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Abstract: In this work, we establish a Wirtinger type inequality which gives the relation between the integral of square of
a function and the integral of square of its any order derivative via Taylor’s formula. Then, we provide a similar inequality
for mappings that are elements of Lr space with r > 1 . Also, we indicate that special cases of these inequalities give
some results presented in the earlier works.
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1. Introduction
In mathematics, Wirtinger’s inequality for real functions was firstly used in Fourier analysis. This inequality,
named after Wilhelm Wirtinger, was used in 1904 to prove the isoperimetric inequality. Over the years, a great
number of authors have focused on Wirtinger type inequalities, because its theory plays an important role in
many areas such as linear differential equations, Fourier analysis and differential geometry. What makes these
inequalities so important is that there are integral inequalities involving a function and its derivative. The
classical Wirtinger inequality gives the connection between the integral of square of a function and the integral
of square of its first derivative. Also, this inequality [8] states that if f ∈ C1 ([a, b]) satisfying f (a) = f (b) = 0 ,
then

b∫
a

f2 (t) dt ≤
b∫

a

(f ′ (t))
2
dt. (1.1)

Afterwards, Beesack extended the inequality (1.1) as follows:

Theorem 1.1 [3] For any f ∈ C2 ([a, b]) satisfying f (a) = f (b) = 0, following inequality holds:

b∫
a

f4 (t) dt ≤ 4

3

b∫
a

(f ′ (t))
4
dt. (1.2)

Wirtinger type inequalities, such as Bessel, Blaschke, Beesack, Poincare, Sobolev, have been presented
by many researchers and they have been used in a large number of application areas such as the convergence
of series, estimations of integrals and determination of the minimal eigenvalues of differential operators. For
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example, the best constant in the Poincare inequality that is a more general form of Wirtinger is known as
the first eigenvalue of the Laplace operator and this inequality has been the inspiration of various geometric
studies (see, e.g. [7],[9] ). What’s more, Böttcher and Widom [5] concerned with a sequence of constants that
appear in some problems including the best constant in a Wirtinger-Sobole inequality comparing the integral
of the square of a function with that of the square of its higher-order derivative. In [11], which is one of the
most recent studies, Sarikaya examined some improved versions of Wirtinger type inequalities. The interested
readers can also look over the references [1], [2], [4], [6], [10], [12], [13] and the references therein.

In this study, we investigate how to generalize Wirtinger type inequalities to higher order. For this, we
firstly establish a generalized version of the classical Wirtinger inequality (1.1) via Cauchy-Schwarz inequality.
Afterwards, a more general result is obtained by means of Hölder’s inequality. We also note that the special
cases of inequalities presented in this work give some results provided in the earlier works.

2. Some inequalities for high degree differentiable functions
We need the following identity, known as Taylor’s formula in literature, to establish our main results. Let
f ∈ Cn ([a, b]) , n ∈ N\ {0} . Then, from Taylor’s theorem, we have

f(x) =

n−1∑
k=0

f (k)(c)

k!
(x− c)

k
+

1

(n− 1)!

x∫
c

(x− t)
n−1

f (n)(t)dt (2.1)

for c ∈ [a, b] .

Theorem 2.1 Let f ∈ Cn ([a, b]) , n ∈ N\ {0} , and f (n) ∈ L2 [a, b] such that f (k) (a) = f (k) (b) = 0 for
k = 0, 1, 2, ..., n− 1. Then, we possess the inequality

b∫
a

[f(x)]
2
dx ≤ (b− a)

2n

[(n− 1)!]
2
(2n− 1) (2n) (2n+ 1)

b∫
a

[
f (n)(x)

]2
dx. (2.2)

Proof If we apply Cauchy-Shwarz inequality after taking absolute value of both sides of (2.1), owing to the
hypotheses of the theorem, then we have the inequalities

|f(x)|2 =

∣∣∣∣∣∣ 1

(n− 1)!

x∫
a

(x− s)
n−1

f (n)(s)ds

∣∣∣∣∣∣
2

(2.3)

≤ 1

[(n− 1)!]
2

(x− a)
2n−1

2n− 1

x∫
a

∣∣∣f (n)(s)
∣∣∣2 ds,

and

|f(x)|2 =

∣∣∣∣∣∣ 1

(n− 1)!

b∫
x

(s− x)
n−1

f (n)(s)ds

∣∣∣∣∣∣
2

(2.4)

≤ 1

[(n− 1)!]
2

(b− x)
2n−1

2n− 1

b∫
x

∣∣∣f (n)(s)
∣∣∣2 ds.
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Integrating both sides of (2.3) with respect to x from a to φa+ (1− φ) b for φ ∈ [0, 1] . After that, applying
Dirichlet’s formula to the double integral in the right-hand side of the resulting inequality, we find that

φa+(1−φ)b∫
a

|f(x)|2 dx (2.5)

≤ 1

[(n− 1)!]
2

φa+(1−φ)b∫
a

(x− a)
2n−1

2n− 1

x∫
a

∣∣∣f (n)(s)
∣∣∣2 dsdx

=
1

[(n− 1)!]
2

φa+(1−φ)b∫
a

[
(1− φ)

2n
(b− a)

2n − (s− a)
2n

(2n− 1) (2n)

] ∣∣∣f (n)(s)
∣∣∣2 ds.

If we follow the similar processes by considering the inequality (2.4), then we possess

b∫
φa+(1−φ)b

|f(x)|2 dx (2.6)

≤ 1

[(n− 1)!]
2

b∫
φa+(1−φ)b

(b− x)
2n−1

2n− 1

b∫
x

∣∣∣f (n)(s)
∣∣∣2 dsdx

=
1

[(n− 1)!]
2

b∫
φa+(1−φ)b

φ2n (b− a)
2n − (b− s)

2n

(2n− 1) (2n)

∣∣∣f (n)(s)
∣∣∣2 ds.

Applying the change of the variable s = aω + (1− ω) b to the resulting inequality after adding (2.5) and (2.6),
we conclude that

b∫
a

|f(x)|2 dx ≤ (b− a)
2n+1

[(n− 1)!]
2
(2n− 1) (2n)

1∫
φ

[
(1− φ)

2n − (1− ω)
2n
] ∣∣∣f (n)(aω + (1− ω) b)

∣∣∣2 dω
+

φ∫
0

[
φ2n − ω2n

] ∣∣∣f (n)(aω + (1− ω) b)
∣∣∣2 dω

 .

Integrating both sides of the above integral with respect to φ over [0, 1] and later changing the order of
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integration in order to calculate two double integrals in the right-hand side of the resulting inequality, we have

b∫
a

|f(x)|2 dx

≤ (b− a)
2n+1

[(n− 1)!]
2
(2n− 1) (2n)

1∫
0

h(ω)
∣∣∣f (n)(aω + (1− ω) b)

∣∣∣2 dω.
where

h(ω) =
2

2n+ 1
− (1− ω)

2n+1

2n+ 1
− ω2n+1

2n+ 1
− (1− ω)

2n
ω − ω2n (1− ω) .

It is easy to see that the maximum value of function h(ω) for ω ∈ [0, 1] is 1
2n+1 . Finally, if we apply the change

of the variable t = ωa+ (1− ω) b, then we attain the desired inequality. The proof is thus completed. 2

Remark 2.2 If we choose n = 1 in (2.2), then we have

b∫
a

|f(x)|2 dx ≤ (b− a)
2

6

b∫
a

|f ′ (x)|2 dx,

which was given by Sarikya in [11].

Now, we deal with a more general result obtained by using Hölder’s inequality in the following theorem.

Theorem 2.3 Let f ∈ Cn ([a, b]) , n ∈ N\ {0} , and f (n) ∈ Lr [a, b] with r > 1 such that f (k) (a) = f (k) (b) = 0

for k = 0, 1, 2, ..., n− 1. Then, we have the inequality

b∫
a

|f(x)|r dx ≤ (b− a)
nr

[(n− 1)!]
r

(
r − 1

nr − 1

)r−1
1

(nr) (nr + 1)

b∫
a

∣∣∣f (n) (x)
∣∣∣r dx. (2.7)

Proof Applying Hölder’s inequality with the indices r and r
r−1 after taking the absolute value of both sides

of (2.1), from the hypotheses, then we have the inequalities

|f(x)|r =

∣∣∣∣∣∣ 1

(n− 1)!

x∫
a

(x− s)
n−1

f (n)(s)ds

∣∣∣∣∣∣
r

≤ 1

[(n− 1)!]
r

 x∫
a

(x− s)
nr−r
r−1 ds

r−1 x∫
a

∣∣∣f (n)(s)
∣∣∣r ds

=
1

[(n− 1)!]
r

(
r − 1

nr − 1

)r−1

(x− a)
nr−1

x∫
a

∣∣∣f (n)(s)
∣∣∣r ds,
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and

|f(x)|r =

∣∣∣∣∣∣ 1

(n− 1)!

b∫
x

(s− x)
n−1

f (n)(s)ds

∣∣∣∣∣∣
r

≤ 1

[(n− 1)!]
r

 b∫
x

(s− x)
nr−r
r−1 ds

r−1  b∫
x

∣∣∣f (n)(s)
∣∣∣r ds



=
1

[(n− 1)!]
r

(
r − 1

nr − 1

)r−1

(b− x)
nr−1

b∫
x

∣∣∣f (n)(s)
∣∣∣r ds.

Afterwards, if we follow the same strategy which was used in the proof of theorem 2.1 by considering the above
inequalities, then we obtain the inequality (2.7) which completes the proof. 2

Corollary 2.4 Under the same assumptions of Theorem 2.3 with n = 1, the following result holds

b∫
a

|f(x)|r dx ≤ (b− a)
r 1

r (r + 1)

b∫
a

|f ′ (x)|r dx,

which is a new Wirtinger type inequality.

Remark 2.5 If we choose r = 2 in (2.7), the inequality (2.7) reduce to the result (2.2).

Corollary 2.6 Under the same assumptions of Theorem 2.3 with r = 4, the following result holds

b∫
a

|f(x)|4 dx ≤ (b− a)
4n

[(n− 1)!]
4

(
3

4n− 1

)3
1

(4n) (4n+ 1)

b∫
a

∣∣∣f (n) (x)
∣∣∣4 dx.

Also, If we take n = 1 in the above inequality, then we have

b∫
a

|f(x)|4 dx ≤ (b− a)
4

20

b∫
a

|f ′ (x)|4 dx.
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