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1. INTRODUCTION

Hjorth [1] obtained a three-parameter distribution generalizing Rayleigh, exponential and linear failure rate distributions. Its cumulative
distribution function (cdf) and probability density function (pdf) are given by

Hyj(a,8,6)=1-(1+ ﬁx)_e/ﬁ exp{—ax?/2},x > 0, (1)
and
hyi (a0, 8,6) = [ax (1 + Bx) + 6] (1 + ﬁx)_(e/ﬁ“) exp {—ax?/2},x > 0,

respectively, where a > 0 is the scale parameter and 3,8 > 0 are the shape parameters. Clearly, this distribution is reduced to Rayleigh,
exponential and linear fajlure rate distributions for & = 0, ¢ = 8 = 0 and § = 0, respectively. Since this distribution has increasing
(a > 6), decreasing (o = 0), constant (&« = § = 0) and bathtub-shaped (0 < a < 86) hazard rate functions (hrfs), it has also been named
increasing-decresing-bathtub (IDB) distribution by the author. The quantile function (qf), denoted by Q(u), of the IDB distribution is the
solution of the following equation:

(1 -u)1+8Qw)”* —expf-SQ@’} =0, ue©1). @)

Hence, If U is a uniform random variable on (0, 1) then Qy; (V) isan IDB random variable, where Qg () is the solution of the Equation (2).
On the other hand, Alzaatreh et al. [2] proposed a new technique to construct wider families by using any pdf as a generator. This generator
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called the T-X family of distributions has cdf defined by

w|G(x&
F(x) = J r(t) dt,

where r(t) is the pdf of the random variable T € [a,b] for —c0 < a < b < oo and W[G (x;&)] is a function of the baseline cdf
which satisfies the following conditions: i) W [G (x; £)] € [a, b], ii) W [G (x; £)] is the differentiable and monotonically non-decreasing, iii)
lim,_,_o, W[G(x;&)] = aandlim,_,, W[G(x; )] = b. The pdf of the T-X family is given by

o0 = {%W[G(x; 5)]}r(W[G<x; o).

Based on the above transformer T-X generator, we propose a new wider family of continuous distribution, the Hjorth-G family by replacing
r (t) with the Hjorth density function and having cdf given by

1)
F(x) = J hy (@, B,0)dt =1 — —
0 [l—ﬁlogG(x;g)

exp {—% [loga (x; 5)]2}

]Q/ﬁ ,XER, (3)

where G (x;&) = 1 — G (x; &) is the baseline survival function depending on a g X 1 vector £ of unknown parameters, G (x; £) is the baseline
cdf and o, § and O are the extra scale and shape parameters which are ensure flexibility to baseline distribution. The pdf corresponding to
equation (3) is given by

g &){a[BlogG(x;8 —1]log G (x; &) + 6}
— — 0/6+1
Gxd[1-BlogG (x|

flx) = exp{—% [loga(x; §)]2},x eR, (4)

Hereafter, the random variable X with pdf (4) is denoted by X ~Hj —G(a, 5, 6, £). Further, we can omit the dependence on the parameter
vector € of the parameters and simply write G (x; &) = G(x) and g(x; &) = g(x). If T is an IDB random variable with cdf (1), then X =
G™' (1 — e7T) is the Hj-G random variable where G™! (-) is the qf of the baseline distribution. Hence, qf of X is the solution of the non-

linear equation G™! (1 — e_QHJ(“)> , u € (0,1). The hazard rate function (hrf) of X is given by

g(x) [oc (Bloga(x) — 1) loga(x) + 9]

h(x) = — —
G [1-PBlogG )]

(5)

The goal of this work is to introduce a new flexible and wider family of the distributions based on T-X family using the IDB model. We are
motivated to introduce the Hj —G family because it exhibits increasing, decreasing, constant, upside down, unimodal then bathtub as well
as bathtub hazard rates as shown in Figures 1 and 2. The members of the Hj —G family can also be viewed as a suitable model for fitting the
bimodal, unimodal, U-shaped and other shaped data. The Hj —G family outperforms several of the well-known lifetime distributions with
respect to three real data applications as illustrated in Section 9. The new log- regression model based on the Hj —Weibull provides better
fits than the log-Topp-Leone odd log-logistic-Weibull [3] and log-Weibull regression models for Stanford heart transplant data set.

The paper is organized as follows: Some sub-families of the new family are introduced in Section 2. In Section 3, the series expansions
for cdf and pdf of the new family are presented. In Section 4, some of its mathematical properties are derived. Section 5 deals with some
characterizations of the new family. In Section 6, the maximum likelihood method is used to estimate the parameters. A new regression
model as well as residual analysis are presented in Section 7. In Section 8, two simulation studies are performed to evaluate the efficiency of
the maximum likelihood estimates. In Section 9, we illustrate the importance of the new family by means of three applications to real data
sets. The paper is concluded in Section 10.

2. SPECIAL HJ-G DISTRIBUTIONS

The Hj-G family can extend to any baseline distribution due to its shape and scale parameters. So, the pdf (4) will generate more flexible
distributions than baseline model. Also, Hj-G family includes some sub-families such as Rayleigh-G, exponential-G and linear failure rate-
G families for 6 = 0, = § = 0 and 8 = 0, respectively. We note that the Rayleigh-G and exponential-G families are the special members
of the Weibull-G family which was introduced by Corderio et al. [4]. Here, we obtain three special models of the Hj-G family. These special
models extend some well-known distributions given in the literature.
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2.1. The Hj-Normal (Hj-N) Distribution

The normal distribution is very useful model in statistics and related field. Since, it has increasing hrf shape, symmetrical and uni-modal
pdf shape, its data modeling area can be limited. To extend the normal distribution, we consider Hj-N distribution as our first example by
taking G (x; u,0) = ® (x —H ) and g(x; u,0) = o~ !¢ <%), the cdf and pdf, respectively, where x,u € R,0 > 0and ¢ (-) and @ (-)
are the pdf and cdf of the standard normal distribution, respectively. We denote this distribution with Hj-N (a, 8, 6, u, o). Some plots of
the Hj-N density and hrf for selected parameter values are displayed in Figure 1. W note that the pdf shapes of the Hj-N can be skewed,
bi-modal and uni-modal. Also, its hrf shapes are increasing and firstly increasing shape then bathtube shape.

2.2. The Hj-Weibull (Hj-W) Distribution

As our second example, we consider the Weibull distribution, which has monotone hrf and decreasing and uni-modal pdf, with shape
parametery > 0and scale parameter 1 > 0. Its cdf and pdfare given by G (x; 7, 1) = 1—exp [—(Ax)’ ] and g (x; 7, 1) = A x¥ =V exp [—(Ax)! ]
for x > 0, respectively. We denote this distribution with Hj-W (a, 8, 6, 4, 7). Some plots of the Hj-W density and hrf for selected parameter
values are displayed in Figure 2. Figure 2 shows that the pdf and hrf shapes of the Hj-W can be very flexible. For example, the new extended
Weibull distribution has bi-modal, uni-modal, decreasing, firstly increasing shape then U shaped pdf. Nevertheless, it has both monotone
and non-monotone hrf shape such as bathtube shape and firstly increasing shape then bathtube shape.

2.3. The Hj-Uniform (Hj-U) Distribution

As our third example, let the baseline distribution have an uniform distribution in the interval (a, b) Then G (x; 4, b) = (x — a)/(b — a) and
g(x;a,b) = 1/(b—a)fora < x < b,a, b € R. We denote this distribution with Hj-U («, 8, 6, a, b). Some plots of the Hj-U density and hrf for
selected parameter values are displayed in Figure 3. Figure 3 shows that the pdf can be increasing, decreasing, uni-modal, firstly decresing
then uni-modal and U-shaped. Its hrf has increasing and bathtube shape. Hence, Hj-U distribution may be suggested for hrf model with
bathtube shape.
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Figure 1 The probability density function (pdf) and hazard rate functions (hrf) of the Hj-Normal (Hj-N)
distribution for selected parameter values.
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Figure 2 The probability density function (pdf) and hazard rate functions (hrf) of the Hj-Weibull (Hj-W)
distribution for selected parameter values.
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Figure 3 The probability density function (pdf) and hazard rate functions (hrf) of the Hj-Uniform (H;j-U)

distribution for selected parameter values.

3. USEFUL EXPANSIONS

In this section, we provide a useful linear representation of the Hj-G cdf function

a -0/
F(x)=1—exp (—5 {~log[1— G(x)]}z) {1-Blog[1 -G} %,
A;
Expanding the quantity A; in power series, we can write
- i i — i -0/
F=1- (=) flog[1 - G@I} ()™ (@/2) {1 - Blog[1 - G ol} ",
i=0 B,
and expanding the quantity B; by via Taylor series
) . )
= (i) @-1 (g“)]
j=0
where j is a positive integer and (¢ )j =¢ (¢ =1)..(¢ —j+1) is the descending factorial, we get
c 2i+j
ad L _ o [
F(x)=1- Y, (=D)*¥ (itjt) Ya/2) p (—=6/B);{log[1 — G ()]
ij=0
Expanding the quantity C; by using log(1 — z) expansion
log(1—17) = — Z ™ h+ 1) < 1,
k=0
we obtain
o o 1 72
Fx)=1-= Y (=) (it )‘1 (@/2)' B (=6/B), | Y. SAC)
ij=0 N k+1)

Using the equation by Gradshteyn and Ryzhik [5], page 17, for a power series raised to a positive integer n

n
© ©
k=0 k=0

where the coefficients c, ; (for k = 1.2,...) are easily determined from the recurrence relation

k
Cnk = (kao)_l Z [m (I’l + 1) - k] (am) (Cn,k—m) >

m=1

where C, , = ay, the coefficient c, ; can be calculated from c,,, ..., ¢, x—; and hence from the quantities a,,

(s3]
F)=1- 2 v Ty (),
k=0

..., 4;, we have

(6)
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where Il ., (x) = G (x)k+1 is the cdf of the exponentiated-G (exp-G) class with power parameter k + 1 and

Verr = 3, (DI (it1) 7 (@/2) (<61B), o

1j=0
Upon differentiating (6), we obtain
f@) = D) Ok i (), (7)
k=0
where v, = —vyand e () = (k+1)g(x) G ()" denotes the exp-G class density with power parameter k + 1.

4. SOME PROPERTIES OF THE HJ-G FAMILY
4.1. General Properties

The " ordinary moment of X is given by u, = EX") = Ijooo X' f(x) dx. Then, we obtain p; = Y vy E(Y] 1)» Where Y}, =
k=0

y Iio Gt g(x) dx, which can be computed numerically in terms of the baseline quantile function (qf) Qg(u;&) = G~ !(x; &) as

EY}) =« JOI u* 1 Qg(u; &)" du. by setting r = 1 in ], we have the mean of X. The last integration can be computed numerically for most

parent distributions. The rth central moment of X, say y,, follows as u, = E(X — u})" = Z(—l)h ( Z ) (41" i,y For the skedwness and
h=0
2
kurtosis coefficients, we have \/E = 'L% and f3, = #—‘2‘. The values for mean, variance, \/E and B, for selected Hj-W distributions
125 2

are shown in Table 1. Table 1 shows that Hj-N distribution can be left skewed and right skewed as well as having different kurtosis values.
Hence, the Hj-W model can be useful for data modeling in terms of skewness and kurtosis.

The n'" descending factorial moment of X (forn = 1,2, ...) is
iy =EXP] = E[XX =D X..XX=n+D] =D s(nky,
k=0

where s (n,k) = (k!)™" [dkk(”) / dxk] is the Stirling number of the first kind. Here, we provide two formulae for the moment generating

x=0
function (mgf) My () = E (e‘X) of X. Clearly, the first one can be derived from Equation (7) as My (t) = ka+1 My (£) ,where M (¢)

k=0
is the mgf of Y}, ;. Hence, M (f) can be determined from the exp-G generating function. A second formula for My (f) follows from (7) as
o]

My () = kaﬂ T (t, k) ,where 7 (t,k) = IOI exp [t Qg (W] ukdu and Qg(u) is the gf corresponding to G (x; &), i.e., Qg(u) = G~ !(u; €). The

j=0
" incomplete moment of X is defined by m,(y) = K . x” fx)dx. From (7) we can write m,(y) = ) U1 m, i (y), where m,,,(y) = E(Y;,) =
k=0
6(r:€) . . . . . . .
IO Q; ;8 u’~! du. The integral m,,(y) can be determined analytically for special models with closed-form expressions for Qg (u; &)

or computed at least numerically for most baseline distributions.

Table 1 Mean, variance, coefficients of skewness and kurtosis for Hj-Weibull (Hj-W) distributions.

(a, B,0,4,7) [l{ Variance \/ﬁ_l B,

(0.5,0.5,0.5, 0.5, 0.5) 4.4975 37.1694 2.6572 13.5148
(1,1,1,1,1) 0.7706 0.3715 1.0395 3.9265
(2,2,0.5,1,2) 0.8161 0.0849 —-0.1659 2.6427
(5,5,5,5,5) 0.1385 0.0011 -0.3015 2.6162
(0.5,2,0.5,2,0.5) 1.4083 3.1419 2.3539 11.1339
(1,2,3,4,5) 0.1918 0.0022 -0.1629 2.6292
(5,4,3,2,1) 0.1626 0.0188 1.1156 4.0671

(5, 10, 15, 20, 25) 0.0444 0.00001 —27.0075 31116
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4.2. Order Statistics

Suppose X, ..., X}, is a random sample from any Hj-G distribution. Let X;.,, denote the ith order statistic. The pdf of X;., can be expressed as

o n—i

f;Ax)=ﬁxﬂBUJ1—i+1ﬂ‘l2504Jf< ; ) o+,

j=0

Following similar algebraic developments of Nadarajah et al. [6], we can write the density function of X;. , as
(e8]
Fin® = ) 0 i (), ®)
r,k=0

where

al (r4+ 1) =D oy o D fiyii
r+k+1) pard m—i—jjv

Uik =

S . . o . . j+i—1 .
and v, is given in Section 3 and the quantities f;;;_; x can be determined with fi;,_;, = ci;rl and recursively for k > 1, fiyi1x =

(k)" anzl [m (i + i) — k] ¢ fi+i—1,k—m- Equation (8) is the main result of this section. It reveals that the pdf of the Hj-G order statistics
is a linear combination of Exp-G density functions. So, several mathematical quantities of the Hj-G-G order statistics such as ordinary,
incomplete and factorial moments, mean deviations and several others can be determined from those quantities of the exp-G distribution.

5. CHARACTERIZATION

This section deals with various characterizations of the Hj-G distribution. These characterizations are based on (i) a simple relationship
between two truncated moments; (i) the hazard function and (iii) conditional expectation of a function of the random variable. It should
be mentioned that for characterization (i) the cdf is not required to have a closed form. We present our characterizations (i) — (iii) in three
subsections.

5.1. Characterizations Based on Two Truncated Moments

In this subsection we present characterizations of Hj-G distribution in terms of a simple relationship between two truncated moments. The
first characterization result employs a theorem due to Glanzel [7] see Theorem 5.1.1 below. Note that the result holds also when the interval
H is not closed. Moreover, as mentioned above, it could be also applied when the cdf F does not have a closed form. As shown in Gldnzel
[8], this characterization is stable in the sense of weak convergence.

Theorem 5.1.1. Let (Q,F,P) be a given probability space and letH = [d,e] be an interval for some d < e (d=—o0,e =0
might as well be allowed) . Let X : Q — H be a continuous random variable with the distribution function F and let q, and q, be two real
functions defined on H such that

ElX) | X>2x]=E[q,X) |X>x]n(x), x€H,

is defined with some real function 1. Assume that q,,q, € C* (H), n € C* (H) and F is twice continuously differentiable and strictly monotone
function on the set H. Finally, assume that the equation 1q, = q, has no real solution in the interior of H. Then F is uniquely determined by
the functions qy, q, and ), particularly

: n' (w)
F(x) = J C‘ exp (—s(u)) du,
g @ =g w7
where the functions is a solution of the differential equation s’ = nq’?—‘hq and C is the normalization constant, such that IH dF = 1.
1~ 49

6
[logE(x)] [1 - 610g5(x)] Fr!
a [[3 loga(x) - 1] logE(x) +6
q; (x) exp {—% [loga(x)]z}forx € R. The random variable X has pdf (4) if and only if the function 1) defined in Theorem 5.1.1 has the form

Proposition 5.1.1. Let X : Q — R be a continuous random variable and let, q, (x) = and g, (x) =

7n(x) = éexp {—% [loga(x)]z}, x € R.
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Proof. Let X be a random variable with pdf (4), then
1 o — 2
1- F(x))E[q1 X)X > x] =5 exp{—; [logG(x)] },e R
and
1 — 2
(1= FG)E[q,(0 X2 4] = o exp{—a [1og G ()] } x€R,
and finally

N q (x)—q,(x) = — qlz(x) exp{—% [loga(x)]z} <0 for xeR.

Conversely, if 7) is given as above, then

, 7' (g, () ag (x) [log G ()]
s (x)= =— —
7 (x) gy (x) — g, (%) G (x)

x€eR,

and hence

D[R

— 2
s(x) = [logG(x)] ,x €R.

Now, in view of Theorem 5.1.1, X has density (4). O

Corollary 5.1.1. Let X : Q — R be a continuous random variable and let q, (x) be as in Proposition 5.1.1. The pdf of X is (4) if and only if
there exist functions q, and 1) defined in Theorem 5.1.1 satisfying the differential equation

" @aw 28w [lgGw]

= R.
7 (x) q; (%) — g2 (%) G (x) <

The general solution of the differential equation in Corollary 5.1.1 is

[ ag(x) [6 (x)]_1 [loga (x)] X

—_ 2
s =epalosS O 2|t g )00 anco 0]

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition 5.1.1 with D = 0. However,
it should be also noted that there are other triplets (ql, Iy 77) satisfying the conditions of Theorem 5.1.1.

5.2. Characterization Based on Hazard Function

It is known that the hazard function, hp, of a twice differentiable distribution function, F, satisfies the first order differential equation

f)  h)
fx) he(x)
For many univariate continuous distributions, this is the only characterization available in terms of the hazard function. The following

characterization establishes a non-trivial characterization of Hj-G distribution in terms of the hazard function, which is not of the above
trivial form.

hF(x).

Proposition 5.2.1. Let X : Q — R be a continuous random variable. The pdf of X is (4) if and only if its hazard function hy (x) satisfies the
differential equation

log G (x) — 1]|log G (x) + 6
h}(x)—g(x) dia[ﬁ 80 ]Og © %,xeR

he () = g(x) = — —
g0 dx G(x) [1 - ﬁlogG(x)]
Proof. If X has pdf (4), then clearly the above differential equation holds. Now, if the differential equation holds, then

d - d
) o) =

a [6 loga(x) - 1] loga(x) + 9}
G [1 - ﬁloga(x)]
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or

g(x) {oc [[3 loga(x) - 1] loga(x) + 9}

he(x) = — —
e G(x)[l—ﬁlogG(x)]

which is the hazard function of the Hj-G distribution. |

5.3. Characterizations Based on Conditional Expectation

The following proposition has already appeared in Hamedani [9], so we will just state it here which can be used to characterize the Hj-G
distribution.

Proposition 5.3.1. Let X : Q — (a,b) be a continuous random variable with cdfF. Let ¥ (x) be a differentiable function on (a, b) with
lim,_, ,+ ¥ (x) = 1. Then for § # 1,

EpX) [X2x]=6p(x), x€(ab),
if and only if

1

Px)=(1 —F(x))%' , x € (a,b).

- 2
el [lsGel} . . I
R § = 57 and (a,b) = R, Proposition 5.3.1 provides a characterization of Hj-G

[1 - 5loga(x)]m
distribution. (b) Of course there are other suitable functions than the one we mentioned above, which is chosen for simplicity.

Remark 5.3.1. (a) For 3 (x) =

6. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

We consider the estimation of the unknown parameters of the new family from complete samples only by maximum likelihood method.
Letx,, -+ ,x, be a random sample from the Hj-G family with a (g + 3) X 1 parameter vector © = (a, 8,6, E")T, where £is a q X 1 baseline
parameter vector. The log-likelihood function for © is given by

£(0) = ZIOgg(x,-;f) - Zlog@(x,—;f) + (% + 1> Zlog{l — ﬁloga(xi;é)}
i=1

i=1 i=1

+Zlog [oc [B log G (x;; &) — 1] log G (x;; &) + 9] - %Z [—loga(xi;g)]z .
i=1 i=1

T\ T
The components of the score vector, U(®) = ¢ _ <6€(®) 94(0) 94(6) 06(9) > ,are

80\ da ' 88 > 86 > d¢&

[Blog G (x;: &) — 1]1og G (x; &) é

Uy = Z - Z [— loga(x,«;.f)]

F 1a[510g6(xi;§)— 1]10g6(x,»;§)+6 =1

2
)

N =

0 " —logG(x:8) 6 < _
Ug=1(|=+1 —_— = ——>1 1 - Blog G (x;;
B8 (5 ); 1 — BlogG(x; &) ,82; og{ Blog G (x «f)}

n o [logE(x,-; §)]2
1l a [ﬁ loga(xi;f) — 1] loga(xi;g‘) +6

n

1« = 1
Ug== )1 — Blog G(x;; — — ,
o 5; Og{l flog Glx 6)}4_; oc[ﬁlogG(xi;Zj)— l]logG(x,;.§)+9
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and
G’(xl;g)
! gj(xi; ) "G (x,-; ) <9 > n 5@
Ug, = +), = +(5+1 S a7 R—
$ B T G(xig) \P 2 1= BlogG (x;§)
. 1BlogG (x;£) — a[BlogG (x;: £) — 1] &) . o
+ E — — G(x; E) Z g xzag logG(xi;g) ’
i=1  alflogG (x;€) — 1]log G (x;&) +6 G (x:8)
where
g (x38) = agg#g{f) and G’ (x;; &) = 5%72,5)

Setting the nonlinear system of equations U, = Ug = Uy = Ug =0 (for r = 1,..., q) and solving them simultaneously yields the MLEs

= (&, ﬁA .06, %T)T. To solve these equations, it is more convenient to use nonlinear optimization methods such as the quasi-Newton algorithm
to numerically maximize £(©). For interval estimation of the parameters, we can evaluate numerically the elements of the (g + 3) X (g + 3)
2

o
36,0,

approximated by a multivariate normal N,(0, J(©)~!) distribution to construct approximate confidence intervals for the parameters. Here,

observed information matrix J(®) = {— } Under the standard regularity conditions, when #n — oo, the distribution of ® can be

J(®) is the total observed information matrix evaluated at ®. The method of the re-sampling bootstrap can be used for correcting the biases
of the MLEs of the model parameters. Good interval estimates may also be obtained using the bootstrap percentile method.

7. SIMULATION STUDY

In this section, the performance of the MLEs of Hj-W distribution is discussed via simulation study. The inverse transform method is used to
generate random variables from Hj-W distribution. The performance of the MLEs is evaluated based on the following measures: biases, mean
square error (MSE) and coverage probability (CP). N = 1, 000 samples of sizes n = 50, 55, ..., 1000 is generated from the Hj-W distribution
witha = 0.5,8 = 0.5,6 = 2,4 = 2,y = 3. The MLEs of the model parameters are obtained for each generated sample, say (&;, /?1-, @,-, //1\,-, 7,
fori = 1,...,N. The standard errors of the MLEs are evaluated by inverting the observed information matrix, namely (sq,» $5,256,0 SA,» sp.)

. . . . = 1 N — 1 N 5
for i = 1,...,N. The estimated biases and MSEs and CPs are given by Bias.(n) = N zi:l(ei —€), MSE.(n) = Nzizl(si — €)%, and

1 «N
CP.(n) = N Zi:l I(€; — 1.95996s¢;, £; + 1.95996s; ) where € = at, 8,0, 4,7 and s¢, is standard error of ¢; for each generated sample.

Figure 4 displays the simulation results for above measures. As seen from Figure 4, the estimated biases and MSEs approach zero when the
sample size increases. As expected, CPs are near the nominal value (0.95) for sufficiently large sample sizes. The simulation results verify
the consistency property of MLE. The similar results can be obtained for different parameter vector.

8. LOG-HJ-W REGRESSION MODEL

Consider the Hj-W distribution with five parameters presented in Subsection 2.2. Henceforth, X denotes a random variable following the
Hj-W distribution and Y = log(X). The density function of Y (for y € R) obtained by replacing y = 1/0 and 1 = 1/exp (u), can be
expressed as

6

i) = 2 e (e HPew (] ()48 f &, (12, ©
(exp [~ exp (£%)]) [1+ Bexp (252)]F "

ag

Figure4 Estimated coverage probability (CPs), biases and mean square errors (MSEs) for the selected parameter vector.
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Figure 5 Plots of the LHj-W density function for some parameter values.

where 4 € R is the location parameter, o > 0 is the scale parameter and o > 0, 5 > 0 and 8 > 0 are the shape parameters. We refer to
equation (9) as the log-Hj-W (LHj-W) distribution, say Y ~ LHj-W(«a, 8, 8, u, o). Figure 5 provides some plots of the density function (9)
for selected parameter values. They reveal that this distribution is a good candidate for modeling left skewed and bimodal data sets.

The survival function corresponding to (9) is given by

S(z) =

ple —ep @il + Bep @I +8} g a0 10)
: ,

¢}
(exp[—exp (2)]) [1 + Bexp )] F "

and the hrf is simply h(y) = f(y)/S(y). The standardized random variable Z = (Y — u)/o has density function

1oy Bl —ep @I e l-ep @I 1 - {1 —ewp e @I )

7 {{1 = exp [~ exp @IF™® + [1 = {1 = exp [— exp @)} ]

Based on the LHj-W density, we propose a linear location-scale regression model linking the response variable y; and to explanatory variable
vector viT = (v,-l, s v,-p) given by

¥ = vIT,B +0z,i=1,..,n (12)

where the random error z; has the density function (11), § = (B, ... ,ﬁp)T, og>0,a>0,8>0and6 > 0 are unknown parameters.

The parameter u; = v! B is the location of y;. The location parameter vector u = (ii,..., 4,)" is represented by a linear model u = VB,

where V = (vy, ..., v,)T is a known model matrix. Consider a sample (y;, 1), ..., (¥, v,,) of n independent observations, where each random

response is defined by y; = min{log(x;), log(c;)}. We assume non-informative censoring such that the observed lifetimes and censoring

times are independent. Let F and C be the sets of individuals for which y; is the log-lifetime or log-censoring, respectively. The log-likelihood

function for the vector of parameters 7 = (a, 8,0, , B7)" from model (12) has the form I(7) = Y I,(t) + . ll(.c)(r), where [;(7) = log[f(y)],
i€F ieC

lgc)(‘[) = log[S(y)], f(y;) is the density (9) and S(y;) is the survival function (10) of Y;. The total log-likelihood function for 7 is given by

3, log[1+ Bu] = 5 Yu

i€F ieF

bﬂ(T)ZT’IOg(%)+Zzi+zlog{a[l+ﬁui]ui+6}_<%)
i€F i€F

xp 3 [—ul’
i ]

ieC

, (13)

wl®

[1—B(—uy]

where u; = exp(z)), z; = (y; — 4;)/0;, and r is the number of uncensored observations (failures). The MLE 7 of the vector of unknown
parameters can be obtained by maximizing the log-likelihood function (13). The R software is used to estimate 7.

8.1. Residual Analysis

Residual analysis has critical role in checking the adequacy of the fitted model. In order to analyze departures from the error assumption,
two types of residuals are considered: martingale and modified deviance residuals.
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8.1.1. Martingale Residual

The martingale residuals is defined in counting process and takes values between +1 and —oco (see [10] for details). The martingale residuals
for LHj-W model is

expi = [ —u,)’
1+log| = {2 6} ifi € F,
[1-B(—u)]?
er=‘<
exp{S [ —ul’
log| = —— | ifie C,
[1-B(-u)]?

where u; = 2@ [exp (z,»\/z/2> and z; = (y; — uy/o.

8.1.2. Modified Deviance Residual

The main drawback of the martingale residual is that when the fitted model is correct, it is not symmetrically distributed about zero.
To overcome this problem, modified deviance residual was proposed by Therneau et al. [11]. Th modified deviance residual for LHj-W
model is

_ \sign(ryg ) {=2[ry, +log(1 - er)]}l/z, ifieF
P \sign (ry) {2y }'2, if i €C,

where #y; is the martingale residual.

9. REAL DATA APPLICATIONS

In this section, we consider three applications to real data sets to show the modeling ability of the Hj-N, Hj-W and Hj-U distributions. We
compare these distribution models with both distributions of some members of the T-X family, where W[ G(x)] is equal to — log[1—G(x)], and
some generalizations of ordinary normal, Weibull and uniform distributions. These families and generalized models are the Mc Donald-G
(Mc-G) family [12], Gompertz-G (Gom-G) family [13], Generalized odd log logistic-G (GOLL-G) family [14], Weibull-G (W-G) family [4],
Lomax-G (Lx-G) family [15], Lindley-G (Li-G) family [16], logistic-G (L-G) family [17], Kumaraswamy odd log logistic normal (KwOLLN)
distribution [18], odd Burr normal (OBN) distribution [19], Zografos-Balakkrishnan odd log logistic Weibull (ZBOLLW) distribution [20],
additive Weibull (AW) distribution [21] and gamma uniform (GU) distribution [22]. The cdfs of these distributions are available in the
literature. To determine the best model, we also compute the estimated log-likelihood values £, Akaike Information Criteria (AIC), corrected
Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan—Quinn information criterion (HQIC), Cramer-von-
Mises (W*) and Anderson-Darling (A*) goodness of-fit statistics for all distribution models. We note that the statistics W* and A* are
described in detail in [23]. In general, it can be chosen as the best model the one which has the smaller the values of the AIC, CAIC, BIC,
HQIC, W* and A* statistics and the larger the values of £ and p-values. All computations are performed by the maxLik routine in the R
programme. The details are given below.

9.1. Otis IQ Scores of Non-White Males Data Set

The first real data set is the data on the Otis IQ Scores of 52 non-white males hired by a large insurance company in 1971. This data set has
been analyzed by [24-26] and [27]. On the data set, we compare the Hj-N model with Mc-N, Lx-N, W-N, KwOLLN, L-N, OBN, GOLL-N,
Gom-N and Li-N models. Table 2 shows MLEs and standard erros of the estimates for the first dat set. Table 3 lists information criteria
results and goodness-of-fits statistics. Table 3 clearly show that the Hj-N model has the smallest values AIC, CAIC, BIC, HQIC, W* and A*
statistics and it has the largest values for £ and two p-values among the fitted models. So, it can be chosen as the best model based on these
criteria. For this data set, the plots of the fitted pdfs and cdfs for all models are shown in Figure 6. From this figure, we see that the Hj-N,
Mc-N and KwOLLN models fit data as bi-modal shape whereas the OBN model fits data as uni-modal shape.

9.2. Failure Times Data Set

The second data set represents the times between successive failures (in thousands of hours) in events of secondary reactor pumps studied
by [28,29] and [30]. This data set is also known as bathtub shaped. So, for this data set, we compare the Hj-W model with AW, Mc-W, Lx-
W, W-W, ZBOLLW, L-W, GOLL-W, Gom-W and Li-W models. We fitted the Hj model and obtained its £ value as -31.2520. Table 4 shows
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Table 2 MLEs and standard erros of the estimates (in parentheses) for the first data set.

Data Set Model a p 0 f ]

1 Hj-N 190,363.1425 518,889.4549 152,083.8273 154.4301 11.9168
(5.9316) (380.4220) (380.4954) (0.00001) (0.0862)

KwOLLN 5.8735 84.4204 0.0221 113.0728 2.0037
(0.2310) (6.8585) (0.0026) (0.0308) (0.0519)

Mc-N 0.0160 0.0573 2.7977 111.0082 1.4883
(0.0023) (0.0132) (0.0315) (0.0001) (0.0001)

GOLL-N 0.7348 - 18.6911 84.2008 12.0843
(0.1867) (6.8108) (4.7654) (2.2345)

OBN 1.7777 - 0.2647 98.9947 7.7191
(0.8162) (0.1183) (1.9371) (2.6981)

W-N 0.1546 - 0.9030 96.8421 3.5746
(0.0432) (0.0972) (0.0002) (0.0002)

Gom-N 0.0020 - 0.0921 94,9562 3.4364
(0.0152) (0.0196) (0.0007) (0.0007)

Lx-N 118.0650 376.2148 - 99.5811 5.4795
(93.3838) (92.8438) (1.0954) (0.4381)

Li-N - - 0.1470 90.5867 4.0007
(0.0144) (0.0001) (0.0001)

L-N - - 2.5576 101.6204 12.0705
(0.9339) (1.7310) (4.3032)

Table 3 Information criteria results, A*, W* and £ statistics ([-] and {-} denote their p-values) for the first data set.

DataSet  Model AIC CAIC  BIC HQIC A* w* -7

I Hj-N 366.8823  368.1866 376.6385 370.6226 0.2925 0.0428 178.4411
[0.9434] {0.9198}

KwOLLN  368.0000  369.3043 377.7562 371.7403 0.3144 0.0446 179.0001
[0.9266) {0.9098}

Mc-N 368.4839 369.7883 378.2401 372.2242 0.3422 0.0520 179.2420
[0.9028) {0.9030}

GOLL-N  372.5455 3733966 380.3505 375.5378 0.4404 0.0683 182.2728
[0.8072] {0.7639}

OBN 371.8735  372.7245 379.6784 374.8657 0.3973 0.0584 181.9367
[0.8508] {0.8262}

W-N 372.5644  373.4154 380.3693 375.5566 0.4698 0.0750 182.2822
[0.7770] {0.7231}

Gom-N 371.0419  371.8929 378.8468 374.0341 0.5295 0.0856 181.5209
[0.7160] {0.6616}

Lx-N 373.2565 3741076 381.0615 376.2488 0.6205 0.1031 182.6283
[0.6280] {0.5715}

Li-N 370.9549 371.4549 376.8087 373.1991 0.7868 0.1486 182.4775
[0.4900] {0.3947}

LN 372.8924 3733924 378.7461 375.1365 0.4423 0.0639 183.4462
[0.8053] {0.7911}

fitedods

ited denty

Figure 6 The fitted probability density functions (pdfs) and cumulative distribution functions (cdfs) for the first
data set.
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MLEs and standard erros of the estimates for the second data set. Table 5 lists information criteria results and goodness-of-fits statistics.
The Hj-W model has the smallest values of the AIC, HQIC, W* and A* statistics and have the largest values for £ and all p-values among
the fitted models. For this data set, the plots of the fitted pdfs and cdfs for all models are shown in Figure 7. From this figure, we see that the
Hj-W model fits the histograms of the data sets with more adequate fitting than Li-W and other models.

9.3. Student’s Cognitive Skill Data

The third data set contains the student’s cognitive skills for Organisation for Economic Co-operation and Development (OECD) countries.
The score of student’s cognitive skill represents the average score in reading, mathematics and science as assessed by the OECD’s Programme

Table4 MLEs and standard erros of the estimates (in parentheses) for the second data set.

Data Set Model @ /§ 0 y) ¥
11 Hj-w 0.0031 23.3597 6.9156 0.9910 1.8949
(0.0018) (6.5439) (2.1775) (0.0152) (0.0007)
ZBOLLW 2.5977 6.2815 - 41.9548 0.2567
(3.3552) (4.1634) (12.3595) (0.1468)
Mc-W 87.0504 119.6097 2.3397 37.5696 0.0487
(4.2657) (1.4467) (0.1265) (2.5664) (0.0064)
GOLL-W 0.2619 - 10.3956 4.1457 0.8139
(0.0579) (0.2475) (0.0893) (0.7005)
W-W 0.1100 - 1.1545 11.0445 0.6995
(0.0523) (0.1856) (0.0051) (0.0001)
Gom-W 0.0023 - 0.0912 15.1874 0.7808
(0.0230) (0.0294) (0.0003) (0.0001)
Lx-W 48.4187 99.9372 - 1.7814 0.8161
(11.7869) (17.9206) (1.0382) (0.1314)
Li-W — - 27.1223 0.0126 0.1298
(10.4406) (0.0099) (0.1298)
L-W - - 21.5282 1.4143 0.0571
(9.5853) (0.4227) (0.0272)
AW 0.1576 11.1873 - 0.6779 0.7575

(0.0172)

(10.4301)

(0.2075)

(0.1372)

Table 5 Information criteria results, A*, W* and £ statistics ([-] and {-} denote their p-values) for the second data set.

DataSet Model AIC CAIC BIC HQIC A* w* -7
I Hj-W 68.7731 72.3025 74.4506 70.2010 0.1295 0.0157 29.3865
[0.9997] {0.9996}
ZBOLL-W  71.1057 73.3279 75.6476 72.2480 0.2213 0.0243 31.5528
[0.9835] {0.9923}
Mc-W 73.5915 77.1209 79.2690 75.0193 0.2264 0.0256 31.7957
[0.9814] {0.9898}
GOLL-W  69.9227  72.1450 74.4647 71.0650 0.2400 0.0384 30.9614
[0.9754] {0.9445}
W-W 73.0278 75.2500 77.5698 74.1701 0.4040 0.0617 32.5139
[0.8433] {0.8076}
Gom-W  72.3346 74.5568 76.8766 73.4770 0.3845 0.0569 32.1673
[0.8626] {0.8382}
Lx-W 73.0204 752427 77.5625 74.1628 0.3965 0.0602 32.5102
[0.8509] {0.8175}
Li-W 71.0288 72.2920 74.4354 71.8855 0.4047 0.0619 32.5144
[0.8426] {0.8066}
L-W 71.2273 72.4905 74.6338 72.0841 0.2326 0.0259 32.6136
[0.9788] {0.9891}
AW 70.5462 72.7684 75.0881 71.6884 0.3730 0.0600 31.2731

[0.8738]

{0.8186}
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for International Student Assessment (PISA). The data set can be found in https://stats.oecd.org/index.aspx?DataSetCode=BL. By using this
data set, we compare the Hj-U model with GU, L-U and W-U models. We note that since a < x < b, the MLE of the g and b are the minumum
order statistic x,., and maximum order statistic x,,.,, respectively. Hence, we assume that the parameters are a = 416 and b = 529 for all
fitted models. Table 6 shows MLEs and standard erros of the estimates for the third data set. Table 7 lists information criteria results and
goodness-of-fits statistics. The Hj-U model has the smallest values of the AIC, CAIC, HQIC, W* and A* statistics and have the largest values
of the £ and all p-values among the fitted models. So, it can be chosen as the best model based on these criteria. For this data set, the plots
of the fitted pdfs and cdfs for all models are shown in Figure 8. From this figure, The Hj-U model has fitted the data as uni-modal shaped .

Finally, when we observe all results, we can say that the Hj-N, Hj-W and Hj-U models could be chosen as the best models for the three data

sets via the above criteria.

08

fied densly

0 02 04 0
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Figure 7 The fitted probability density functions (pdfs) and cumulative distribution functions (cdfs) for the

second data set.

Table 6 MLEs and standard erros of the estimates (in parentheses) for the third data set.

Data Set Model @ B 0 a b
11T Hj-U 0.8393 11.0082 0.1020 416 529
(0.1537) (4.2005) (0.2336)

GU 1.0723 39112 - 416 529
(0.2339) (1.0792)

L-U 2.7437 - - 416 529
(0.4026)

W-U 0.4537 - 0.6334 416 529

(0.1032)

(0.0930)

Table 7 Information criteria results, A*, W* and £ statistics ([-] and {-} denote their p-values) for the third data set.

Data Set  Model AIC CAIC BIC HQIC A* wW* -7
111 Hj-U 295.7462 296.5738 300.2357 297.2568 0.6284 0.1031 144.8731
[0.6202] {0.5726}
GU 297.7327 298.1327 300.7257 298.7398 1.2184 0.2049 146.8684
[0.2604] {0.2588}
L-U 299.6478 299.7768 301.1443 300.1513 2.5881 0.5574 148.8239
[0.0449] {0.0279}
W-U 404.1662 404.5662 407.1592 405.1733 2.8695 0.5562 200.0831

[0.0322]

{0.0281}

fitedcensly

student skill levels
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Figure 8 The fitted probability density functions (pdfs) and cumulative distribution functions (cdfs) for the

third data set.
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9.4. Stanford Heart Transplant Data

Recently, Brito et al. [3] introduced the Log-Topp-Leone odd log-logistic-Weibull (Log-TLOLL-W) regression model. Brito et al. [3] used the
Stanford heart transplant data set to prove the usefulness of Log-TLOLL-W regression model. Here, we use the same data set to demonstrate
the flexibility of LHj-W regression model against the Log-TLOLL-W and Log-Weibull regression models. These data set is available in
p3state.msm package of R software. The sample size is n = 103, the percentage of censored observations is 27%. The goal of this study is to
relate the survival times () of patients with the following explanatory variables: x, - year of acceptance to the program; x,- age of patient (in
years); x3- previous surgery status (1 = yes,0 = no); x4- transplant indicator (1 = yes,0 = no); ¢; - censoring indicator (0 = censoring, 1 =
lifetime observed). The regression model fitted to the stanford heart transplant data is given by

Vi = Bo + Bixi + Baxip + Bsxis + Baxis + 0z,

respectively, where the random variable y; follows the LHj-W distribution given in (9). The results for the above regression models are
presented in Table 8. The MLEs of the model parameters and their SEs, p values and —¢, AIC and BIC statistics are listed in Table 8. Based
on the figures in Table 8, LHj-W model has the lowest values of the —¢, AIC and BIC statistics. Therefore, it is clear that LHj-W regression
model outperforms the others for this data set. In view of the results of LHj-W regression model, 5, 5, and j3, are statistically significant at
1% level.

Finally, when we observe all results, we can say that the Hj-N, Hj-W and Hj-U models could be chosen as the best models for the three data
sets via the above criteria.

9.4.1. Residual analysis of LHj-W model for Stanford heart transplant data set

Figure 9 displays the index plot of the modified deviance residuals and its Q-Q plot against N(0, 1) quantiles for Stanford heart transplant
data set. Based on Figure 9, we conclude that none of observed values appear as possible outliers. Therefore, the fitted model is appropriate
for this data set.

10. CONCLUSIONS

In this work, we introduce a new flexible class of continuous distributions via the Hjorth’s IDB model. We provide some mathematical
properties of the new family. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard

Table 8 MLEs of the parameters to Stanford Heart Transplant Data for Log-Weibull, Log-TLOLL-W and LHj-W regression models with
corresponding SEs, p-values and —¢, AIC and BIC statistics.

Models

Log-Weibull Log-TLOLL-W LHj-W
Parameters  Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value
o4 - - - 2.34 3.546 - 1.662 0.541 -
B - - - - - - 5.382 6.910 -
6 - - - 24.029 3.015 - 19.326 12.172 -
o 1.478 0.133 - 9.68 12.526 - 1.223 0.141 -
B 1.639 6.835 0.811 -0.645 8.459 0.939 6.398 0.485 <0.001
B 0.104 0.096 0.279 0.074 0.097 0.448 0.234 0.096 0.014
B, -0.092 0.02 <0.001 -0.053 0.02 0.009 —-0.066 0.018 <0.001
B 1.126 0.658 0.087 1.676 0.597 0.005 0.139 0.512 0.785
B. 2.544 0.378 <0.001 2.394 0.384 <0.001 0.262 0.377 0.487
- 171.2405 164.684 160.061
AIC 354.481 345.368 338.122
BIC 370.2894 366.4458 361.834

e Devanc Rescuel
|

Inaex N(Oo.1) quantiles

Figure9 Index plot of the modified deviance residual (left) and Q-Q plot for modified deviance residual (right).
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function are presented. The maximum likelihood method is used for estimating the model parameters. We assess the performance of the
maximum likelihood estimators in terms of the biases and mean squared errors by means of two simulation studies. A new regression model
as well as residual analysis are presented, Finally, the usefulness of the family is illustrated by means of three real data sets. The new model
provides consistently better fits than other competitive models for these data sets.
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