.4	108 ± 2.3
	11.2 ± 0.7	21.3 ± 0.6	3.9 ± 0.2	2.1 ± 0.6	4.5 ± 0.6	2.4 ± 1.1	5.8 ± 0.7	72 ± 1.8
	15.4 ± 0.6	41.8 ± 0.6	6.5 ± 0.8	5.2 ± 0.6	7.3 ± 1.2	3.6 ± 1.2	8.7 ± 1.0	75 ± 1.5
	19.5 ± 0.6	52.3 ± 0.7	7.8 ± 0.6	6.3 ± 0.6	9.8 ± 1.3	7.2 ± 0.8	11.2 ± 1.3	67 ± 0.9
	14.6 ± 0.7	40.7 ± 0.3	6.2 ± 0.6	5.4 ± 0.4	6.8 ± 0.7	3.5 ± 0.5	7.5 ± 1.5	54 ± 1.5
	16.3 ± 0.7	43.1 ± 0.6	6.5 ± 0.6	5.1 ± 0.2	7.6 ± 0.5	4.1 ± 0.6	9.5 ± 0.5	84 ± 1.7
	15.7 ± 0.3	44.2 ± 0.7	6.4 ± 0.4	5.3 ± 0.4	6.9 ± 1.1	3.4 ± 0.6	7.6 ± 0.8	76 ± 1.1
	12.1 ± 0.3	32.4 ± 0.5	4.9 ± 0.8	3.4 ± 0.6	4.8 ± 1.3	1.8 ± 0.6	6.2 ± 1.5	72 ± 1.5
	17.6 ± 0.8	45.8 ± 0.4	6.4 ± 0.6	5.2 ± 0.5	8.6 ± 1.5	4.5 ± 1.0	9.3 ± 1.3	68 ± 1.5
	16.8 ± 1.0	42.3 ± 0.8	6.1 ± 0.6	4.7 ± 0.7	8.2 ± 1.0	4.2 ± 1.2	9.1 ± 1.4	75 ± 0.8
	20.4 ± 1.1	54.3 ± 0.1	8.1 ± 0.4	7.2 ± 0.3	10.4 ± 1.0	7.3 ± 0.9	11.3 ± 0.6	77 ± 1.2
	17.8 ± 0.5	44.9 ± 0.3	6.8 ± 0.2	5.6 ± 0.4	9.2 ± 0.8	6.4 ± 1.5	10.9 ± 0.7	84 ± 1.6
	17.4 ± 0.5	43.8 ± 0.8	6.6 ± 0.3	5.2 ± 0.5	8.9 ± 0.6	5.9 ± 1.4	9.7 ± 0.6	93 ± 1.3
	21.7 ± 0.5	55.4 ± 0.6	8.7 ± 0.4	6.3 ± 0.5	11.5 ± 0.6	8.3 ± 0.6	12.4 ± 0.6	98 ± 1.0
	20.6 ± 0.7	54.7 ± 0.6	8.5 ± 0.2	6.1 ± 0.6	10.6 ± 1.2	7.1 ± 0.6	11.5 ± 1.2	64 ± 0.9
	21.4 ± 0.4	55.2 ± 0.6	8.6 ± 0.5	6.5 ± 0.7	11.3 ± 1.1	8.2 ± 1.2	12.1 ± 1.6	78 ± 1.2
	20.8 ± 0.4	54.2 ± 0.9	8.1 ± 0.8	6.0 ± 0.7	10.2 ± 1.8	7.3 ± 1.1	$11.3 \pm$	74 ± 1.4
	17.7 ± 0.3	44.5 ± 1.0	6.7 ± 0.7	5.1 ± 0.8	9.2 ± 1.6	6.8 ± 0.8	10.7 ± 0.6	82 ± 2.0
	16.2 ± 0.4	42.9 ± 0.5	5.9 ± 0.6	4.2 ± 0.2	7.9 ± 1.5	5.1 ± 0.8	8.4 ± 0.5	75 ± 2.1
	21.2 ± 0.4	55.2 ± 0.4	8.3 ± 0.6	6.8 ± 0.4	10.3 ± 1.0	7.6 ± 0.6	11.2 ± 0.6	72 ± 1.6
	13.4 ± 0.5	33.4 ± 0.7	4.2 ± 0.6	3.4 ± 0.6	5.1 ± 1.2	2.5 ± 0.6	4.7 ± 0.9	68 ± 1.8
	13.9 ± 0.1	41.2 ± 0.6	5.3 ± 0.3	4.1 ± 0.6	6.3 ± 0.8	3.4 ± 0.6	5.4 ± 1.1	71 ± 1.5
	15.8 ± 0.7	41.8 ± 0.4	6.1 ± 0.8	4.9 ± 0.5	8.9 ± 0.6	5.5 ± 0.4	10.2 ± 0.7	94 ± 1.2
	11.2 ± 0.6	23.6 ± 0.6	3.2 ± 0.7	1.8 ± 0.4	4.8 ± 0.6	2.7 ± 0.8	3.5 ± 0.5	67 ± 2.0
	21.8 ± 0.6	55.6 ± 0.4	8.8 ± 0.4	6.7 ± 0.6	11.8 ± 0.7	7.9 ± 1.0	9.6 ± 1.0	78 ± 1.4
	18.3 ± 0.6	43.9 ± 0.4	6.9 ± 0.5	5.4 ± 0.8	9.7 ± 0.7	6.4 ± 1.2	8.4 ± 1.3	73 ± 1.3
	12.8 ± 0.5	39.9 ± 0.7	5.9 ± 0.4	4.4 ± 0.3	6.3 ± 0.8	4.2 ± 0.9	5.6 ± 0.8	84 ± 1.1
Mean	16.6 ± 0.4	43.1 ± 0.3	6.4 ± 0.2	5.0 ± 0.4	8.0 ± 1.0	5.1 ± 0.9	8.9 ± 1.1	81 ± 1.3
Range	10.8-21.8	20.4-55.6	3.2-8.8	1.7-7.2	4.2-11.8	1.8-8.3	3.5-12.4	54-124
Overall Mean	16.3 ± 0.2	42.5 ± 0.3	6.3 ± 0.1	4.8 ± 0.2	7.8 ± 0.8	5.0 ± 0.7	8.7 ± 0.9	82 ± 0.8
Overall Range	10.8-21.8	20.4-55.6	3.2-8.8	1.7-7.2	4.2-11.8	1.8-8.3	3.5-12.4	54-124

Figure 2. Component loading plots by using eight variables
Table 4. Correlation results between pairs of all studied characters

Character (1)	Character (2)	r	\boldsymbol{P}
	Diameter at breast height	0.91	0.000
	Crown length	0.95	0.000
Height	Crown width	0.91	0.000
	Leaf length	0.97	0.000
	Leaf width	0.93	0.000
	Fruit length	0.88	0.000
	Number of flowers	0.06	0.689
	Crown length	0.96	0.000
	Crown width	0.93	0.000
	Leaf length	0.91	0.000
Diameter at breast height	Leaf width	0.87	0.000
	Fruit length	0.83	0.000
	Number of flowers	0.05	0.745
	Crown width	0.94	0.000
	Leaf length	0.95	0.000
Crown length	Leaf width	0.89	0.000
	Fruit length	0.85	0.000
	Number of flowers	0.03	0.849
Crown width	Leaf length	0.87	0.000
	Leaf width	0.81	0.000
	Fruit length	0.82	0.000
	Number of flowers	-0.01	0.977
Leaf length	Leaf width	0.95	0.000
	Fruit length	0.88	0.000
	Number of flowers	0.04	0.802
Fruit length	Fruit length	0.87	0.000
	Number of flowers	0.17	0.257

Table 5. Correlation results between each of all studied characters and environmental variables

Table 5. Correlation results between each of all studied characters and environmental variables						
Characters	Altitude		Temperature		Precipitation	
	r	P	r	P	r	P
Height	0.29	0.046	-0.41	0.004	-0.23	0.121
Diameter at breast height	0.28	0.049	-0.37	0.011	-0.16	0.272
Crown length	0.36	0.014	-0.35	0.015	-0.21	0.150
Crown width	0.39	0.007	-0.32	0.030	-0.05	0.755
Leaf length	0.23	0.114	-0.41	0.004	-0.28	0.053
Leaf width	0.24	0.109	-0.38	0.009	-0.37	0.010
Fruit length	0.43	0.003	-0.42	0.003	-0.17	0.257
Number of flowers	0.14	0.361	0.23	0.113	-0.05	0.759

Two components were obtained from factor analysis. The two components of PCA explained 80 and 13% of the total variation, respectively. While number of flower formed a discrete group, the other variables were similar to each other (Figure 2).

According to the hierarchical cluster analysis (Figure 3) based on eight measured characters, two main groups could be distinguished at the 25.0 distance unit. Only four districts (Çanakkale-Ezine, Karabük-Yenice, Sakarya-Hendek and Sinop Ayancık) were replaced in a group. On the other hand, most districts were grouped within two groups.

DISCUSSION

All studied characters varied significantly between districts within regions and between regions. For most of characters, Sakarya-Hendek had the lowest mean values and SinopBektaşağa had the highest ones. Likewise, RADAGLOU et al. (2008) found that the optimum altitude of T. tomentosa in Romania was 150-450 m. Individuals from Western Black Sea region had higher values of all studied characters than those from Marmara region in terms exception number of flowers. The mean number of flower ($82 \mathrm{per} \mathrm{m}^{2}$) in the study was in line with that (80-100 per m^{2}) indicated by PAWLIKOWSKI (2010) for T. tomentosa in the city area of TorunPoland.

The averages of leaf length and leaf width (7.8 cm and 5.0 cm) in the current study were lower than those (9.2 cm and 9.1 cm) reported by IVANOV et al. (2014). This case may be explained by the fact that the trees located inside the districts have smaller leaves than those in natural populations. Similarly, VELICKOVIC (2010) emphasized that T. cordata leaves in the reference (unpolluted) area were significantly larger compared with those from the polluted site. Furthermore, overall range for leaf length $(4.2-11.8 \mathrm{~cm})$ found in the present study was similar to that $(4-13 \mathrm{~cm})$ reported by PETROVA et al. (2017). On the other side, the mean of fruit length (8.7 $\mathrm{mm})$ in the present study was higher than that (6.9 mm) of T. tomentosa from the garden of Faculty of Science of Ankara University, Turkey indicated by TOKER et al. (1997). That may be why the individual from Ankara University is out of its natural distribution area.

All studied characters, exception for number of flowers, positively correlated with each other. Namely, the growing plant size (height and diameter at breast height) resulted in higher crown length and width, leaf length and width, and fruit length. Similar results have been found previously for other tree species such as a positive correlation between diameter at breast height and height in T. cordota (MOSER et al., 2015) and between leaf length and height in Rhizophora mangle (PEEL et al., 2017).

This study revealed that especially fruit length had a strong and positive correlation with altitude and a high negative correlation with temperature. Specifically, trees in the districts from high altitudes with low annual mean temperatures had higher fruit length than those in the districts from low altitudes with higher temperatures. On the other hand, it was found that individuals in the city with lower temperature had higher plant and leaf sizes. Although it was widely acknowledged that low temperature at high altitudes inhibits tree growth above the tree line (KORNER and PAULSEN, 2004). Therefore, relating groups in districts should make planting activities by considering these results.

The present study showed a substantial variation occurring among 47 districts from the regions of Marmara and Western Black Sea, Turkey and negative association between most studied characters and temperature. These strong associations indicate an important role of these characters in local adaptation. With ongoing climate change, warm adapted ecotypes of the species must be determined to mitigate effects of climate warming. Districts from Marmara region outperformed in terms of number of flowers. Further researches are required to quantify more growth flower characters of T. tomentosa from Turkey.
brickell, C. (1990): The RHS Gardener's Encyclopedia of Plants and Flowers Dorling Kindersley Publishers Ltd. 1990 ISBN 0-86318-386-7.
CETıN, M. (2016): Peyzaj Çalışmalarında Kullanılan Bazı Bitkilerde Klorofil Miktarının Değişimi. Kastamonu University Journal of Forestry Faculty, 16(1): 239-245.
DALEMSKA, Z., D., MIHAYLOVA, A., KRASTANOV (2016): Comparative Investigation on Biological Activity of Tilia tomentosa M. and Matricaria chamomilla L. Water Extracts. Scientific works of university of food technologies, 63(1): 148-154.
FILIZ, E., S., BIRBILENLER, I.I., ÖZYIĞIT, S., KULAÇ, F.C., SAKINOĞLU ORUÇ (2015): Assessment of genetic variations of silver lime (Tilia tomentosa Moench.) by RAPD markers in urban and forest ecosystems, Biotech. \& Biotech. Equipment, 29(4): 631-636.
GILMAN, E.F., D.G., WATSON (1994): Tilia tomentosa. Fact Sheet ST-642, University of Florida.
hUXLEY, A. (1992): The New RHS Dictionary of Gardening. 1992. MacMillan Press ISBN 0-333-47494-5.
IVANOV, P., C., LOGHIN, C.M., ENESCU (2014): Morphological differentiation between Romanian lime species (Tilia spp.): a case study. Bull. Transilvania Univ. Brasov., 7 (56): 21-2.
JACQUEMART, A-L., L., MOQUET, P., OUVRARD, J., QUETIN-LECLERCQ, M-F., HERENT, M., QUINET (2018): Tilia trees: toxic or valuable resources for pollinators? Apidologie, DOI: 10.1007/s13592-018-0581-3.
KIVRAK, Ş., T., GOKTURK, I., KIVRAK (2017): Determination of Phenolic Composition of Tilia tomentosa Flowers Using UPLC-ESI-MS/MS. Int. J. Sec. Metabolite, 4(3): 249-256.
KOCH, H. and P.C., STEVENSON (2017): Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa). Biol. Lett., 13: 20170484.
KORNER, C. and J., PAULSEN (2004): A world-wide study of high altitude treeline temperatures. J. Biogeogr., 31: 713-732.
MOSER, A., T., ROTZER, S., PAULEIT, H., PRETZSCH (2015): Structure and ecosystem services of small-leaved lime (Tilia cordataMill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban Forestry \& Urban Greening, 14: 1110-1121.
PAWLIKOWSKI, T. (2010): Pollination activity of bees (Apoidea: Apiformes) visiting the flowers of Tilia cordata Mill. and Tilia tomentosa Moench in an urban environment. Journal of Apicultural Science, 54(2): 73-79.
PEEL, J.R., M.C., MANDUJANO SÁNCHEZ, J.L., PORTILLO, J., GOLUBOV (2017): Stomatal density, leaf area and plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a salinity gradient in the Mexican Caribbean. Revista De Biologia Tropical, 65(2): 701-712.
PETROVA, S., K., TODOROVA, M., DAKOVA, E., MEHMED, B., NIKOLOV, I., DENEV, M., STRATIEV, G., GEORGIEV, A., delchev, s., stamenov, L., firkova, n., gesheva, D., Kadirova, I., VElcheva (2017): Photosynthetic Pigments as Parameters/Indicators of Tree Tolerance to Urban Environment (Plovdiv, Bulgaria). Ecologia Balcanica, 9(1): 53-62.
RADOGLOU, K., D., DOBROWOLSKA, G., SPYROGLOU, V.N., NICOLESCU (2008): A review on the ecology and silviculture of limes (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia tomentosa Moench.) in Europe. 29 pp. http://www.valbro.uni-freiburg.de/
SELMI, W., C., WEBER, E., RIVIERE, N., BLOND, L., MEHDI, D., FRANCE (2016): Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry \& Urban Greening, 17: 192-201.
SOKAL, R.R. and F.J., ROHLF (1995): Biometry: The Principles and Practice of Statistics in Biological Research. Third edition, W.H. Freeman and company, New York, pp. 560-564.
SPSS INC (2011): SPSS 20.0 guide to data analysis. Prentice Hall Public. New Jersey.
TOKER, G. (1995): Ihlamur Çiçek ve Kabuklarının Biyolojik Aktivitesi ve Kullanılışı. FABAD J. Pharm. Sci., 20: 75-79.
TOKER, M.C., G., TOKER, R., YILMAZER (1997): Morphological and anatomical investigations on linden (Tilia) fruits. Ankara Ecz. Fak. Derg., 26(2): 89-94.

TOKER, G., M., MEMIŞOĞLU, E., YEŞILADA, M., ASLAN (2004). Main flavonoids of Tilia argentea DESF. ex DC. leaves. Turk. J. Chem., 28: 745-749.
VELICKOVIC, M.V. (2010): Reduced developmental stability in Tilia cordata leaves: effects of disturbed environment. Periodicum Biologorum, 112 (3): 273-281.
WERYSZKO-CHMIELEWSKA, E. and D.A., SADOWSKA (2010): The phenology of flowering and pollen release in four species of Linden (Tilia L.). Journal of Apicultural Science, 54(2): 99-108.
YÜCEDAĞ, C., L.G., KAYA, A., ULU (2017): Investigation of landscape design efficiency in the housing development and the apartment complexes of Burdur city, Turkey. The Journal of Graduate School of Natural and Applied Sciences of Mehmet Akif Ersoy University, 8 (2): 114-122.
YÜCEDAĞ, C., L.G., KAYA, M., CETIN (2018): Identifying and assessing environmental awareness of hotel and restaurant employees' attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 90 (2): 60.

KARAKTERISTIKE RASTA Tilia tomentosa Moench. IZ RaZličItith distrikata U REGIJAMA MARMARA I ZAPADNOG CRNOG MORA U TURSKOJ

Cengiz YÜCEDAĞ ${ }^{1}$, Halil Barış ÖZEL², Sezgin AYAN ${ }^{3}$, Fulvio DUCCI ${ }^{4}$, Vasilije V. ISAJEV ${ }^{5}$, Muhidin ŠEHO ${ }^{6}$
${ }^{1}$ Departman za pejzažnu arhitekturu, Mehmet Akif Ersoy Univerzitet, Burdur, Turska
${ }^{2}$ Departman za šumarski inžinjering, Bartın Univerzitet, Bartın, Turska
${ }^{3}$ Departman za šumarstvo, Fakultet za šumarstvo, Kastamonu Univerzitet, Kastamonu, Turska
${ }^{4}$ Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Istraživački centar za šumarstvo i drvo, (CREA FL), Arezzo, Italy
${ }^{5}$ Institut za šumarstvo, Beograd, Srbija
${ }^{6}$ Bavarska kancelarija za šume i šumske sadnice (ASP), Teisendorf, Nemačka

Izvod
Klimatske promene će uticati na sve osobine ekosistema zelenih površina. U mnogim slučajevima, vrste drveća u parkovima pate od sve toplijih i suvih leta i novih štetočina i bolesti. Tilia tomentosa Moench. smatra se važnom vrstom drveća za uslove klimatskih promena za suve i tople uslove u zemljama Centralne i Jugoistočne Evrope. Ova vrsta drveća se često koristi u urbanim sredinama. U ovoj studiji istražujemo primere rasta T. tomentosa Moench. u odnosu na njihove uslove rasta kako bi se procenile njegove interakcije u urbanim sredinama. Sve ispitivane osobine se značajno razlikuju među okruzima u ispitivanom uzorku. U okviru svakog regiona, broj cvetova pokazao je širok raspon od 72-104 po m2 u Marmarskoj regiji i 54-124 po m2 u zapadnom delu Crnog mora. Sve proučavane osobine, osim broja cvetova, pozitivno su korelirane jedna sa drugom. Ova studija je pokazala da dužina ploda ima jaku i pozitivnu korelaciju sa visinom i visoku negativnu korelaciju sa temperaturom. Potrebna su dalja istraživanja kako bi se kvantifikovalo više osobina vezanih za porast cveta ove turske vrste.

[^0]: Corresponding author: Sezgin Ayan, Department of Silviculture, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey, E-mail: sezginayan@ gmail.com

