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ABSTRACT 

We proposed a simple and environmental-friendly method to prepare magnetite nanoparticles and their application as antibacterial material. 

We successfully prepared Fe3O4 nanoparticles using Crocus Sativus (Saffron) flowers followed by calcination at 400 ˚C for 15 minutes. 

The UV–Visible spectroscopy was used to study the bandgap energy of the prepared Fe3O4 nanoparticles and the value was found to be 

3.23 eV. The scanning electron microscopy (SEM) was used to study the structure and morphology and X-ray diffraction was used to study 

the phase and crystallite size of the magnetite nanoparticles. The percentage weight loss, the enthalpy change and activation energy of 

Fe3O4 nanoparticles were calculated by using the thermogravimetric (TG) and differential thermal analysis (DTA) respectively. The DTA 

curve at a heating rate of 6, 8 and 10˚C/min shows endothermic peaks at 586, 594 and 600˚C respectively. The activation energy of Fe3O4 

nanoparticles was calculated by the Kissinger method and was found to be 8.09 kJ/moles. The antibacterial activity of Fe3O4 nanoparticles 

was carried out against 3 gram-positive and 3 gram-negative bacteria by using a minimum inhibition concentration (MIC) assay method 

and they showed excellent antibacterial activity against gram-negative bacterial strains only. Keywords: Antibacterial activity; Fe3O4 

nanoparticles; Crocus Sativus; saffron flower extract; activation energy: 

 

1. INTRODUCTION 

 Nanotechnology is now universally considered as the 

potential research topic that can benefit the different fields such as 

biomedical, chemical, physical, civil, mechanical, metallurgical 

and materials engineering [1-6].  Nanomaterials had brought 

significant improvement in drug delivery, water purification, 

sensors, development of lighter alloys, composites, information and 

communication technologies, etc. Using nanotechnology one can 

easily create and manipulate the materials with different properties, 

either by scaling up from single groups of atoms or by the refining 

of bulk materials [7, 8]. 

The recent past has witnessed a variety of nanomaterials 

like graphene, fullerenes, metal nanoparticles, metal oxide 

nanoparticles, carbon nanotubes, nanoalloys, etc. All these 

nanomaterials exhibit a wide range of properties as well as 

applications; but among all, the metal oxide nanoparticles are one 

of the conventional types of nanomaterials advancing with rocket 

speed due to the ease of production. The extremely refined size, 

maximum surface area, excellent physical, biological, chemical, 

and mechanical properties had made metal oxide nanoparticles one 

of the very important nanomaterials [9]. 

The metal oxide nanoparticles like Fe3O4 nanoparticles 

have shown tremendous potential in designing advanced functional 

materials in chemical and biomedical fields. They also exhibit very 

interesting properties like superparamagnetic properties [10], 

biocompatibility, pigmentation, biodegradability, non-toxic nature, 

etc. [11–13]. Due to their wide range of properties they can be 

exploited to design new bio-diagnostic, therapeutic strategies, 

innovative biotechnology methodologies and can also be used as a 

material for catalysis (for carbon nanotube production) [14-16], 

magnetic storage media [17], biosensors [18], magnetic resonance 

imaging contrast agents [19-21], targeted drug delivery [22–24], 

nickel-iron batteries and as sorbents for environmental remediation 

[21, 25]. Therefore, over the last few years, magnetite nanoparticles 

have been the hot topic among the chemical, biological and material 

researchers. But, control over their size, shape, and composition is 

still a challenging part for the researchers; without achieving them 

one cannot use them in a complex biological system to 

revolutionize the medical field. Therefore, we are reporting a simple 

method to prepare Fe3O4 nanoparticles with strong control over 

their size, shape, and composition.  

Many researchers have reported the synthesis of Fe3O4 

nanoparticles by various methods like reverse micelle [26-29], 

copolymer template method [26, 30, 31], co-precipitation [32], sol-

gel method [33], electrochemical method [34], solvothermal 

method [35] and hydrothermal [36] methods, etc. But these methods 

are tedious, slow, expensive and may require some special 

equipment, capping agents, high temperature and templates (result 

in impurities), etc. Most of these methods require strong toxic 

chemicals; which are very dangerous to the environment. 

Therefore, in the present paper, we reported a simple, rapid, 

inexpensive, non-toxic and eco-friendly route to prepared Fe3O4 

nanoparticles using Crocus Sativus (Saffron) flowers extract. The 

shape, size, and composition of the iron oxide nanoparticles can be 

easily controlled using this method just by maintaining the proper 

pH, solvent concentration, pressure and experimental temperature 

[37].  

Crocus Sativus is also called saffron crocus, or autumn 

crocus as reported by the United States Department of Agriculture 

and this flowering plant belongs to the iris family Iridaceae [38].  
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The spice saffron can be produced from the filaments that 

grow inside the Crocus Sativus flower. They are generally found in 

the Mediterranean, Eastern Greece, East Asia, and Irano-Turanian 

Region [39-41]. Saffron is considered to be one of the most valuable 

spice by weight [39] and is sometimes toxic if we intake excess 

[42]. The phytochemicals present in Crocus Sativus itself acts as 

capping agent as well as reducing agent and reduces the 

agglomeration and eventually reduces the iron salt to iron oxide. 

Clarina et al. prepared magnetite nanoparticles using 

Polpala flower extract and characterized by UV-Vis absorbance 

spectroscopy, FT-IR spectroscopy, XRD and SEM [43]. They 

found the average particle size of 38 nm with highly crystalline iron 

oxide nanoparticles. They reported the potential applications of 

prepared magnetite nanoparticles in biomedical and recyclable 

magnetic nano-catalyst for organic reactions [43].  

Karpagavinayagam et al. described a non-hazardous 

method for preparing iron oxide nanoparticles using Avicennia 

marina flower extract. They studied the absorption spectrum, 

morphology, and electrochemical properties. They reported that the 

prepared iron oxide nanoparticles can be used in industrial, dye 

degradation and control the environment pollution [44]. 

Sari et al. prepared magnetite (Fe3O4) nanoparticles using 

Graptophyllum pictum leaf extract. They reported that the presence 

of phytochemicals acts as a capping agent and reducing agent [45]. 

Ramesh et al. reported the green synthesis of Fe3O4 nanoparticles 

using Zanthoxylum armatum aqueous leaf extract. They 

successfully used prepared magnetite nanoparticles for efficient 

adsorption of organic pollutants, methylene blue [46].    

One of the important advantages of the reported method is the 

huge availability of flora on the earth and the presence of 

phytochemicals like aldehydes, ketones, flavonoids, and phenols in 

the plant extract. They act as reducing agents, capping agents and 

converts metal salts into metal oxide nanoparticles [47]. The 

presence of flavonoids and phenols in the plants improve their 

antioxidant antibacterial properties [48]. Karimi et al. [49] reported 

that Crocus Sativus contains 6.54 ± 0.02 mg gallic acid equivalent 

(GAE)/g dry weight (DW) phenolic contents, 5.88 ± 0.12 mg rutin 

equivalent/g dry weight of total flavonoids. Due to the presence of 

more amount of phenolic and flavonoid groups in Crocus Sativus, 

we have decided to prepare iron oxide nanoparticles from them.  

This method is one of the simple, low cost, robust, nontoxic and 

eco-friendly method to prepare Fe3O4 nanoparticles. Many 

researchers have reported a green synthesis of magnetite 

nanoparticles by various plant extracts, but no literature is available 

on the green synthesis of magnetite nanoparticles using Crocus 

Sativus flowers. Therefore, we reported the preparation of Fe3O4 

nanoparticles by using Crocus Sativus (Saffron) flowers and their 

antibacterial activities. 

  

2. MATERIALS AND METHODS 

2.1. Chemicals and reagents required. 

Iron (III) Chloride Hexahydrate [FeCl3.6H2O], Iron (II) 

Chloride Tetrahydrate [FeCl2.4H2O], Sodium hydroxide (NaOH) of 

Sigma-Aldrich brand was purchased from Umay laboratuvar, 

Istanbul, Turkey. Crocus Sativus (Saffron) flower extract was 

prepared in the lab and all the solutions were prepared by using 

double distilled water. 

2.2. Preparation of flower extract. 

The fresh Crocus Sativus (Saffron) flowers were collected 

from the market of Safranbolu, Turkey with the help of an expert 

from Bartin University, Turkey and were washed thoroughly using 

double distilled water. Two grams of the fresh Crocus Sativus 

(Saffron) flowers were cut into small pieces and then added 100 mL 

of deionized water. Further, the solution was boiled around 80 ˚C 

for 15 to 20 minutes until we get a strong red-colored solution and 

cool the solution to room temperature (around 25 ˚C). Filter the 

flower extract solution using general-purpose filter paper followed 

by centrifugation to remove any impurities to get a clear red colored 

solution. 

 
Figure 1. (a) Crocus Sativus (Saffron) flowers (b) Saffron flower extract 

(c) Colloidal solution of Fe3O4 nanoparticles 

A small quantity of the flower extract was used all the time 

during the experiment to prepare magnetite nanoparticles and 

remaining aliquots of flower extract was stored at 5 ˚C temperature 

for further use. Figure 1 shows the Crocus Sativus (Saffron) 

flowers, its extract and colloidal solution of Fe3O4 nanoparticles. 

2.3. Preparation of Fe3O4 nanoparticles. 

Dissolve 2 grams of Iron (II) Chloride Tetrahydrate and 1 

gram of Iron (III) Chloride Hexahydrate powders in 100 mL of 

deionized water. The solution was stirred on a magnetic stirrer for 

10 minutes at 80 ˚C to get a homogeneous yellow colored solution.  

 
Figure 2. Schematic representation of the preparation of Fe3O4 

nanoparticles from Crocus Sativus (Saffron) flowers 

 

Later added 5 mL of red-colored Crocus Sativus (Saffron) 

flower extract slowly into the iron salt solution. Then the entire 

solution turns from yellow color to dark brownish color indicating 

the initial generation of magnetite nanoparticles and continues the 

heating and stirring for 10 minutes to get a homogeneous solution. 

Further, 0.1 M NaOH solution was added dropwise (for 10 minutes) 

to precipitate all the Fe3O4 nanoparticles from the black colored 

solution. Then the solution was allowed to cool down to room 

temperature and centrifuged for 10 minutes at 7500 rpm to remove 

all the impurities by removing the supernatant solution. Washed the 

magnetite nanoparticles 3 times using distilled water followed by 

centrifugation. The dark black colored Fe3O4 nanoparticles were 
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dried on a watch glass at 70 ˚C in a laboratory oven for 1 day. The 

dried black colored Fe3O4 nanoparticles were later calcined in a 

furnace at 400 ˚C for 15 minutes to remove any volatile impurities. 

The calcined samples were then cooled to room temperature, 

pulverized and then stored for further characterization.  

Figure 2 shows the schematic representation of preparing 

Fe3O4 nanoparticles using Crocus Sativus (Saffron) flower extract. 

This plant extract acts as both reducing agents as well as capping 

agents in preparing Fe3O4 nanoparticles due to the presence of 

phenolic and flavonoid compounds like gallic acid, pyrogallol, β-

carotene, lycopene, vitamin E, ascorbic acid [49]. Siddhuraju and 

Becker [50] have reported that, as the phenolic and flavonoid levels 

increase the reducing power of the plant will also increase. Karimi 

et al. [49] also reported the ferric reducing power activity of Crocus 

Sativus (Saffron) flowers and they concluded that it can strongly 

reduce Fe3+ to Fe2+. 

2.4.Characterization of Fe3O4 nanoparticles. 

XRD (RIGAKU SmartLab) was used to study the phases 

of prepared Fe3O4 nanoparticles with the 2θ range between 20-80˚ 

using Cu Kaα1 radiation (λ=1.54056 Å). The morphology of the 

nanoparticles was investigated by using SEM (TESCAN- MAIA3 

XMU) and their quantitative analysis was carried out by using 

energy dispersive spectroscopy (EDS) attached to SEM. UV-

Visible spectroscopy (Shimadzu- UV 3600 Plus) was used to study 

the optical properties of magnetite nanoparticles respectively. 

Hitachi, STA 7300 model was used to studying the thermal 

properties. Antibacterial activities of the prepared magnetite 

(Fe3O4) nanoparticles were studied by using gram-negative and 

gram-positive bacteria by the MIC assay method. 

2.5. Antibacterial activity. 

Three gram-positive (Bacillus subtilis, Enterococcus 

faecalis, Staphylococcus aureus) and gram-negative (Escherichia 

coli, Salmonella enteridis, Pseudomonas aeruginosa) bacteria were 

tested to clarify the antibacterial effect of Fe3O4 nanoparticles 

composed of saffron. Whole bacteria were procured by the 

Department of Molecular Biology and Genetics of Bartın 

University (Bartin, Turkey). Minimum inhibition concentration 

(MIC) was described that the lowest concentration at which 

bacterial growth is inhibited under regular conditions [51]. The 

turbidity of the bacteria inoculated in LB medium was adjusted to 

0.5 McFarland (1.5x108 CFU/ml). 100 µL MHB medium was 

added to 96 well plate and Fe3O4 nanoparticles at a concentration of 

5 mg/mL were added on to first wells then 2 fold dilution applied 

until the lowest concentration of 0.3125 mg/mL. After bacterial 

inoculation, the microplate was incubated at 37 ˚C for overnight. 

Bacterial turbidity of the overnight grown plates was measured by 

UV-Visible spectrum at 600 nm. MIC value is the lowest 

concentration of any substance where no visible bacterial growth is 

detected [52]. In order to determine the minimum bactericidal 

concentrations (MBC) of the Fe3O4 nanoparticles, the wells with no 

growth or suspected bacterial growth were inoculated onto Petri 

dishes and incubated at 37 ˚C for 24 h. MIC is the lowest 

concentration required to inhibit bacterial growth. Minimum 

Bactericidal Concentration (MBC) assay determines the lowest 

concentration required to kill microorganisms. 

3. RESULTS  

3.1 X-Ray diffraction. 

Figure 3 depicts the XRD diffraction pattern of magnetite 

nanoparticles prepared by Crocus Sativus (Saffron) flower extract. 

The diffraction peaks at 2θ of 30.33° and 35.74° correspond to (220) 

and (311) planes respectively and all the diffraction peaks were 

perfectly matched with the JCPDF Card No.: 01-073-9877.  

 
Figure 3. XRD diffraction spectra of Fe3O4 nanoparticles prepared by 

using Crocus sativus (Saffron) flower extract. 

The diffraction peaks of prepared magnetite nanoparticles 

are broadened due to their nano-structure and exhibit cubic structure 

with space group Fd-3m(227). 

Scherrer’s formula [52, 53] was used to calculate the 

crystallite size of the prepared Fe3O4 nanoparticles as follows: 

𝐷 =
𝐾𝜆

𝛽 cos 𝜃
                (1) 

Where, D= Average crystallite size, K= Constant equal to 0.94, λ= the 

wavelength of X-ray radiation (0.154 nm), β= Full-width half maximum of 

the peak (FWHM) (in radians) and 2θ= Bragg’s angle (degree).  

We have calculated the crystallite size for the 2 high-

intensity peaks (220) and (311) using Scherrer’s equation and the 

values were found to be ≈15 nm. 

The nanoparticles with crystallite size less than 20 nm 

exhibit maximum strain than those nanoparticles whose crystallite 

size is more than 20 nm as reported by Aparna et al. [54]. Hence, 

according to Scherrer's equation, our magnetite nanoparticles are 

having an average crystallite size of 15 nm; therefore, our 

nanoparticles tend to have maximum strain.  To study the lattice 

strain of the prepared magnetite nanoparticles in detail, we have 

used Williamson-Hall equation [55, 56] as follows; 

𝛽𝑐𝑜𝑠𝜃 =
0.94𝜆 

𝐷
+ 4𝜀 𝑠𝑖𝑛𝜃            (2) 

Where ‘β’ is FWHM, ‘ε’ is the strain, ‘D’ is the average crystallite size and 

‘θ’ is the Bragg's diffraction angle.  

Williamson and Hall proposed a method for de-

convoluting the size and strain broadening by looking at the peak 

width as a function of 2θ. Here, Williamson-Hall plot was plotted 

with sin θ on the x-axis and βcosθ on the y-axis (β in radians).  

From the linear fit, particle size and strain were extracted 

from y-intercept and slope respectively [57-60]. According to the 

Williamson-Hall equation, the average crystallite size and lattice 
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strain of the magnetite nanoparticles were found to be ~12 nm and 

0.29 respectively. Figure 4 depicts the Williamson-Hall Plot for 

Fe3O4 nanoparticles prepared by Crocus Sativus (Saffron) flowers. 

The peak intensities and positions are well-matched with the 

reported values. 

 
Figure 4. Williamson-Hall Plot for Fe3O4 nanoparticles. 

 

3.2. Scanning electron microscopy. 

Figure 5 (a) depicts the SEM image of Fe3O4 nanoparticles 

prepared from Crocus Sativus (Saffron) flower extract. Magnetite 

nanoparticles exhibit cubic and almost spherical structures with 

nearly equal to 25 nm particle size. The prepared nanoparticles were 

not agglomerated even though capping agents are not used [61]. The 

flower extract itself acts as a natural capping agent due to the 

presence of a large number of phytochemicals in the flower. The 

prepared flower extract also exhibits a strong reducing power due 

to the presence of more amount of phenolic and flavonoid 

compounds; as a result of which Fe3+ in the precursor reduced to 

Fe2+ effectively [49, 50]. Therefore, this method is very much 

environmentally friendly, simple and cost-effective. 

 
Figure 5. (a) SEM image of Fe3O4 nanoparticles (b) Energy dispersed 

spectroscopy (EDS) image of Fe3O4 nanoparticles prepared by Crocus 

Sativus (Saffron) flowers. 

 

The qualitative and quantitative elemental analysis of 

prepared Fe3O4 nanoparticles were carried out using EDS. Figure 5 

(b) represents the EDS image and elemental composition of 

magnetite nanoparticles prepared from Crocus Sativus (Saffron) 

flower extract. The atomic percentage of iron and oxygen was 

theoretically calculated as 50% each. Similarly, the experimental 

atomic percentage of copper and oxygen were found to be 50% 

each. Both iron and oxygen atoms present in prepared Fe3O4 

nanoparticles are stoichiometric to each other and agree with the 

theoretical and experimental values. 

3.3. UV-Visible spectroscopy. 

The UV-Visible spectra of Fe3O4 nanoparticles prepared 

from Crocus Sativus (Saffron) flower extract are shown in figure 6. 

The prepared nanoparticles were dispersed in de-ionized water 

using an ultra sonicator for 2 minutes to get a homogeneous 

solution. 

 
Figure 6. UV-Visible spectra of green synthesized Fe3O4 nanoparticles 

 

Generally, UV-Visible spectroscopy uses light in the near-

UV and near-infrared ranges and in this visible range molecules 

undergo electronic transitions and directly affect the perceived 

color of the chemicals involved [62]. The UV-visible spectrum 

shows a broad surface Plasmon resonance absorption peak at 385 

nm. This surface plasmon resonance absorption phenomenon 

occurs due to the collective oscillation of the free conduction band 

electrons when electromagnetic radiation strikes them and incident 

light far exceeds the particle diameter [63]. The UV-visible 

spectrum does not show any other absorbance peaks, indicating the 

high purity of the prepared magnetite nanoparticles. 

The bandgap energy (E) of the prepared magnetite 

nanoparticles were calculated by using the following equation; 

 E =  
h×C

λ
                                        (3) 

Where E = Bandgap energy 

 h = Planks constant = 6.626×10-34 Joules.sec 

 C = Speed of light = 3.0×108 meter/sec 

 λ = Cut off wavelength = 385×10-9 meters 

 *Conversion 1eV=1.6×10-19 Joules 

The calculated band gap energy of magnetite nanoparticles 

was found to be 3.23 eV. As band gap values decreases, the 

conductivity of the nanoparticles increases. Ghandoor et al. [64] 

reported the bandgap of magnetite nanoparticles as 3.64 eV, and 

Diasty et al. [65] reported the same as 5.7 eV. The prepared 

magnetite nanoparticles show fewer bandgap values than the 

reported values and hence more conductive in nature [66]. 

3.4. Thermal analysis. 

The thermal properties of prepared magnetite 

nanoparticles were investigated by using thermogravimetric 

analysis (TG) and differential thermal analysis (DTA) over a 

temperature range of 30–1000 ˚C. Figures 7 (a), 7 (b) and 7 (c) 

represent the TG and DTA curves of Fe3O4 nanoparticles at 6, 8 and 

10 ˚C/minute heating rates respectively. 

The prepared Fe3O4 nanoparticles show good thermal 

stability over 30–1000˚C temperature range and exhibit less weight 
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loss. This is due to the significant resistance of Fe3O4 nanoparticles 

against evaporation and phase change at that temperature range. 

During a heating rate of 6˚C/min, only 2.8% weight loss was 

observed between 30 to 500˚C due to water evaporation, 

decomposition of organic material and carbonaceous matter [67] 

and nearly 1.3% weight loss was observed at 500–650˚C due to the 

phase transformation from Fe3O4 to FeO, as FeO is 

thermodynamically more stable above 570 ˚C according to the Fe-

O phase diagram [68]. At higher temperatures, there is a possibility 

of deoxidation of FeO under the N2 atmosphere as reported by S.Y 

Zhao et al. [69]. The total weight loss during heating rate 6˚C/min 

was found to be 4.6%. In the case of 8˚C/min, only 2.5% weight 

loss was observed between 30–500˚C due to the evaporation of 

water and 1.2% weight loss was observed over 500-650˚C due to 

the decomposition of organic material [70]. The total weight loss 

during 8˚C/min was found to be 4.4%. Similarly, during 10˚C/min, 

4.4% weight loss was observed between 30–500˚C and the total 

weight loss was found to be 5.6%. 

In another set of experiments, we studied the change in 

enthalpy and activation energy by using differential thermal 

analysis. The DTA curve at 6, 8 and 10 ˚C/min heating rates, we 

can observe endothermic peaks at 586, 594 and 600 ̊ C respectively. 

These endothermic peaks confirm the decomposition of organic 

matter and carbonaceous materials, the phase transformation from 

Fe3O4 to FeO, and the deoxidation of FeO, respectively. The 

enthalpy change of prepared magnetite nanoparticles at 6, 8 and 10 

˚C/min heating rates were found to be 2.2, 3.57 and 6.64 kJ/mol 

respectively. From the DTA curves, it was observed that, as the 

heating rate increases from 6-10 ˚C/min, the maxima of the 

endothermic peak shift towards higher temperatures. This is due to 

the variation of enthalpy change as well as the temperature of the 

end of transition at higher heating rates [71]. The calculated details 

of weight loss, decomposition peak temperature, enthalpy change 

Fe3O4 nanoparticles prepared from Crocus Sativus (Saffron) flower 

extract are tabulated in table 1. 

Table 1. The calculated details of weight loss, endothermic peak 

temperature, enthalpy change of prepared Fe3O4 nanoparticles using TG 

and DTA curves. 

Type of 

nanomaterial 

Heating 

rate 

(°C /min) 

Endothermic 

temperature 

(°C) 

Percentage 

weight loss 

Enthalpy 

change 

(kJ/mol) 

Fe3O4 

nanoparticles 

6 586 4.6 2.2 

8 594 4.4 3.57 

10 600 5.6 6.64 

 

The activation energy of the magnetite nanoparticles was 

calculated by the Kissinger method [72-74] using maxima of the 

endothermic peaks of DTA curves at 6, 8 and 10˚C/min 

respectively. The Kissinger equation is as follows: 

𝑙𝑛
𝛼

𝑇𝑃
2 =

−𝐸𝑐

𝑅𝑇𝑃
+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (4) 

 

Where TP is the decomposition peak temperature, α is the 

heating rate and R is the gas constant. A linear relationship between 

ln  𝛼/𝑇𝑃
2 and 1000×1/Tp for the maxima of the endothermic peaks 

was obtained using equation (4) and then the activation energy 

required for the decomposition reaction was calculated. 

 

 
Figure 7. TG and DTA curve of green synthesized Fe3O4 nanoparticles at 

(a) 6˚C/minute (b) 8˚C/minute and (c) 10˚C/minute heating rates 

respectively 

 

The Kissinger plot of the activation energy of the 

magnetite nanoparticles prepared from the Crocus Sativus (Saffron) 

flower extract is shown in figure 8. The activation energy required 

for the decomposition reaction was found to 8.09 kJ/moles. The 

calculated values of activation energy using the Kissinger method 

is tabulated in table 2. 
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Figure 8. Kissinger plot to calculate the activation energy of green 

synthesized Fe3O4 nanoparticles. 

 

Table 2. The calculated values of the activation energy of Fe3O4 

nanoparticles using the Kissinger method. 

Type of 

nanomat

erial 

Heating 

rate 

α 

(K/min) 

Peak 

temperature 

 TP 

(K) 

𝛂

𝐓𝐏𝟐
 

(X 

10-4) 

𝐥𝐧
𝛂

𝐓𝐏𝟐
 𝟏𝟎𝟎𝟎𝐗

𝟏

𝐓𝐏

 
Activation 

energy 

 Ea 

(kJ/mol)  

Fe3O4 

nanopar

ticles 

279 859 3.78 -7.88 1.164  

 

8.09 
281 867 3.74 -7.891 1.153 

283 873 3.71 -7.898 1.145 

 

3.5. Antibacterial activity. 

Six bacterial strains namely Bacillus subtilis, 

Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, 

Salmonella enteridis, Staphylococcus aureus were examined to 

study the antibacterial characteristics of Fe3O4 nanoparticles 

prepared from Crocus Sativus (Saffron) flower extract using MIC 

and MBC assays. The prepared Fe3O4 nanoparticles show an 

antibacterial effect against E. coli and P. aeruginosa at 5 mg/mL 

concentration as shown in figure 9.  

The prepared magnetite nanoparticles give rise to the 

intracellular reactive oxygen concentration that urges the bacterial 

damage. Many researchers have published similar kind of results 

and they reported the potential application of Fe3O4 nanoparticles 

as a good antibacterial material. Abbasi et al. [75] have studied the 

antibacterial effect of Fe3O4 nanoparticles treated Rhamnus Virgate 

against some bacteria strain. They showed that Fe3O4 nanoparticles 

created an inhibitory zone against E. coli and P. aeruginosa. 

Vasantharaj et al. [76] biosynthesized magnetite nanoparticles from 

Ruellia tuberose and showed their antimicrobial properties against 

gram-positive and gram-negative bacteria strains. Very recently, 

Vitta et al. [77] prepared Fe3O4 nanoparticles from Eucalyptus 

robusta and investigated their antibacterial activity against B. 

subtilis, E. coli, P. aeruginosa and S. aureus. They reported that 

magnetite nanoparticles had shown the antibacterial activity against 

all tested bacteria.  

 
Figure 9. The antibacterial effect of prepared Fe3O4 nanoparticles at 5 

mg/mL concentration. 

 

The nanoparticle size and metal ions in its content have 

readily penetrated the cell through the pores in the cell membrane. 

Upon entering into the cell, they can interact with organelles, 

enzymes, and proteins, such as vital components for the cell. These 

potential intercellular interactions of nanoparticles may cause 

problems such as DNA replication, inactivation of enzymes, tearing 

of the cell wall of bacteria and cutting of the bacterial body. Since 

the peptidoglycan layer in the cell membrane of gram-negative 

bacteria is thinner than that of gram-positive, Fe3O4 nanoparticles 

may have shown antibacterial activity against gram-negative 

bacteria strains like current study. Therefore, Fe3O4 nanoparticles 

have been proved to inhibit bacterial growth and they are 

considered to be an essential factor when used appropriately. 

 

4. CONCLUSIONS 

 In the present paper, we have successfully prepared Fe3O4 

nanoparticles by a simple and environmentally friendly method 

using Crocus Sativus (Saffron) flower extract. The prepared Fe3O4 

nanoparticles showed a single-phase cubic structure with an 

average crystallite size of 15 nm and a lattice strain of 0.29 as 

calculated from the Scherrer and Williamson-Hall equations 

respectively. The microstructural studies had revealed the spherical 

nature of the prepared magnetite nanoparticles with less 

agglomeration. The EDS analysis confirmed the 50:50 

stoichiometric ratios of iron and oxygen theoretically and 

experimentally. UV-Visible spectroscopy of magnetite 

nanoparticles showed an absorption peak at 385 nm. The iron oxide 

nanoparticles showed less bandgap (3.23 eV) than other published 

reports; therefore they are more conductive. The prepared iron 

oxide nanoparticles exhibited significant stability and it was 

confirmed by thermogravimetric analysis due to the less weight loss 

over a temperature range of 30-1000 ˚C. The DTA analysis showed 

the endothermic peaks at 586, 594 and 600 ˚C respectively 

overheating rates of 6, 8 and 10˚C/min. DTA analysis confirms the 

shift of decomposition/endothermic peak towards higher 

temperatures due to the variation of enthalpy change. The enthalpy 

change of prepared magnetite nanoparticles at 6, 8 and 10˚C/min 

was found to be 2.2, 3.57 and 6.64 kJ/mol respectively. The 

activation energy of the prepared iron oxide nanoparticles was 

calculated using the Kissinger method and the value was found to 

be 8.09 kJ/moles. We also successfully investigated the 
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antibacterial activity of the prepared magnetite nanoparticles 

against Bacillus subtilis, Enterococcus faecalis, Escherichia coli, 

Pseudomonas aeruginosa, Salmonella enteridis, Staphylococcus 

aureus by using the MIC method. The magnetite nanoparticles 

showed excellent antibacterial activity against only gram-negative 

bacterial strains like E. coli and P. aeruginosa at 5 mg/mL 

concentration.
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