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Abstract. We first establish some fractional equalities for functions of bounded variation with
two variables. Then we derive some fractional Ostrowski and Trapezoid type inequalities for
functions of bounded variation with two variables. In addition, we give some Midpoint inequal-
ities as special cases of our main results.
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1. INTRODUCTION

The study of various types of integral inequalities has been the focus of great atten-
tion for well over a century by a number of mathematicians, interested both in pure
and applied mathematics. One of the many fundamental mathematical discoveries of
A. M. Ostrowski [22] is the following classical integral inequality associated with the
differentiable mappings:

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose deriv-
ative f': (a,b) — R is bounded on (a,b), i.e. ||f’||.. := sup |f'(t)| < eo. Then, we
re(a,b)
have the inequality

L =)’

1 /
4+(b—a)2] b—a)|f.,

b
1) =5 [ foar] <

for all x € [a,b]. The constant } is the best possible.

Ostrowski inequality has applications in quadrature, probability and optimization
theory, stochastic, statistics, information and integral operator theory. Until now, a
large number of research papers and books have been written on Ostrowski inequalit-
ies and their numerous applications. In general, the generalizations to the Ostrowski
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type inequalities are obtained by introducing arbitrary parameters in the Peano ker-
nels involved. The parameters can be so adjusted to recapture the previous results as
well as to obtain some new estimates of such inequalities.

On the other hand, the inequalities discovered by C. Hermite and J. Hadamard
for convex functions are considered significant in the literature (see, e.g.,[12], [23,
p.137]). These inequalities state that if f: I — R is a convex function on the interval
I of real numbers and a,b € I with a < b, then

() <ty [ L0

Both inequalities hold in the reversed direction if f is concave. We note that
Hermite-Hadamard inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Over the years, many stud-
ies have focused on to establish generalization of the inequality (1.1) and to obtain
new bounds for left-hand side (Midpoint) and right-hand side (Trapezoid) of the in-
equality (1.1).

The remainder of this work is organized as follows: In Section 2, we present the
definitions of fractional integrals and functions of bounded variation. We also men-
tion some inequalities related fractional integrals. In Section 3, we establish three
identities for double fractional integrals. Finally, some new fractional Ostrowski and
Trapezoid type integral inequalities are proved for functions of bounded variation
with two variables in Section 4. We also give some fractional Midpoint type inequal-
ities in Section 4.

2. PRELIMINARIES
Firstly, we give the definitions of Riemann-Liouville fractional integrals:

Definition 1. Let f € L;[a,b]. The Riemann-Liouville integrals J¢, f and J;_f of
order o0 > 0 with @ > 0 are defined by

0 = g [ 60 far. x>

and .
1
o - _oaha—1
10 = Fa | =0 rwyar, x<b
respectively. Here, I'(at) is the Gamma function and JO, f(x) =J)_f(x) = f(x).

For more information and properties about fractional integrals, please refer to
([18], (211, [24D.

It is remarkable that Sarikaya et al.[30] firstly give the interesting integral inequal-
ities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.
Whereupon several papers focus on fractional Hermite-Hadamard and Ostrowski
type inequalities, for example ([11, [101, [191, [271], [29], [28]-[26], [31]).
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Now, we give the definitions Riemann-Liouville fractional integrals of two vari-
able functions:

Definition 2 ([25]). Let f € L([a,b] X [c,d]). The Riemann-Liouville fractional

integrals Jaf et Jgf des J;x P oy and Jb o.p a— are defined by

I fxy) = / / (=% (=) f(1,5)dsdt, x>a,y>c,

a+d f(x y) rm//(x_t)al (S_y)Bilf(us)detv X >a, y<d7

by
JE‘ Bc+f(x,y) = m//(t—x)a_l (y—s)B 1f(t s)dsdt, x<b,y>c,

and
. b d
ngﬁ,dff(xay) = F(oc)l“(B)//(t —x)*! (S—)’)ﬁ_l f(t,s)dsdt, x<b,y<d.
Xy

Hermite-Hadamard inequality and Ostrowski inequality for fractional integrals of
two-variable functions are obtained in [25] and [20], respectively. There are several
papers on fractional Hermite-Hadamard and fractional Ostrowski type inequalities
for two-variable functions, you can find some of them in the references.

Functions of bounded variation of one variable are of great interest and usefulness
because of their valuable properties, such as particularly with respect to additivity,
decomposability into monotone functions, continuity, differentiability, measurabil-
ity, integrability, and so on, have been much studied. There are many of papers on
inequalities for functions of bounded variation of one variable, some of them please
see ([2], [6], [71, [8], [1 11, [13],[16], [17]). Moreover Dragomir obtained some frac-
tional inequalities involving functions of bounded variation ([14], [15])

Functions of bounded variation with two variables are defined as follows:

Definition 3 ([9] ). Assume that f(x,y) is defined over the rectangle Q = [a,b] X
[c,d]. Let P be a partition of Q with

Pia=xy<x1<..<x,=b,andc=yy<y; <..<y,=d,;
and for all i, j let

Ang(xi,yj) = g(xi-1,j-1) — 8(xi-1,¥;) — 8(xi,yj—1) + &(xi,;)-
The function f(x,y) is said to be of bounded variation if the sum

n—1lm—1

) Z A1 f(xiy))]

i=0 j=0
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is bounded for all nets.

Therefore, one can define the concept of total variation of a function of variables,
as follows:
Let f be of bounded variation on Q = [a,b] X [c,d], and let } (P) denote the sum
n m
Y ‘AI 1f (xi, yj)‘ corresponding to the partition P of Q. The number
=1j=1

1

d b
V() =V V() :=sup{} (P): PePQ)},
o c a

is called the total variation of f on Q.

There are also some paper on inequalities for functions of bounded variation with
two variables ([3], [4], [5]). However, there is a few papers fractional integral inequal-
ities for functions of bounded variation with two variables. The aim of this paper is
to establish some fractional Ostrowski, Midpoint, and Trapezoid type inequalities for
functions of bounded variation with two variables.

3. SOME IDENTITIES FOR DOUBLE INTEGRALS

It is obtained three double integral identities involving Riemann-Liouville frac-
tional integrals in this section. These equalities are the main material of inequalities
developed throughout the article.

Lemma 1. Let f: A :=[a,b] X [c,d] — R be an absolutely continuous function on
A in R?. Then, for any (x,y) € [a,b] x [c,d], we have

d
/Q(xat7y7S)F(xat7y75)dsdt (31)

c

b
1
T(@)r() /

= I8P FOey) ISP ey IR F ) IR F(xy)
=P+ (@—yf

e f e, y) + I8 f(x,y)]

L+1)
- (x_“r)(a++(’1’)_ (18 pe) + 8 ey
[(b=x)"+x=a)] [(@=y)P+ (-0
* T(a+ DI+ 1) fx.)
where F(x,t,y,s) and Q(x,t,y,s) are defined by
F(x7t7yvs) = f(t7s) _f(tvy) _f(xvs)+f(xvy) (3-2)

and
0(x,1,y,s) (3.3)
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(xft)afl(yfs)ﬁfl, a<t<xandc<s<y
_ (x—t)ail(s—y)p’*l, a<t<xandy<s<d
(t—x)ail(y—s)ﬁfl, x<t<bandc<s<y
(t—0*"(s—y)P",  x<r<bandy<s<d,

respectively.
Proof. From the definition of Q(x,t,y,s), we write the equality

b d

//Q x,t,y,8)F (x,t,y,s)dsdt

)y — s)B_lF(x,t,y,s)dsdt
(=% (s =3P Fx,1,y,5)dsd

(t—x)* " (s—y)PVF(x,1,y,5)dsdr.

d
/
y
/y(t =0 (= 5)P T (w1, 5)dsd
Cd
/
y

Using the elementary analysis operations for the first integral in the right hand of the
above identity, due to the definition of F(x,t,y,s), we get the equality

x )y
l—'((x)ll—‘(B)//(x_t)a_l (y_s)B_l [f(t,s) — f(t,y) — f(x,8) + f (x,y)] dsdt

A (y— )B
— Yat,c+ ( ,}7) (B+ 1)‘] f(x y)
(x—a)* (x—a)" (y—c)f

TTa+D)¢ I fy) + r(a+1)r(5+1)f(x’y)'

If we combine the resulting integrals after having been similarly analysed the other
integrals, then we reach the desired equality (3.1). O
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Lemma 2. Let f: A:=[a,b] X [c,d] — R be an absolutely continuous function on

A in R%. Then, for any (x,y) € |a,b] X [c,d], we have

b d
m//Q(tvs)F(x,t,y,S)dsdt

= ‘Ig—l’—l?y—i—f(ba d) +Jg+[?y—f(b7c) +‘])(cxil?y+f(a7d) +‘I§—l?y—f(a7 C)

P —c)P
@D H OO e o ) 4% fay)]

- T+
(b—x)*+(x—a)* B B
O e+ ]
[(b=x)"+@=a)] [(@=y)P+(—c)f]
* T(a+ DO(B+1) fxy)
where F(x,t,y,s) is defined as in (3.2) and Q(t,s) is defined by
o(t,s)
(t—a)ail(s—c)ﬁfl, a<t<xandc<s<y
_ (t—a)oc*l(a’—s)ls*l7 a<t<xandy<s<d
B (b—t)a_l(s—c)ﬁ_l, x<t<bandc<s<y
(b—t)a_l(d—s)ﬁ_], x<t<bandy<s<d.

(b—0)*"(s— C)B_l F(x,t,y,s)dsdt

y

/

/d (t—a)* " (d— )P F(x,1,y,5)dsdr
yy

/

(t—a)* " (s— C)B_l F(x,t,y,s)dsdt.

(3.4)

(3.5)
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Using the elementary analysis rules for the first integral in the right hand of the above
equality, owing to the definition of F(x,?,y,s), we obtain

b d
F(OL)IF(B)// ) (d = )P [f(,8) = £(6,y) — fx,5) + f (x,y)] dsdt
y

X

§

= J;ﬂﬁﬁf(b,d) - écé[;f)l)Jngf(bJ’)
(-2, (b—x)"(d—y)’
CT(a4 1) * fld)+ T(a+ DC(B+1)

Should we add the finding statements side by side after having been similarly ex-

amined the other integrals, we can easily deduce the required identity (3.4). O

flx).

Lemma 3. Let f: A:=[a,b] X [c,d] — R be an absolutely continuous function on
A in R%. Then, for any (x,y) € |a,b] X [c,d], we have

% // (-0 (5= 0P+ —a)* (@) (3.6)

+(b—t)°"1 s—c)P T (b—n)*! (d—s)ﬁﬂ F(x,t,y,s)dsdt}

o f(a,e) IR fla,d)+ I8P, fb,o)+ P F ()
4

1d—c)Pf .

B EF(B"‘ 1) [Jb—f(a7y)+‘la+f(b7y)]
1 (b a) (b—a)&(d—c)[3
ENCER) {JB flx, c)+J+f(x d)] F(OH—I)F(B—l—l)f(x’y)

where F(x,t,y,s) is defined as in (3.2).

Proof. By the definition of F(x,7,y,s) and simple calculations, for the first expres-
sion, we find that

b d
1“(oc)1r‘([3)//(t_a)al(y_c)ﬁ1[f(fvs)—f(fay)—f(x,s)+f(x,y)]dsdt

(d—c)P
rp+1)

Ty f(a,y)

(b—a)*(d—c)
C(o+ DHI(B+1)

— P fa,e) -

(b—a)" 4
—m dﬁf(x,c)—i—

flx).
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If we similarly observe the other expressions and later we add all these identities side
by side, then the desired equality can be obtained. O

Corollary 1. Under the assumptions of Lemma [ with x = # andy = C+d , then

the following Midpoint type equality holds:
/ +b +d +b +d
a c a c
— F
/ ( b —— 5 ,s) < > 1, > ,s>sdt
a+b c+d a+b c+d
., ot
o a+b c+d ocB a+b c+d
+Jb,c+f( IR +J,7
(d—c)P o a+b c+d a+b c+d
) Y ) 2

C2B-IT(B+1
R A
<)
2

2010 (o + 1
where F(“+b r, <4 s) and Q(m r, <4 s) are defined as in (3.2) and (3.3), re-

I

+ 20820 (o + )T (B+ 1)

(b—a)*(d— c)B a+

2

2 by T 2 sty T
spectively.

Corollary 2. With the assumption of Lemma 2, we have the Midpoint type identity

b d b 4
// <a+ ,t,i,s)dsdt

—J°‘B s (b, d)+J°‘B va f(b, c>+J‘;‘£ cu flad)+IE L flac)

a+b atb _
2 2

) o)

(b— a) B a+b B a+b
ety [ (500) # (500

(b—a)*(d—c)P <a+b c—l—d)
2082 (a+ )T (B+1) 27 2

+

where F (“”’,t, ‘erd ) and Q(t,s) are defined as in (3.2) and (3.5), respectively.
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Corollary 3. Suppose that all the assumptions of Lemma 3 hold. If we choose

x= ”*b andy = ﬂ , then we possess

1 // s— P (=) (d— 5P

F =) (s—c)P 4+ (b—1)*! (d—s)B*I} F (“;b,z,cg”’,g dsdt}

IS0+ P fad) 1T f (b, + I f(b,d)
4

(d— ) o c+d

S e S s

1(“(0¢+)1) [Jg f(a—;—b’c) +f(a—i—b )]
a)’ (d—c)[3 a+b c+d

CERIY (B+1)f( 22 )

where F (“—H’?t, ctd s) is defined as in (3.2).

c+d)]

1
S 2T(B+1)
1
2
(b—
T

4. DOUBLE INTEGRAL INEQUALITIES FOR FUNCTIONS OF BOUNDED
VARIATIONS

In this section, we establish some fractional Ostrowski and trapezoid type inequal-
ities for function of bounded variation.

Theorem 2. Let f : A — R be a function of bounded variation on A in R?. Then
we have the inequality

TP Py + IR pey) + P Cey) + 5P, () @.1)
O ) st
Js ar)(a (x—:—(ll])_ 2 [Lﬂ,f (r.y)+J5_f (x,y)}
[(6—x)*+ (x=a)*] [(d =)+ (= )]
* T(o+ DB+ 1) f@x)

e e A s AVl
o+ 1) B+1 v Mo+ 1) B+1

<
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y

(b—x)*( ycﬁb —x)*(d—y)P "\
Tornrgen Y VO oH—l) (B+1)\x/\y/(f>

X c
:|0(

1 1 a+b
S Tarir ®+n[ (b-a)+ P 2

i 2

for any (x,y) € A.

Proof. If we take absolute value of both sides of the equality (3.1), due to the
definition of Q(x,t,y,s) and the well-known triangle inequality, we get

Jﬁ‘fﬁ (x,y) +Ja+ o fey) + TP () + Iy Bd f(x,y) (4.2)

=P+ @—yP
I(p+1)
o (x_cll'?(oc—i__i_(?)_ %) {Jilf(x,y) —l—Jg_’f(x,y)}
[(b—x)*+ (x=a)*] [(d = )P+ (v )]
Mo+ 1D)I(B+1)

[T f () + 5 f(x,y)]

+

f(x,y)

b d
: //
O(x,t,y,8)||F (x,t,y,s)|dsdt
rg | [ 10wty (s

<
and
b d

//wxrerx@»ﬂwm

Xy
=) F (r.t,3,5) | ddr

a

1 o—1 B—1

+ (=) (5 =) F ) s

(t—x)*'(y— 5)P~ YIF(x,1,y,s)|dsdt
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d
] o— _
+F(06)F(B)x/y/(t_x) Hs =3P F(x,t,y,5)|dsdt

for any (x,y) € A.
Seeing that f : A — R is of bounded variation on [a,x] X [c,y], we get

|F(xat7y7s)| = |f(t7s)_f(tvy)_f(x7s)+f(x7y)|
x Yy x Yy
<V <VVW.

Hence, if we consider the first integral in the right hand side of the statement (4.2),
then we can easily conclude that

Xy
F(OC)IF(B)//(X_t)a_] (y—s)ﬁ—l |F(x,t,y,s)|dsdt

Bxy

(x—a)*(y—c)
= Far i Y VY

Should the other integrals are also observed by taking account of the fact that f :
A — R is of bounded variation on [a,x] X [y,d], [x,b] X [c,y] and [x,b] X [y,d], one
can readily attain the first inequality in (4.1).

The second inequality is obvious from the facts that

max {ac,ad,bc,bd} = max{a,b} max{c,d}, 4.3)

b b \"
max {a",b"} = (max{a,b})" = <a++2a+)
for a,b,c,d,n > 0. This completes the proof. ]

Corollary 4. Under the assumptions of Theorem 2 with x = ‘”b andy = ﬂ , we

have the midpoint type inequality

JoB a+b c+d f a—l—b c+d
a+,c+ 2 ’ 2 2
op a+b c+d op a+b c+d
+J, Hf( 5 +J," a0 f )
(d—c)P o fa+b c+d o ~fatb c+d
~ BT I3 TN R A G

(b—a)* B a+b c+d B a+b c+d
w2 (730 P (50
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(b—a)*(d—c)P s(ath ctd
20HB2T (o + 1)T(B+ 1) 272
b—a)*(c—a) "

200 (o+ DT(B+ 1) \a/\c/(f)‘

Theorem 3. Let f : A — R be a function of bounded variation on A in R*. Then,
one has the following inequality

JEP (b, d) + I8P (b, o)+ I fla,d) + TP fa,c) (4.4)

@y -of
r(B+1)
_ (b_)lc")(o:r()lc)_ : S+ )|
[(b—x)"+ (x—a)®] {(d—)’)m' (y_c)ﬂ
T(a+ HI(R+1)

(x— @ Bxy L et @y
S CES 1 Vv NCESY (B+1)\a/\y/(f)

a ¢

[T f(b,y)+ T f(a,y)]

_|_

f(xy)

<

(b—x)*—cf )\ —0)*(d=yP )\
ot DI 5+1 VI + 0c+1) ([3+1)\x/\y/(f)

;

1 a+b
§11a+nr®+n>{(b‘“*4x‘ 2

[e-or b5 Vv

forany (x,y) € A.

Proof. Taking modulus of both sides of the equality (3.4), on account of the defin-
ition of Q(¢,s) and the triangle inequality, we find that

x+)+f(b d)+Jx+y f(b,e)+IP fla,d) + I, f(a,c) (4.5)

d=»P+p-of
T(B+1)

(=) + (x—a)*
[o+1)

[J)?+f(b7y) —&-Jf,f(a,y)}

[J)[?Jr,f(x,d) —I—Jf,’f(x,c)}
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[(b—x)"+(x=a)] [(d =P+ (=)
T+ DI(B+1)

b d
//IQts |1F (x,t,y,5)| disdr

+ f(xy)

and

b d
F(OOIF(B)/ [ i@t

-

X

) (d = )PV F (x,1,y, )| dsdt

- o1 S—CBil X s ;
T()T(B) (b D% (5= )P F (x,t,y,5) dsdt

d—s)P " |F(x,1,y,5)|dsdt

_l_
Q\x it~ %\&
\& —

y
// ) (s — c)B*1 |F(x,t,y,s)|dsdt.

for any (x,y) € A.
Inasmuch as f : A — R is of bounded variation on [x, ] x [y,d], one possess

|F(xat7yvs)| = |f(t,s)—f(t,y)—f(x,s)+f(x,y)|
x y b d
<VVU=VV©)
t s Xy

For the first integral in the right hand side of the statement (4.5), we deduce that

// ) d - s)Bfl\F(x,t,y,sNdsdt

(b—x)*(d—y)P 4
F(oc—l—l [3+1 \x/\/

In a similar way, taking into account the other three integrals in the right hand side of
(4.5) by considering that f : A — R is of bounded variation on [a,x] x [c¢,y], [a,x] X
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[v,d] and [x,b] X [c,y], we reach the desired first inequality in (4.4). The second
inequality in (4.4) is proved above. O
Corollary 5. With the assumption of the Theorem 3, we have the midpoint type
inequality
J(X“,B

a+b
2 +’

)

(b— a) B a+b B a+b
S W C O

(b—a)*(d—c)P a+b c+d
2&+B—2r(a+1)r(ﬁ+1)f< 27 2 >
(b—a)*(c—d)ff ")\

= 29 (a+ HI(B+1) \a/\c/(f)'

Theorem 4. Let f : A — R be a function of bounded variation on A in R*. Then,
forany (x,y) € A, we have

5P flae)+ 3P flad) +IP, fb,e) +ISE. f(b,d)

wea S (b, d>+J‘§+§ wa f(D, c>+JS‘J2 wa Sa d>+J2‘J2 wa_fla0)

;
O e+ 50
_21£lZo:j)1) i S+ flnd)] + élz;f);;g[;j)lif(x,y)
<1 {A(X)C(y)\?\?(f) FARDOV V()

where




FRACTIONAL OSTROWSKI TYPE INEQUALITIES... 185

(b—a)*— (x—a)*+ (b—x)*

Blx) = T(a+1) ’
(d=)P—(d—Pr-o)P
Cly) = TBL D ,

d=)P (=P +(@—yP
D(y) = TR+ 1)

Proof. Should we take absolute value of (3.6), from the modulus property of the
integral, we get the inequality

5P flae)+ 2P flad) ISP, f(b,e) + ISP f(b,d)

: (4.6)
o
g2 s
1 (b—a)® (b—a)*(d—c)
@D [Jgf’f(x,c)—i-lf_hf(x,d)} +r(a+1)r(B+1)f(x’y)‘

b d
F -0 5= L (b—r)*! (d—s)ﬁﬂ ]F(x,t,y,s)|dsdt}.

Considering that f : A — R is of bounded variation on A when calculating integral of
the first of the four expressions given in the summation form in the right-hand side of

the above inequality, it is easy to see that

b d
1 1 o— B,
s | [ O 0 I
Xy
1 1 x o B
SZF(“)F(B) \a/\c/(f)a/c/<t a)* ! (s— )P dsdr
x d x d IR
+\/\/(f)//(f a)* " (s—c)” dsdt
a 'y a Y
VO [ [ o op s
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b d b d
+\/\/(f)//(t —a)OFI (S—C)Bfl dsdt
xy%y

If the above integrals are calculated, one has the inequality

b d
1 1 o— _
4F(oc)F(B)//(t_“) s — )P [F(x,,y,5)|dsdt

La—a)” (=0 )\ (—a)* @=cf ~ (=) ")\’
S4T(atr )T B+1\/\/ 4F0c+1) T(B+1) \a/\y/(f)

+

1(b—a)*—(x—a)* (y—c) ",
4 T(a+1) [3+1)\X/\C/(f)

1(b—a)*—(x—a)*(d—c)P—(y—c)P "¢

+7 VV )
4 [No+1) re+1) Yy

If we sum all the resulting inequalities side by side after having been similarly cal-

culated integrals of the other three expressions in (4.6), the first inequality can be

readily obtained.
The second inequality can be easilly proved by using the facts (4.3). The proof is

thus completed. U

Corollary 6. Suppose that all the assumptions of Theorem 4 hold. If we choose

x= ‘”b andy = Hd , then we have
JoB o.p JoB
b d— (a,c) +Jb—,c+f(avd) f(b C) +c+ (bvd)
4
1 d=cP [, . c+d. c+d
EF(B—FI) |:be(61, 2 )+Ja+f(b7 )
1 (b—a)® a+b

B a—i—b
—ZW[%_,J‘( 7o)+ Y )]

(b—a)“(d—c)5f<a+b c+d>‘

Dla+ DB+’ \ 2 7 2

(b—a)*(c—d)P "\
= 4T(o+ )I(B+1) \d/\c/(f)'
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