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A B S T R A C T

This study addresses subsea search applications where an autonomous underwater vehicle (AUV) is tasked with
finding the target density in a given search region within finite time. We assume that AUV is equipped with a
side-scan sonar sensor that detects the targets at the sampled location. We consider that sensor performance
is dependent on local environmental conditions (e.g., clutter density, sediment type) that vary throughout
the search region, and we presume that environmental conditions are unknown or partially known. Due to
uncertain and varying environmental conditions, resulting search performance is also uncertain and it varies
by location. This paper specifically considers the cases where environmental information can be acquired
either by a separate vehicle or by the same vehicle that performs the search task. Our main contribution
is to formally derive a decision-theoretic cost function to compute the locations where the environmental
information should be acquired so that the performance of the search task can be improved. For the cases
where computing the optimal locations to sample the environment is computationally expensive, we offer
an approximation approach that yields provable near-optimal paths. We show that our decision-theoretic cost
function outperforms the information-maximization approach, which is often employed in similar applications.

1. Introduction

We address subsea search applications where an AUV is to find
an unknown number of objects in a bounded search environment and
within limited time. We assume that the environment affects sensor
performance, and local environmental conditions vary by location.
That is, in some locations the search sensor is expected to perform
better than in other locations. Yetkin et al. (2015) shows how guidance
algorithms for search missions can incorporate stochastic knowledge
of the environment to improve search performance. In this study, we
specifically consider the cases where environmental information can
be acquired as part of the overall search task. The principal contribu-
tions of this study show where environmental information should be
acquired in order to improve overall search performance. We address
two cases: (1) environmental characterization is performed prior to a
search mission by a separate asset than the search vehicle, and (2)
environmental characterization is performed at the same time as search
by the same vehicle that performs the search task. In this study, we
extend our findings in our prior work (Yetkin et al., 2015, 2016).

We use a decision-theoretic value function that is associated with
the accuracy of our estimate of the number of objects in the environ-
ment. Because search performance is dependent on the environment,
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knowledge of the environment can improve search performance due to
better search plans. For example, one may choose to avoid searching ar-
eas that are known to contain excessive clutter and many false positives
in favor of environments with few false positives. In situations where
the environment is poorly known, efforts to acquire environmental
information may lead to improved search effectiveness. We address the
case that stochastic knowledge of the environment can be acquired,
and we describe where the environment should be surveyed in order
to improve overall search performance. One approach for selecting
where to acquire environmental information is simply to characterize
locations that yield the greatest reduction of uncertainty about the
environment. In other words, one might seek to maximize reduction
in entropy of the distribution that describe the environment, which
is often employed in similar applications (see, for example, Coleman
and Block, 2007; Elfes, 1992; Papadimitriou et al., 2000). In contrast,
we show that reducing uncertainty in the environment is not the
best approach. A primary contribution of this work is to show that
environmental information should be acquired at the locations where
the greatest reduction of uncertainty in anticipated search performance
will occur, where we define search performance as the probability that
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the estimate for the number of objects in the environment is correct.
Computing the optimal locations to acquire the environment informa-
tion can be computationally expensive when the planning horizon is
large. To address the computational challenge of our approach, we
show an approximation approach that yields provably near-optimal
paths.

The remainder of this paper is organized as follows. An overview of
search theory and the benefit of acquiring environmental information
in some search missions is provided in Section 2. In Section 3, we
formulate the search problem and define the observation model. In Sec-
tion 4, we define the objective function that maximizes the estimation
accuracy. In Section 5 and Section 6, we describe our proposed cost
function to compute the locations where environmental characteriza-
tion should be performed. Section 7 provides the numerical results that
illustrate our approach.

2. Related work

2.1. Search theory

Search theory is concerned with finding an optimal allocation of
available search effort to locate a lost or hidden target, such that a
reward specified as a measure of search effectiveness is maximized.
Bernard Koopman offered one of the first systematic approaches to
the search problem (Koopman, 1957). His work laid the foundations
of the problem and since then the search problem received a lot
of attention, mainly from the operations research community. Some
notable examples include Chung and Burdick (2012a), Kadane (1971),
Kimeldorf and Smith (1979), Kress et al. (2008), Richardson (1988) and
Stone et al. (1972).

In a real-world search application, sensor measurements can be
noisy due to false negatives, i.e. failing to detect a target that is present,
and false positives, i.e. falsely detecting a target when the target is
not present at the location. Local environmental conditions can also
affect the number of false positives and false negatives the sensor
observes, and deterministic knowledge on environmental conditions
is often unavailable. However, existing literature in search theory
rarely addresses the requirements of real-world search applications. For
instance, the existence of false positives is mostly ignored in existing
works. Exceptions include Chung and Burdick (2012b), Dobbie (1973),
Kress et al. (2008), Kriheli et al. (2016), Pollock (1964) and Stone
et al. (1972), where the effect of environmental conditions on sensor
performance is not accounted for. To best of our knowledge, there is
no work in the literature that addresses both the existence of false
positives and multiple targets. Our work builds upon prior work by
accounting for multiple targets, false alarms, non-zero cost of moving
to another search location, and uncertainty in the environment. To best
of our knowledge, this is the first study to account for all these factors
together. We do not address coverage problems as in Choset (2001) or
exhaustive search. Rather, we consider applications where there is a
time or distance constraint, and we seek solutions where we achieve
the best search performance within a time or distance constraint. Due
to this constraint, optimal search paths may not visit every location.
Indeed, in some scenarios it is possible that some locations are visited
more than once while other locations are never visited at all.

2.2. Effect of environment information

We consider that the local environmental conditions affect the
sensor performance, and that the environment varies throughout the
search region. Hence, the sensor performs better in some locations
than in others. The environment at a location may not be known
with certainty and we may only have a probabilistic knowledge on
the environment. When possible, acquiring information about the local
environmental conditions can significantly improve the results of a

follow-on search mission. The question is, where to sample the en-
vironment so that the most improvement in search performance can
be obtained. This is the fundamental question we seek to answer in
this study, and we show that a new approach is needed to address the
cases where the limited planning horizon of the mission does not allow
exhaustive search of the environment.

The effect of the environment on search performance is well-known.
De Guenin is the first to account for the effect of environmental
conditions on search performance (De Guenin, 1961). He illustrated
the intuitive effect of environmental conditions on detection probability
with a simple example of visual search where the detection probability
depends upon the atmospheric conditions that may not be uniform and
thus, for the same search effort, the detection probability will be higher
in clear areas than in overcast areas. In subsea applications where sonar
is used for search, variations in the seabed induce significant variation
in probability of detection and probability of false alarm (Elmore et al.,
2007; Zare and Cobb, 2013). Similarly, in terrestrial applications using
ground penetrating radar, background clutter and soil properties have
significant effect on search results (Gader et al., 2001; Takahashi et al.,
2011a,b). For the cases where the search environment is unknown
or partially known, reducing the uncertainty in the environment can
greatly improve search performance. For the particular trial in Harris
et al. (2005), the experimental results show that the mine-hunting
mission takes 40% less time when the environment is known compared
to when there is no prior environmental information. In our prior
work (Yetkin et al., 2015), we also show that uncertainty in the
environment leads to uncertainty in search performance which can
result in terminating the search mission too early, and thus, obtaining
poor search performance.

We note that the existing literature on robotic exploration (see
Bourgault et al., 2002; Carrillo et al., 2015; Makarenko et al., 2002;
Yamauchi, 1997, among many examples) provides little insight to the
applications we address. Robotic exploration addresses the challenge
of building a map. In contrast, we seek to characterize a subset of the
environment with respect to search sensor performance for the goal of
improving search effectiveness.

3. Problem formulation

Search and environmental characterization are accomplished using
different sensors that can be mounted on different vehicles or on
the same vehicle. When the sensors are placed on different vehicles,
the vehicle that possesses the search sensor is called the search vehi-
cle and the vehicle that possesses the environmental characterization
sensor is called the environmental characterization vehicle. When the
search and environmental characterization sensors operate simultane-
ously on a single vehicle, we informally refer to the vehicle as the
search/environmental characterization vehicle. In this section, we provide
the notation and the formal definition of the search problem. A list of
variables is provided in Table C.1 in Appendix.

3.1. Preliminaries

A search grid  ⊂ R2 is partitioned into 𝐾 disjoint cells and each
cell in the search grid is associated with random variables 𝑋 and 𝐸.
Random variable 𝑋 represents the number of objects, and random
variable 𝐸 represents the environmental conditions in the cell. We
consider that the number of objects and the environmental conditions
in each is independent throughout the search grid. That is, for cells
𝑖 and 𝑗, 𝑋𝑖 is independent of 𝑋𝑗 and 𝐸𝑖 is independent of 𝐸𝑗 . The
objective of the search mission is to estimate 𝑋1,… , 𝑋𝐾 by using a
sensor to detect objects in each cell. We assume that deterministic
knowledge of the environmental conditions is unavailable, but the
finite set of environments 𝑤1, 𝑤2,… , 𝑤𝑚 in the search grid is known
and a probabilistic knowledge on these environments is available for
each cell. For instance, the environment probability distribution for
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cell 𝑖 is expressed [𝑝1(𝑖), 𝑝2(𝑖),… , 𝑝𝑚(𝑖)] where 𝑝𝑗 (𝑖) = 𝑃 (𝐸𝑖 = 𝑤𝑗 ) is the
probability that the actual environment in cell 𝑖 is 𝑤𝑗 . We note that in
practice clustering of different types of environmental conditions can
be carried out by using a previously acquired environment dataset in
the search domain (see, for example, McMahon et al., 2017).

3.2. Sequential Bayesian update for the search vehicle

When the search vehicle samples from a location, it observes the
number of objects in that location, and an imperfect measurement
𝑧 ∈ 𝑍 of the actual number of objects in the location is acquired. We
denote by 𝑍 both the set of possible search measurements (i.e. 𝑧 ∈ 𝑍)
and the random variable associated with a search measurement in a cell
(i.e. 𝑍𝑖 = 𝑧𝑖). We note that the acquired measurement 𝑧 includes both
false positives and false negatives. The sensor model that we choose for
the numerical illustrations in Section 7 is

𝑃
(

𝑧 ∣ 𝑥,𝑤𝑗
)

=
min(𝑥,𝑧)
∑

𝑘=0

(

𝑥
𝑘

)

𝐷𝑘
𝑗 (1 −𝐷𝑗 )𝑥−𝑘(1 − 𝐹𝑗 )𝐹 𝑧−𝑘

𝑗 (1)

which is the likelihood of observing 𝑧 objects when 𝑥 is the true
number of objects at the location and the environment is 𝑤𝑗 . In (1),
0 ≤ 𝐹𝑗 < 1 denotes the probability of one or more false alarms, and
0 < 𝐷𝑗 ≤ 1 denotes the probability of detection. Note that both 𝐹𝑗 and
𝐷𝑗 are assumed to vary as functions of the environment type 𝑤𝑗 . The
details of the search sensor model is described in prior work (Shende
et al., 2012; Yetkin et al., 2015) and omitted here for brevity. We note
that other expressions for the sensor model are also possible, and our
results do not depend on this specific sensor model except for numerical
illustrations. Upon acquiring a search measurement 𝑧, we use Bayesian
update law to update the distribution 𝑃 (𝑋 ∣ 𝑧,𝑤𝑗 ).

𝑃
(

𝑋 = 𝑥 ∣ 𝑧,𝑤𝑗
)

=
𝑃
(

𝑧 ∣ 𝑥,𝑤𝑗
)

𝑃
(

𝑋 = 𝑥
)

∑

𝑥 𝑃
(

𝑧 ∣ 𝑋 = 𝑥,𝑤𝑗
)

𝑃
(

𝑋 = 𝑥
) (2)

3.3. Sequential Bayesian update for the environmental characterization
vehicle

When the environment characterization vehicle samples from a lo-
cation, it observes the environmental conditions in that location, and an
imperfect measurement 𝑦 ∈ 𝑌 of the true environment at the location
is acquired. We denote by 𝑌 both the set of possible environment
measurements (i.e. 𝑦 ∈ 𝑌 ) and the random variable associated with
an environment measurement at a cell (i.e. 𝑌𝑖 = 𝑦𝑖). We assume the
likelihood of observing an environment measurement 𝑦 when the true
environment is 𝑤𝑗 is known. We use Bayesian update law to compute
the posterior distribution of the environment after observing 𝑦,

𝑃
(

𝐸 = 𝑤𝑗 ∣ 𝑦 ∈ 𝑌
)

=
𝑃
(

𝑦 ∣ 𝐸 = 𝑤𝑗
)

𝑃
(

𝐸 = 𝑤𝑗
)

∑

𝑗 𝑃
(

𝑦 ∣ 𝐸 = 𝑤𝑗
)

𝑃
(

𝐸 = 𝑤𝑗
) (3)

3.4. Sequential Bayesian update for the search/environmental characteri-
zation vehicle

When the search sensor and the environmental characterization sen-
sor operate simultaneously on a single vehicle, the noisy observations
𝑧 and 𝑦 are acquired simultaneously. Given 𝑧 and 𝑦 measurements ac-
quired at a location, we represent the updated probability distribution
of the number of objects unconditioned on the environment

𝑃
(

𝑋 = 𝑥 ∣ 𝑧, 𝑦
)

=
∑

𝑗
𝑃
(

𝑋 = 𝑥 ∣ 𝑧,𝑤𝑗
)

𝑃
(

𝐸 = 𝑤𝑗 ∣ 𝑦
)

(4)

where the posterior distributions 𝑃 (𝑋 = 𝑥 | 𝑧,𝑤𝑗 ) and 𝑃 (𝐸 = 𝑤𝑗 | 𝑦 ∈ 𝑌 )
follow from (2) and (3), respectively.

4. Path planning for the search vehicle

We perform environmental characterization to improve the results
of a search mission. To better understand the value of acquiring an
environment measurement at a location, we seek to quantify the effect
of the acquired environment measurements on search results. Thus, in
this section, we briefly present the value of searching a location and
the objective function to compute the optimal search paths. For more
details on path planning for the search vehicle, we refer the reader to
our prior work (Yetkin et al., 2015).

The search objective is to accurately estimate the number of objects
in each cell. However, due to imperfect sensor measurements, our
estimate of the number of objects in a cell can be different than the
true number of objects. Hence, we define that the goal of searching a
location is to maximize the accuracy of our estimate of the number of
objects at that location. That is, we seek to maximize the probability
that our estimate of the number of objects after searching a location
will be correct. We use a zero–one utility function to compute the value
of forming an estimate 𝛿𝑋 (𝑧) of the true number of objects 𝑥 after
acquiring search measurement 𝑧.

𝑈
(

𝑥, 𝛿𝑋 (𝑧)
)

=

{

1 if 𝑥 = 𝛿𝑋 (𝑧)
0 if 𝑥 ≠ 𝛿𝑋 (𝑧)

(5)

We believe the zero–one utility function in (5) adequately assesses
the value of forming an estimate for the applications where an incorrect
estimate may have severe consequences (e.g. subsea mine-hunting mis-
sions). For the applications where incorrect estimates are also valued,
one can use a linear loss function to assess the value to forming an
estimate of the number of objects (see, for example, McMahon et al.,
2017). Given that the acquired measurement is 𝑧 and the environment
is 𝑤𝑗 , Bayes estimator is

𝛿⋆𝑋 (𝑧) = arg max
𝛿𝑋 (𝑧)

E
[

𝑈
(

𝑥, 𝛿𝑋 (𝑧)
)

∣ 𝑧,𝑤𝑗

]

(6)

that maximizes the expected values of the zero–one utility function in
(5). The value of searching a location is

E
[

𝑈
(

𝑥, 𝛿⋆𝑋 (𝑧)
)

]

=
𝑚
∑

𝑗=1
𝑃
(

𝐸 = 𝑤𝑗
)

E
[

𝑈
(

𝑥, 𝛿⋆𝑋 (𝑧)
)

∣ 𝑤𝑗

]

(7)

and we call this the anticipated estimation accuracy.
Let 𝛾 = {𝑞1,… , 𝑞𝑁} be a candidate search path that traverses

the cells 𝑞1,… , 𝑞𝑁 ∈ , and let ̄𝛾 be the budget constraint on the
search mission due to limited time/distance the vehicle can traverse.
We define (𝛾) to denote the cost for traversing a path 𝛾. Note that
when the traversal cost for moving from one location to another is
unity, (𝛾) is simply the number of cells traversed by 𝛾.

When the vehicle makes multiple visits to a cell, we acquire a set of
independent search measurements. We denote by 𝑧 both a single search
measurement and a set of search measurements when a cell is visited
multiple times by 𝛾. Then, the expected utility of traversing 𝛾 is

E
[

𝑈
(

𝑥, 𝛿⋆𝑋 (𝑧𝛾 )
)

]

=
∏

𝑞𝑖∈𝛾
E
[

𝑈
(

𝑥𝑞𝑖 , 𝛿
⋆
𝑋 (𝑧𝑞𝑖 )

)

]

×
∏

𝑖∈⧵𝛾
max
𝑥𝑖

𝑃
(

𝑋𝑖 = 𝑥𝑖
)

(8)

where  ⧵ 𝛾 denotes the remaining cells in the search grid that are not
traversed by 𝛾, and max𝑥𝑖 𝑃

(

𝑋𝑖 = 𝑥𝑖
)

is the certainty in the number of
objects in cell 𝑖 prior to acquiring new measurements. Let 𝛺𝛾 denote
the finite collection of feasible search paths. Then, the optimal search
path is

𝛾⋆ = arg max
𝛾∈𝛺𝛾

E
[

𝑈
(

𝑥, 𝛿⋆𝑋 (𝑧𝛾 )
)

]

(9)

subject to

(𝛾) ≤ ̄𝛾 (10)
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5. Path planning for the environmental characterization vehicle

The primary objective of environmental characterization is to im-
prove search performance. With additional information about the en-
vironment at a few locations, it might be possible to avoid searching
locations where the sensor performs poorly in favor of places where
the sensor performs well. We consider the case where environmental
characterization is performed prior to search, and we assume that
both environmental characterization and search cannot be performed
exhaustively due to limited resources.

5.1. Entropy change maximization

When environment information can be acquired only in some lo-
cations due to limited resources, the question is to determine where
to optimally sample the environment. One approach that is often used
in similar applications is to maximize the change in entropy due to
acquired environment measurements (Coleman and Block, 2007; Elfes,
1992; Papadimitriou et al., 2000). We briefly describe a typical entropy
approach for selecting where to sample the environment so that we can
compare it to our proposed approach.

Let 𝐻(𝐸 = 𝑤𝑗 ) denote the prior entropy of the probability distribu-
tion 𝑃 (𝐸 = 𝑤𝑗 ) and let 𝐻(𝐸 = 𝑤𝑗 ∣ 𝑦 ∈ 𝑌 ) be the posterior entropy
after acquiring the environment measurement 𝑦. The expected amount
of change in the entropy for a future environment measurement 𝑦 can
be computed by

𝐽
(

𝐸
)

= 𝐻
(

𝐸 = 𝑤𝑗
)

−
∑

𝑦
𝐻
(

𝐸 = 𝑤𝑗 ∣ 𝑦 ∈ 𝑌
)

Let 𝜂 be a candidate path for the environment characterization
vehicle, 𝛺𝜂 be the finite collection of feasible paths, and ̄𝜂 be the
budget constraint on the environment characterization mission. Then,
the best path to characterize the environment based on the entropy
change maximization method is

𝜂⋆ = arg max
𝜂∈𝛺𝜂

𝐽𝜂(𝐸) (11)

subject to

(𝜂) ≤ ̄𝜂

However, we note that the purpose of environmental characteriza-
tion in this study is not to explore the environment, but to improve
the performance of a follow-on search mission. We show in Section 7
via numerical studies that maximizing change in entropy does not
maximize the performance of follow-on search missions.

5.2. Environmental loss function

In order to improve the performance of a follow-on search mission
by exploring the environment, we first address how the uncertainty
in the environment affects the search performance. When we compute
the value of searching a location in (7), we average the search value
over all possible environments with respect to the prior environment
probability distribution, which can result in a different search value
than the true search value given true environment at the location. That
is, uncertainty in the environment results in deviations from actual
search results and degrades search performance after a mission.

Let 𝑒 be the true environment and 𝑉
(

𝑤𝑗
)

denote the value of
searching a location with environment 𝑤𝑗

𝑉
(

𝑤𝑗
)

= E
[

𝑈
(

𝑥, 𝛿⋆𝑋 (𝑧)
)

∣ 𝐸 = 𝑤𝑗

]

(12)

In order to penalize the deviations from actual search performance, we
define a linear loss function

𝐿𝑉
(

𝑒, 𝛿𝐸 (𝑦)
)

=

⎧

⎪

⎨

⎪

⎩

𝑐1
(

𝑉
(

𝑒
)

− 𝑉
(

𝛿𝐸 (𝑦)
)

)

if 𝛿𝐸 (𝑦) ⪯ 𝑒

𝑐2
(

𝑉
(

𝛿𝐸 (𝑦)
)

− 𝑉
(

𝑒
)

)

if 𝛿𝐸 (𝑦) ≻ 𝑒
(13)

where 𝑐1, 𝑐2 > 0 are the relative costs of over and underestimating
search performance, and 𝛿𝐸 (𝑦) is an estimate of the environment after
environment measurement 𝑦 is acquired. The notation ≺ and ≻ rep-
resent a preference ordering among the environments. When 𝑉 (𝑤𝑖) <
𝑉 (𝑤𝑗 ) for environments 𝑤𝑖 and 𝑤𝑗 , we say 𝑤𝑖 ≺ 𝑤𝑗 , and when 𝑉 (𝑤𝑖) >
𝑉 (𝑤𝑗 ), we say 𝑤𝑖 ≻ 𝑤𝑗 . Throughout this paper, we consider a distinct
and ordered set of environments so that 𝑤1 ≺ 𝑤2 ≺ ⋯ ≺ 𝑤𝑚.

When our environment estimate is worse than the true environment
(𝛿𝐸 (𝑦) ≺ 𝑒), too much search effort can be allocated to the same loca-
tion. Since the available search effort we can apply to search the region
is limited, allocating unnecessary search effort to the same location may
degrade the overall search performance. On the other hand, when our
environment estimate is greater than the true environment (𝛿𝐸 (𝑦) ≻ 𝑒),
we exaggerate the value of searching a location, which may result in
poorly allocated search effort and exaggerated search performance after
a mission. In the numerical illustrations in Section 7, we choose 𝑐1 < 𝑐2
so that overestimation is more penalized than underestimation.

After observing environment measurement 𝑦 at a location, we com-
pute the posterior probability distribution of the environments 𝑃

(

𝑤𝑗 ∣
𝑦
)

in (3). We then compute the expected loss of forming environment
estimate 𝛿𝐸 (𝑦) with respect to the posterior distribution 𝑃

(

𝑤𝑗 ∣ 𝑦
)

E
[

𝐿𝑉
(

𝑒, 𝛿𝐸 (𝑦)
)

∣ 𝑌 = 𝑦
]

=
𝑚
∑

𝑗=1
𝑃
(

𝑤𝑗 ∣ 𝑦
)

𝐿𝑉
(

𝑤𝑗 , 𝛿𝐸 (𝑦)
)

(14)

and, we choose the Bayes estimator 𝛿⋆𝐸 (𝑦) that minimizes the expected
loss in (14).

𝛿⋆𝐸 (𝑦) = arg min
𝛿𝐸 (𝑦)

E
[

𝐿𝑉
(

𝑒, 𝛿𝐸 (𝑦)
)

∣ 𝑦
]

(15)

Let 𝐹𝐸∣𝑦(𝑤𝑛) be such that

𝐹𝐸∣𝑦(𝑤𝑛) ∶= 𝑃
(

𝐸 ≤ 𝑤𝑛 ∣ 𝑦
)

=
𝑛
∑

𝑗=1
𝑃
(

𝐸 = 𝑤𝑗 ∣ 𝑦
)

(16)

for 𝑛 ∈ {1, 2,… , 𝑚} where (16) follows since 𝑤1 ≺ 𝑤2 ≺ ⋯ ≺ 𝑤𝑚. Then,
the Bayes estimator (15) with respect to the linear loss function in (13)
is

𝛿⋆𝐸 (𝑦) = 𝑤𝑙+1 (17)

where

𝑙 = argmax
𝑛

(

𝑛 ∈ {1, 2,… , 𝑚 − 1} ∶ 𝐹𝐸∣𝑦(𝑤𝑛) ≤
𝑐1

𝑐1 + 𝑐2

)

(18)

We note that the proof for (17) can be found in any standard book
on statistical decisions (see, for example, Berger, 2013).

5.3. Path planning

A benefit of environmental surveys is to reduce the error in an-
ticipated search performance due to uncertainty in the environment.
When a location is not visited by the search vehicle during a search
mission, acquiring an environment measurement at that location will
not affect search performance. From the loss function in (13), comput-
ing the estimate (15) of the environment after acquiring environment
measurement 𝑦 yields the conditional expected loss

E
[

𝐿𝑉
(

𝑒, 𝛿⋆𝐸 (𝑦)
)

∣ 𝑦
]

=
𝑚
∑

𝑗=1
𝑃
(

𝐸 = 𝑤𝑗 ∣ 𝑦
)

𝐿𝑉
(

𝑤𝑗 , 𝛿
⋆
𝐸 (𝑦)

)

(19)

that quantifies the amount of uncertainty in anticipated estimation
accuracy after acquiring 𝑦. Informally speaking, the prior loss before ac-
quiring an environment measurement represents the prior uncertainty,
and the conditional expected loss in (19) represents the posterior un-
certainty in search performance. For notational convenience, we define
(𝑦) to denote the reduction of uncertainty in anticipated estimation
accuracy due to environment measurement 𝑦

(𝑦) = E
[

𝐿𝑉
(

𝑒, 𝛿⋆𝐸
)

]

− E
[

𝐿𝑉
(

𝑒, 𝛿⋆𝐸 (𝑦)
)

∣ 𝑦 ∈ 𝑌
]
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Then, the gain of acquiring an environment measurement 𝑦𝑖 in cell 𝑖
is the reduction of uncertainty in anticipated estimation accuracy given
that cell 𝑖 is visited by the search vehicle

𝐺
(

𝑦𝑖
)

= 𝐈
(

𝑖, 𝛾⋆(𝑦𝑖)
)

(𝑦𝑖) (20)

where the notation 𝛾⋆(𝑦) denote the best path for the search vehicle
when the probability distribution of the environment is updated with
the acquired measurement 𝑦, and the indicator function 𝐈

(

𝑖, 𝛾(𝑦𝑖)
)

∶
𝑦𝑖 → [𝑐′, 1] is defined

𝐈
(

𝑖, 𝛾(𝑦𝑖)
)

=

{

1 𝑖 ∈ 𝛾(𝑦𝑖)
𝑐′ 𝑖 ∉ 𝛾(𝑦𝑖)

(21)

where 0 ≤ 𝑐′ < 1 is a parameter to determine the relative gain
of sampling the environment at locations that will not be searched.
Without loss of generality, we consider that 𝑐′ = 0.

Let 𝜂 = {𝑞1, 𝑞2,… , 𝑞𝑀} be a candidate path for the environment
characterization vehicle and recall that 𝛺𝜂 is the finite collection of
feasible characterization paths. We denote by 𝑦 both a single environ-
ment measurement and a set of independent environment measure-
ments when a cell is visited multiple times by 𝜂. Then, the expected
characterization gain of traversing 𝜂 is

E
[

𝐺𝜂

]

=
∑

𝑦𝜂

𝑃
(

𝑌𝜂 = 𝑦𝜂
)
∑

𝑞𝑖∈𝜂
𝐈
(

𝑖, 𝛾⋆(𝑦𝑖)
)

(𝑦𝑞𝑖 ) (22)

and the optimal path is

𝜂⋆ = arg max
𝜂∈𝛺𝜂

E
[

𝐺𝜂

]

(23)

subject to

(𝜂) ≤ ̄𝜂 (24)

5.4. Approximating the characterization gain of a path

Computing the optimal path for the environment characterization
vehicle in (23) can be computationally very expensive. This is mainly
due to large computational requirements of computing the optimal
search path for each set of environment measurements along a candi-
date path 𝜂. Thus, we also propose an approximate method that reduces
the computational complexity of the solution in (23). Our approximate
solution yields provably near-optimal paths.

Let �̄�𝜂 be the set of environment characterization paths such that
(𝜂) ≤ ̄𝜂 , let |⋅| denote the size of a set (or an array), and let 
denote the computational complexity of computing the optimal search
paths. Then, the solution in (23) has a computational complexity of

(

|�̄�𝜂|𝑚|𝜂|
)

where 𝑚 is the number of environments in the search
domain. This shows that the exponential increase in the computa-
tional complexity is dominated by the large planning horizon for the
characterization vehicle. One approach to reduce this computational
complexity is to use a receding horizon strategy where we compute
the paths for a shorter horizon. While receding horizon approach
may require less computational power compared to computing the
paths for the entire planning horizon, it may still be infeasible unless
the considered planning horizon is sufficiently small (in which case
the resulting performance will be poor). Instead, our approach to
reduce the complexity of the solution in (23) aims to approximate the
characterization gain of traversing a path.

We start with re-arranging the terms in (22) by partitioning a path
𝜂 into two parts; a cell 𝑞𝑖 ∈ 𝜂 and the other cells in the path

E
[

𝐺𝜂
]

=
∑

𝑦𝜂

𝑃
(

𝑌𝜂 = 𝑦𝜂
)
∑

𝑞𝑖∈𝜂
𝐈
(

𝑞𝑖, 𝛾
⋆(𝑦𝜂)

)

(𝑦𝑞𝑖 )

=
∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

(𝑦𝑞𝑖 )
∑

𝑦𝜂⧵𝑞𝑖

𝐈
(

𝑞𝑖, 𝛾
⋆(𝑦𝜂)

)

𝑃
(

𝑌𝜂 = 𝑦𝜂
)

(25)

where 𝜂 ⧵ 𝑞𝑖 denotes the set of cells in 𝜂 except cell 𝑞𝑖. The terms up
to the third summation in (25) denote the characterization gain of

acquiring the environment measurement 𝑦 from cell 𝑞𝑖 ∈ 𝜂, and the
other terms that start with the third summation denote how likely it
is that sampling cell 𝑞𝑖 will improve the performance of a follow-on
search mission. That is, it represents the chances that cell 𝑞𝑖 will be
visited during a follow-on search mission based on the environment
measurements that we may acquire along the path 𝜂. Note that since
𝜂 = {𝑞1, 𝑞2,… , 𝑞𝑀}, the joint probability 𝑃

(

𝑌𝜂 = 𝑦𝜂
)

in (25) can be
expressed

𝑃
(

𝑌𝜂 = 𝑦𝜂
)

= 𝑃
(

𝑌𝑞1 = 𝑦𝑞1
)

×⋯ × 𝑃
(

𝑌𝑞𝑀 = 𝑦𝑞𝑀
)

(26)

Thus, we can re-write (25)

E
[

𝐺𝜂
]

=
∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× �̄�𝜂⧵𝑞𝑖 (27)

where �̄�𝜂⧵𝑞𝑖 is the total probability of every possible sets of the environ-
ment measurements 𝑦𝑞1 , 𝑦𝑞2 ,… , 𝑦𝑞𝑖−1 , 𝑦𝑞𝑖+1 ,… , 𝑦𝑞𝑀 such that the optimal
search path associated with the updated environment distributions
visits cell 𝑞𝑖

�̄�𝜂⧵𝑞𝑖 =
∑

𝑦𝜂⧵𝑞𝑖

𝐈
(

𝑞𝑖, 𝛾
⋆(𝑦𝜂)

)

𝑃
(

𝑌𝜂⧵𝑞𝑖 = 𝑦𝜂⧵𝑞𝑖
)

(28)

=
∑

𝑦𝜂⧵𝑞𝑖 ∶ 𝑞𝑖∈𝛾⋆(𝑦𝜂 )
𝑃
(

𝑌𝜂⧵𝑞𝑖 = 𝑦𝜂⧵𝑞𝑖
)

(29)

Indeed, the computational cost of (27) is dominated by �̄�𝜂⧵𝑞𝑖 in (29).
Thus, we use a sample-based method to compute an empirical estimate
of �̄�𝜂⧵𝑞𝑖 , which results in a significant speed-up in computing the
characterization path. For each cell 𝑞𝑖 ∈ 𝜂 and for every environment
measurement 𝑦𝑞𝑖 ∈ 𝑌 , we perform �̄� trials where, in each trial, we
randomly sample an environment measurement from the probability
distribution 𝑃

(

𝑌𝑞𝑗 = 𝑦𝑞𝑗
)

for all 𝑞𝑗 ∈ 𝜂 such that 𝑗 ≠ 𝑖. Then, with
the updated environment distributions we compute the optimal search
path and see whether the corresponding path visits cell 𝑞𝑖, or not. We
simply count the number of times cell 𝑞𝑖 is being visited by the resulting
search path out of �̄� trials, and we denote this number by 𝑘. Since this
is repeated for every other cell in the path, we may sample the same
environment measurement 𝑦𝑞𝑖 from cell 𝑞𝑖 during a trial of another cell.
Let �̄�𝑦𝑞𝑖

be the number of times 𝑦𝑞𝑖 is sampled in cell 𝑞𝑖 during the trials
of the other cells in path 𝜂 and let 𝑘𝑦𝑞𝑖 be the number of times cell 𝑞𝑖
is contained in the corresponding search path out of these �̄�𝑦𝑞𝑖

trials.
Then, the empirical estimate of �̄�𝜂⧵𝑞𝑖 is

�̂�𝜂⧵𝑞𝑖 =
𝑘 + 𝑘𝑦𝑞𝑖
�̄� + �̄�𝑦𝑞𝑖

(30)

Obtaining a close estimate of �̄�𝜂⧵𝑞𝑖 is important to compute a near-
optimal characterization path. We show that a bound on the distance
between �̄�𝜂⧵𝑞𝑖 and �̂�𝜂⧵𝑞𝑖 can be computed. We first note that after each
trial for a cell, that cell is either contained in the follow-on search
path, or it is not contained. Thus, we can cast each trial as a Bernoulli
trial where the result of the trial is either 1 if the cell is contained in
the search path, or it is 0 if the cell is not contained. Then, we use
Hoeffding’s inequality Hoeffding (1963) to obtain a probabilistic bound
on the difference between �̄�𝜂⧵𝑞𝑖 and �̂�𝜂⧵𝑞𝑖

𝑃
(

|�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖 | < 𝜖�̄�
)

≥ 1 − 2 exp−2𝜖
2�̄� (31)

where �̄� = �̄� + �̄�𝑦𝑞𝑖
and 𝜖 > 0. Replacing �̄�𝜂⧵𝑞𝑖 with its estimate �̂�𝜂⧵𝑞𝑖

in (27) approximates the characterization gain of a path. We denote the
approximate characterization gain of a path 𝜂 by E

[

�̂�𝜂
]

E
[

�̂�𝜂
]

=
∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

𝑘 + 𝑘𝑦𝑞𝑖
�̄� + �̄�𝑦𝑞𝑖

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 ) (32)

Finally, we select the path that maximizes the approximate char-
acterization gain in (32) subject to the budget constraint in (24).

�̂� = arg max
𝜂∈𝛺𝜂

E
[

�̂�𝜂
]

(33)
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Now, we define the following theorem and the corollary, where we
first bound the difference between the characterization gain and the
approximate characterization gain for a path, and we then bound the
difference between the optimal characterization gain and the approxi-
mately optimal characterization gain. Proofs for both the theorem and
the corollary are provided in Appendix.

Theorem 1. The probability of the difference between the characterization
gain (27) and its estimate (32) for a path 𝜂 satisfying a specific bound is
expressed

𝑃
(

|

|

|

E
[

𝐺𝜂
]

− E
[

�̂�𝜂
]

|

|

|

< 𝜖�̄�|𝜂|
)

≥ 1 − 2 exp−2𝜖
2�̄� (34)

Corollary 1. For the optimal characterization path 𝜂⋆ in (23) and the
approximate path �̂� in (33), the difference in expected characterization gain
satisfies

𝑃
(

E
[

𝐺𝜂⋆
]

− E
[

𝐺�̂�
]

< 2𝜖�̄�|𝜂|
)

≥ 1 − 2 exp−2𝜖
2�̄� (35)

The proposed approximation approach yields a provably near-
optimal path for the environment characterization vehicle. The com-
putational complexity of the solution is reduced from 

(

|�̄�𝜂|𝑚|𝜂|
)

to

(

|�̄�𝜂||𝜂|𝑚�̄�
)

. In general, choosing a larger value for �̄� is likely
to reduce the approximation error. However, our preliminary results
show that a small value for �̄� is often sufficient to obtain a close
approximation.

5.5. Approximating the characterization gain of a cell

In this section, we introduce an alternative approach to approximate
the optimal characterization gain. Our alternative approach assumes
that the search paths are composed of sequences of parallel straight
lines. This assumption arises often in subsea applications that rely on
side-scan imaging sonar (see, for example, Hayes and Gough, 2009;
Houston et al., 2002). Unlike the proposed approach in Section 5.4, our
approach in this section can only apply to certain classes of mapping
problems.

Suppose the search area  consists of a set of parallel straight
lines (a line is either a row or a column) 𝑙1, 𝑙2,… , 𝑙𝑛𝑙 . When each
line corresponds to a row, 𝑛𝑙 = 𝑛𝑟, and when each line corresponds
to a column, 𝑛𝑙 = 𝑛𝑐 . Suppose that the 𝑗th line traverses the cells
𝑞𝑗1, 𝑞𝑗2,… , 𝑞𝑗𝑘. Thus, when the vehicle traverses line 𝑙𝑗 , it samples from
cells 𝑞𝑗1, 𝑞𝑗2,… , 𝑞𝑗𝑘. Let 𝜂 be a candidate path for the environment
characterization vehicle that consists of lines 𝑙1, 𝑙2,… 𝑙𝑘, and consider
that cell 𝑖 ∈ 𝜂 is contained in 𝑙𝑗 . We claim that the value of character-
izing cell 𝑖 along path 𝜂 can be closely approximated by the value of
characterizing cell 𝑖 along line 𝑙𝑗 . That is

E
[

𝐺𝑞𝑖∈𝜂

]

=
∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× �̄�𝜂⧵𝑞𝑖 (36)

≈
∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× �̄�𝑙𝑗⧵𝑞𝑖 (37)

where

�̄�𝑙𝑗⧵𝑞𝑖 =
∑

𝑦𝑙𝑗 ⧵𝑞𝑖 ∶ 𝑞𝑖∈𝛾⋆(𝑦𝑙𝑗 )
𝑃
(

𝑌𝑙𝑗⧵𝑞𝑖 = 𝑦𝑙𝑗⧵𝑞𝑖
)

(38)

Due to (37), we can compute the value of characterizing a particular
cell by only looking at the cells in the associated line (a row or a
column). By doing so, we can compute the characterization gain for
each cell individually. Then, the characterization gain of a path is
simply the summation of the characterization gain of each cell in
that path. We note that we do not have a formal guarantee of how
closely (37) approximates (36). However, our initial tests as well as
the intuition suggest that (36) can be well-approximated by (37).

Since computing �̄�𝑙𝑗⧵𝑞𝑖 in (38) can be very expensive when the
length of a line is large, we instead compute an empirical estimate

of �̄�𝑙𝑗⧵𝑞𝑖 as described in Section 5.4. For each cell in the search grid,
we perform �̄� trials to compute an empirical estimate of �̄�𝑙𝑗⧵𝑞𝑖 , where
in each trial we sample environment measurements from the remain-
ing cells in line 𝑙𝑗 . After approximating the characterization gain for
each cell individually, we apply an exact branch-and-bound method
similar to our prior work in (McMahon et al., 2017) to compute
the near-optimal path for the characterization vehicle. Suppose that
the complexity of computing the characterization path when cell-wise
characterization gains are known is similar to that of the search path.
Then, this approximation approach yields a 

(

(𝑟𝑚�̄� +1)
)

complexity
of computing the near-optimal characterization paths.

6. Path planning for the search/environmental characterization
vehicle

We lastly consider the case that a single vehicle is equipped with
an environmental characterization sensor and a search sensor, and that
both sensors can operate simultaneously. We again seek to maximize
estimation accuracy. Unlike Section 4 where the search vehicle aims to
maximize the estimation accuracy with only the search measurements,
we now acquire both a search measurement 𝑧 and an environmental
measurement 𝑦 when the vehicle visits a location. Thus, the path strat-
egy in Section 4 that do not address the acquisition of environmental
measurements do not apply to this case. The results of this section
partially follow from prior work (Yetkin et al., 2016) and presented
here for completeness.

Let {𝑤1, 𝑤2,… , 𝑤𝑚} be a set of environments, and let 𝑊
(

𝑤𝑗
)

denote
estimation accuracy conditioned on the environment 𝑤𝑗 after acquiring
search measurement 𝑧.

𝑊
(

𝑤𝑗
)

= max
𝑥

𝑃
(

𝑋 = 𝑥 ∣ 𝑧,𝑤𝑗
)

(39)

Note 𝑊
(

𝑤𝑗
)

in (39) is the accuracy of the estimate of the number of
objects at a location while 𝑉

(

𝑤𝑗
)

in (12) is the expected accuracy when
a measurement 𝑧 has not yet been acquired. Suppose the environments
𝑤1,… , 𝑤𝑚 are distinct and ordered with respect to the estimation
accuracy 𝑊

(

𝑤𝑗
)

. That is, 𝑊
(

𝑤1
)

< 𝑊
(

𝑤2
)

< ⋯ < 𝑊
(

𝑤𝑚
)

implies
𝑤1 ≺ 𝑤2 ≺ ⋯ ≺ 𝑤𝑚. Let 𝑒 be the true environment in a cell, and
let 𝛿𝐸 (𝑦) be an estimate of the environment based on the environment
measurement 𝑦. When the true environment is 𝑒, the loss due to the
estimate 𝛿𝐸 (𝑦) is defined

𝐿𝑊
(

𝑒, 𝛿𝐸 (𝑦)
)

=

{

𝑐1
(

𝑊
(

𝛿𝐸 (𝑦)
)

−𝑊
(

𝑒
))

if 𝛿𝐸 (𝑦) ≻ 𝑒
𝑐2
(

𝑊
(

𝑒
)

−𝑊
(

𝛿𝐸 (𝑦)
))

if 𝛿𝐸 (𝑦) ⪯ 𝑒
(40)

where 𝑐1, 𝑐2 > 0 are again the relative costs of over and underestima-
tion. Then, the posterior expected loss of computing the environment
estimate 𝛿𝐸 (𝑦), and the corresponding Bayes estimator 𝛿⋆𝐸 (𝑦) are

E
[

𝐿𝑊
(

𝑒, 𝛿𝐸 (𝑦)
)

∣ 𝑧, 𝑦
]

=
𝑚
∑

𝑗=1
𝑃
(

𝑤𝑗 ∣ 𝑦
)

𝐿𝑊
(

𝑤𝑗 , 𝛿𝐸 (𝑦)
)

(41)

𝛿⋆𝐸 (𝑦) = arg min
𝛿𝐸 (𝑦)

E
[

𝐿𝑊
(

𝑒, 𝛿𝐸 (𝑦)
)

∣ 𝑧, 𝑦
]

(42)

Given search measurement 𝑧 and the estimate 𝛿⋆𝐸 (𝑦) after acquiring
environment measurement 𝑦, the probability that the estimate of the
number of objects at a location is correct is computed from

E
[

𝑈
(

𝑥, 𝛿𝑋 (𝑧)
)

∣ 𝑧, 𝛿⋆𝐸 (𝑦)
]

= max
𝑥

𝑃
(

𝑋 = 𝑥 ∣ 𝑧, 𝛿⋆𝐸 (𝑦)
)

(43)

In order to assess the benefit of visiting a location, we compute the esti-
mated estimation accuracy in (43) for each possible set of observations
𝑧 ∈ 𝑍, 𝑦 ∈ 𝑌 . Then, the expected estimation accuracy before visiting a
location can be computed

E
[

𝑊
(

𝛿𝐸 (𝑦)
)

]

=
∑

𝑧

∑

𝑦
𝑃
(

𝑧, 𝑦
)

max
𝑥

𝑃
(

𝑋 = 𝑥 ∣ 𝑧, 𝛿⋆𝐸 (𝑦)
)

(44)

where

𝑃
(

𝑧, 𝑦
)

=
∑

𝑥

∑

𝑤𝑗

𝑃
(

𝑧 ∣ 𝑥,𝑤𝑗
)

𝑃
(

𝑦 ∣ 𝑤𝑗
)

𝑃
(

𝑥
)

𝑃
(

𝑤𝑗
)

(45)
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We again consider the candidate search path 𝛾, the finite collection
of feasible search paths 𝛺𝛾 , and the budget constraint ̄𝛾 on the vehicle.
Let 𝑦𝑞𝑖 be the set of independent environment measurements acquired
at 𝑞𝑖th cell. The expected estimation accuracy for traversing 𝛾 is

E
[

𝑊
(

𝛿𝐸 (𝑦𝛾 )
)

]

=
∏

𝑞𝑖∈𝛾
E
[

𝑊
(

𝛿𝐸 (𝑦𝛾 )
)

]

×
∏

𝑖∈𝑆⧵𝛾
max
𝑥𝑖

𝑃
(

𝑥𝑖
)

(46)

and the optimal path is

𝛾⋆ = arg max
𝛾∈𝛺𝛾

E
[

𝑊
(

𝛿𝐸 (𝑦𝛾 )
)

]

(47)

subject to

(𝛾) ≤ ̄𝛾 (48)

7. Numerical results

This section presents simulation results and elaborates on the per-
formance of the proposed search and environmental characterization
strategies. Our numerical illustrations are inspired by subsea mine-
hunting missions. However, we note that our proposed approaches
also apply to other subsea search applications. We present numerical
illustrations for two scenarios. In one case, search and environmental
characterization sensors are on different vehicles and environmental
characterization is performed prior to search. In the other case, search
and environmental characterization sensors are on the same vehicle
and both activities occur simultaneously. When each sensor operates on
separate vehicles, our proposed approach maximizes the reduction of
uncertainty in search performance (22). Thus, our approach should, on
average, display less anticipated estimation accuracy error than other
approaches.

The search region  is partitioned into a grid with 10 × 10 non-
intersecting cells. It is assumed that there is no prior information on
the number of objects for any cell, but an upper bound 𝐿 > 0 on the
number of objects that can reside in a cell is known. That is, for cell 𝑖,

𝑥𝑖 ≤ 𝐿 and 𝑃
(

𝑥𝑖 = 0
)

= 𝑃
(

𝑥𝑖 = 1
)

= ⋯ = 𝑃
(

𝑥𝑖 = 𝐿
)

(49)

with known upper bound 𝐿. There are three candidate environments
in the search region and the distinct and ordered set of environments
is 𝑤1 ≺ 𝑤2 ≺ 𝑤3. The likelihood of observing a particular search
measurement follows from (1). The probability of detection, 𝐷, and
the probability of at least one false alarm, 𝛼, for each environment
are 𝐷 = 0.65 and 𝛼 = 0.4 for environment 𝑤1, 𝐷 = 0.8 and 𝛼 = 0.3
for environment 𝑤2, and 𝐷 = 0.95 and 𝛼 = 0.05 for environment 𝑤3.
Note that the information about the number of objects revealed after
searching a cell increases with increasing probability of detection and
decreases with increasing probability of false alarm. Thus, environment
𝑤1 is the least and environment 𝑤3 is the most informative. We consider
that the sensor model for environment characterization is

𝑎𝑖𝑗 = 𝑃
(

𝑌 = 𝑤𝑖 ∣ 𝐸 = 𝑤𝑗
)

for all 𝑖, 𝑗 ∈ {1, 2, 3} (50)

where 𝑎𝑖𝑖 is the probability of observing the true environment 𝑤𝑖. For
the numerical illustrations, we use the characterization sensor model
with 𝑎11 = 0.9, 𝑎22 = 0.92, 𝑎33 = 0.94. That is, for example, there is 0.9
probability of acquiring environment measurement 𝑤1 when 𝑤1 is the
true environment at the location. The noisy environment observations
are due to nonzero probabilities of observing environment 𝑤𝑖 when true
environment is 𝑤𝑗 , denoted by 𝑎𝑖𝑗 for 𝑖 ≠ 𝑗. We assume the probability
of acquiring incorrect environment measurement is the same for all
possible environments other than the true environment. For example,
when the true environment at a location is 𝑤1, since 𝑎11 = 0.9, the
probability of acquiring environment measurement 𝑤2 and probability
of acquiring environment measurement 𝑤3 are 𝑎21 = 𝑎31 = 0.05.

We consider that the search vehicle is equipped with a side-scan
sonar as is typically the case in subsea search applications. The quality
of the data side-scan sonar observes can be very poor when the vehicle
turns. Thus, in order to account for this limitation of the sensor on

the vehicle‘s motion, we consider that the vehicle travels in parallel
straight lines only, and it transits between different lines only outside
of the search region. We implicitly assume that the cells are sufficiently
large so that any sequence of cells that correspond to ‘‘go-straight’’,
‘‘turn-right’’, or ‘‘turn-left’’ corresponds to a connected and dynamically
feasible path. Passing through cells that are outside the search region
requires time but does not improve search performance since no mea-
surements are acquired. For the numerical illustrations, we consider a
unit cost for moving from a cell to an adjacent cell. Thus, the total cost
of a mission is the length of the planning horizon, which we refer to as
the mission length.

7.1. Numerical illustrations

Fig. 1 shows a search area that is partitioned into regions A1
through A5. For each region, the corresponding probability distribu-
tion 𝛱 = [𝑝1, 𝑝2, 𝑝3] is given, where 𝑝𝑗 is the probability that the
environment is 𝑤𝑗 . For example, for the cells labeled A2, there is
0.15 probability that the environment is 𝑤1, 0.2 probability that the
environment is 𝑤2, and 0.65 probability that the environment is 𝑤3.
The relative costs of over and underestimating the environmental con-
ditions are 𝑐1 = 1 and 𝑐2 = 3 so that overestimation is penalized
more than underestimation. We consider that the mission length is
60 for the search and search/ environmental characterization vehicles
and 35 for the characterization vehicle. We selected the search path
length to be 60 steps and the environmental characterization length to
be 35 steps because for this specific illustrative problem these values
best illustrated the advantage of our rigorously derived approach over
a more naive approach based on entropy maximization. For other
values applied to this specific problem, the advantage is smaller. We
adopt a best-first branch-and-bound approach to compute the optimal
paths (Wah and Yu, 1985).

We consider two scenarios. In one scenario the search and the
environmental characterization sensors operate on the same vehicle,
and in the other scenario they operate on separate vehicles. When
the sensors operate on separate vehicles, the objective of the search
vehicle is to maximize anticipated estimation accuracy in (9), and the
objective of the characterization vehicle is to maximize the expected
gain of characterization in (22). However, due to large computational
requirements of computing (22), we instead approximate the solution
of (22) as described in Section 5.5. When both sensors operate on
the same vehicle, the objective of the vehicle is to maximize expected
estimation accuracy in (46).

We define the error in search performance after a mission as the
difference between the actual estimation accuracy when the true en-
vironment is known and the anticipated estimation accuracy when the
environment is uncertain. We use the error in search performance as
a measure to evaluate the efficacy of the proposed approaches in each
scenario, and show that the proposed approach yields smaller search
performance error, which is predicted by our selection of cost function.
We also show that search performance (probability of correct estimate)
increases modestly, although our approach does not directly seek to
increase estimation accuracy.

When the sensors are on separate vehicles and characterization
precedes search, we compare the proposed approximate approach in
Section 5.5 with the entropy change maximization method described in
Section 5.1. Fig. 2(e) shows the trajectory for the environmental char-
acterization vehicle when using our proposed approximate approach in
Section 5.5, and Fig. 2(f) shows the trajectory when using the entropy
change approach in Section 5.1. When using the proposed approximate
approach, we choose �̄� – the number of trials to approximate �̄� in (29)
– to be 100. We note that choosing �̄� = 100 suffices to compute
a good approximation of the term �̄� and it yields computationally
feasible results. Neither environmental characterization path visits A1
because the environments in those locations are completely known.
We note that the environmental characterization path in Fig. 2(e) that
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Fig. 1. Search area and cell-wise environment distributions.

Fig. 2. Optimal trajectories for search and characterization. Figures (a–c): trajectories for the case both sensors operate on the same vehicle when (a) proposed approach is
employed (b) entropy change maximization method is employed, and (c) the mowing-the-lawn approach is employed. Figures (e–f): characterization vehicle’s trajectories for the
case the sensors operate on separate vehicles when the characterization locations are selected (e) by our proposed approach, (f) by entropy change maximization method. Figure
(d) shows the search vehicle’s trajectory when no environment information acquired.

was selected using our approach does not visit the most uncertain
environments. We find in practice that it tends to visit environments
that are both uncertain and likely to be where follow-on search missions
will occur.

When both sensors operate on the same vehicle, we compare the
proposed approach in (47) with entropy change maximization method
and with a mowing-the-lawn approach. The latter arises often in subsea
applications such as mine-hunting. We note that the entropy change
maximization method described in Section 5.1 accounts only for the
entropy change of the environmental distributions. However, when
both sensors are placed on the same vehicle, the vehicle acquires
environmental measurement and search measurement simultaneously.
Thus, we modify (11) as

𝛾⋆ = arg max
𝛾∈𝛺𝛾

𝐽𝛾 (𝑋) + 𝛽𝐽𝛾 (𝐸) (51)

where 𝐽 (𝑋) denotes the entropy change in 𝑃 (𝑋), the number of objects,
and 𝛽 is the relative weight of the entropy change in 𝑃 (𝐸) compared to
the entropy change in 𝑃 (𝑋). Since the objective is to reduce the uncer-
tainty in the number of objects, we choose 0 < 𝛽 < 1. Fig. 2(c) shows
the mowing-the-lawn trajectory where the vehicle travels through the
search area back and forth without planning the path until the mission
length is met. Fig. 2(a) shows the trajectory for the proposed approach
and Fig. 2(b) shows the trajectory for the entropy change maximization
method with 𝛽 = 0.5. We also compute the optimal search trajectory
when there is no environmental characterization to show the value
of acquiring environmental information. The corresponding trajectory

for this case is shown in Fig. 2(d). We note that, due to sonar sensor,
generated paths in Fig. 2 are parallel straight lines only. However, our
results apply to other domains where there is no such constraint on
vehicle motion.

Search performance after a mission depends on the acquired obser-
vations during the mission. Thus, we conduct Monte Carlo simulations
to assess the effects due to random nature of observations. For each
cell in the search area, we randomly generate the true environment
𝑒 from the environmental distributions in Fig. 1 and the true number
of objects 𝑥 from a uniform distribution. Assuming that a cell can be
visited by a vehicle at most 𝑘 times, we randomly generate the set of
search measurements 𝑧 and the set of environmental measurements 𝑦
from the sensor models 𝑃 (𝑧 ∣ 𝑥, 𝑒) and 𝑃 (𝑦 ∣ 𝑒) given true environment
𝑒 and true number of objects 𝑥. When a vehicle visits a location, it
acquires randomly generated observation(s). For each test, we compute
the anticipated search performance and the actual search performance.
Note that the actual search performance can be computed since the
true environment is assumed to be known. We then compute the error
in search performance which is the difference between the anticipated
search performance and the actual search performance. We show that
the error in search performance is significantly reduced when our
proposed approach is employed.

Both sensors operating simultaneously on a single vehicle

Fig. 3 shows the results after 10 000 iterations for the case both
sensors operate on the same vehicle. Fig. 3(a) on the left is the percent
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Fig. 3. Percent of occurrences for (a) error in search performance and (b) actual search performance when both sensors operate on the same vehicle. From top to bottom, (a.1) and
(b.1) correspond to the proposed approach, (a.2) and (b.2) correspond to the entropy change maximization method, (a.3) and (b.3) correspond to the mowing-the-lawn approach,
and (a.4) and (b.4) correspond to the case where environment information is not available. Note that the horizontal axes is the negative log of the search performance which is
the achieved risk reduction after a mission. Smaller values for (a) imply less error in search performance and larger values for (b) imply better search performance.

of occurrences of the error in search performance, and Fig. 3(b) on the
right is the percent of occurrences of the actual search performance.
For convenience, we compute the actual search performance after
traversing an optimal path 𝛾 and acquiring the search measurements
𝑧𝛾 as

−
(

log
(
∏

𝑖∈
max
𝑥𝑖

𝑃 (𝑥𝑖)
)

− log
(
∏

𝑖∈𝛾
max
𝑥𝑖

𝑃 (𝑥𝑖 ∣ 𝑧𝑖, 𝑒𝑖) ×
∏

𝑖∈⧵𝛾
max
𝑥𝑖

𝑃 (𝑥𝑖)
)

)

(52)

where 𝑒𝑖 is the actual environment in cell 𝑖. That is, the actual search
performance is the difference between the prior certainty in the number
of objects before acquiring any measurement and the posterior cer-
tainty in the number of objects after acquiring the search measurements
along the path. Loosely speaking, the actual search performance plotted
in Fig. 3(b) represents the amount of information we acquire on the
number of objects after traversing the corresponding optimal search
path. Thus, smaller values for Fig. 3(a) imply less error in search
performance and larger values for Fig. 3(b) imply better search per-
formance. The displayed results are the negative log of the computed
search performance. The subplots from top to bottom are the results
when (1) our proposed approach is employed, (2) the entropy change
maximization method is employed, (3) the mowing-the-lawn approach
is employed, and (4) environmental information is not available so that
the vehicle acquires only the search measurements. The average value
of results for each test is also shown in the plots. The simulations show
that

• The proposed approach yields smaller error in search performance
compared to the entropy change maximization and mowing-the-
lawn. With respect to the case where there is no environment
information (in Fig. 3(a).4), our proposed approach achieves 85%
error reduction while entropy change maximization achieves 56%
and mowing-the-lawn achieves 60%, on average. In addition,
the actual search performance when using our approach is no
worse than the actual search performance when using the other
methods.

• Fig. 3(a).1 shows that in many of the iterations, the error in
search performance is very close to zero. This implies that, in
these trials, we correctly estimate the environmental conditions
in each visited cell. We note that this is also due to the sensor
model we choose in (50) for environment characterization.

• The average error for the mowing-the-lawn approach is smaller
than the average error for entropy change maximization method.
This is because mowing-the-lawn approach visits A1 that has no
uncertainty in the environment while the entropy change maxi-
mization method visits A3 where the environmental uncertainty is
greatest. However, as the environment in A1 is the least informa-
tive, the average actual search performance for mowing-the-lawn
approach is the worst among all methods.

• Note that Fig. 3(b).1 and Fig. 3(b).4 are identical. This is be-
cause the search locations selected by the proposed approach
(in Fig. 2(a)) are the same locations selected when environment
information is not available (in Fig. 2(d)) for given search area
characteristics. However, the anticipated search performances for
these two cases are different. Indeed, comparing Fig. 3(a).1 with
Fig. 3(a).4 shows that the anticipated search performance when
environment information is available is significantly more accu-
rate than the anticipated search performance when there is no
environment information. Hence, a benefit of characterizing the
environment is to better anticipate the true search performance.

Each sensor on separate vehicles

The results when search and environmental characterization tasks
are performed on separate vehicles are shown in Fig. 4. Again, the
left plot is the percent of occurrences of the error in search perfor-
mance, and the right plot is the percent of occurrences of actual search
performance. The subplots from top to bottom are the results when
1) the locations that yield the greatest reduction of uncertainty in
search performance are characterized, 2) the locations that maximize
the entropy change are characterized, and 3) there is no environmental
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Fig. 4. Percent of occurrences for (a) error in search performance and (b) actual search performance when search and characterization are performed on separate vehicles. From
top to bottom, (a.1) and (b.1) correspond to the proposed approach, (a.2) and (b.2) correspond to the entropy change maximization method, and (a.3) and (b.3) correspond to
the case where environment information is not available. Note that the horizontal axes is the negative log of the search performance which is the achieved risk reduction after a
mission. Smaller values for (a) imply less error in search performance and larger values for (b) imply better search performance.

characterization and the search vehicle plans its path by using the prior
environmental distributions. We note that Fig. 4(a).3 and Fig. 4(b).3 are
the same plots given in Fig. 3(a).4 and Fig. 3(b).4, and we show them
here for convenience of comparison. It is seen that

• The average error is significantly smaller when environmental
characterization is performed at the locations selected by our
proposed approach. With respect to the case where there is no
environment information (in Fig. 4(a).3), our proposed approach
achieves 60% error reduction while entropy change maximiza-
tion achieves only 16%, on average. Note that the distribution
in Fig. 4(a).2 is very similar to the distribution in Fig. 4(a).3.
This is because entropy change maximization fails to improve
the performance of a follow-on search mission since it leads the
vehicle to explore the parts of the search area that are less likely
to be searched.

• The average error when the sensors are on different vehicles
is higher than when both sensors operate on the same vehicle
since the search vehicle may search the locations that are not
characterized. On the other hand, this results in average actual
search performance to be better since the search vehicle can skip
the locations that are characterized and found to be uninteresting
for search.

The results of Monte Carlo simulations show that our proposed ap-
proaches to select the characterization locations outperform the other
strategies that frequently exist in the literature.

8. Conclusions

In this paper, we address the case where environmental information
can be acquired to improve the performance of a search mission. We
consider different scenarios where the search sensor and the environ-
mental characterization sensor can be placed on the same AUV or on
separate AUVs. For each scenario, we derive a decision-theoretic cost
function to compute the locations where environmental information
should be acquired. We show that when the search sensor and the
environmental characterization sensor are placed on separate AUVs,
environmental information should be acquired at the locations where
the greatest reduction of the uncertainty in anticipated estimation
accuracy will occur. For the case where the search sensor and the

environmental characterization sensor are placed on the same AUV, we
show that the expected estimation accuracy should be maximized. The
results of the numerical illustrations show that for each scenario, our
proposed approaches yield smaller error in search performance.
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Appendix A. Proof of Theorem 1

First, observe that when 𝑐1, 𝑐2 ≤ 1 in (13)

(𝑦) = E
[

𝐿𝑉
(

𝑒, 𝛿⋆𝐸
)

]

− E
[

𝐿𝑉
(

𝑒, 𝛿⋆𝐸 (𝑦)
)

∣ 𝑦 ∈ 𝑌
]

≤ E
[

𝐿𝑉
(

𝑒, 𝛿⋆𝐸
)

]

≤ max
𝑤𝑖 ,𝑤𝑗

(

𝑉
(

𝑤𝑖
)

− 𝑉
(

𝑤𝑗
))

≤ 1

for all 𝑦 ∈ 𝑌 .
The difference between E

[

𝐺𝜂
]

and E
[

�̂�𝜂
]

is
|

|

|

E
[

𝐺𝜂
]

− E
[

�̂�𝜂
]

|

|

|
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Table C.1
A list of variables.

Variable Description

𝑋 Random variable denoting the number of targets in a cell
𝐸 Random variable denoting environmental conditions in a cell
𝑍 The set of search measurements and also random variable denoting

a search measurement
𝑌 The set of environment measurements and also random variable

denoting an environment measurement
𝑥𝑖 True number of objects in cell 𝑖
𝑒𝑖 True environment in cell 𝑖
𝑧𝑖 Search measurement(s) acquired from cell 𝑖
𝑦𝑖 Environment measurement(s) acquired from cell 𝑖
𝛿𝑋 (⋅) An estimate of the number of objects
𝛿𝐸 (⋅) An estimate of the environment
 Search grid
𝑛𝑟 , 𝑛𝑐 Number of rows and columns, respectively
𝑤𝑗 Environment type 𝑗
𝛾 A candidate path for the search vehicle
𝜂 A candidate path for the characterization vehicle
𝛺 The set of candidate paths
̄𝛾 Budget constraint on search mission
̄𝜂 Budget constraint on environment characterization mission
(⋅) Cost of traversing a path

= |

|

|

∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× �̄�𝜂⧵𝑞𝑖

−
∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× �̂�𝜂⧵𝑞𝑖
|

|

|

= |

|

|

∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× (�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖 )
|

|

|

≤
∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

(

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

(𝑦𝑞𝑖 )
)

× |

|

|

�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖
|

|

|

≤
∑

𝑞𝑖∈𝜂

∑

𝑦𝑞𝑖

𝑃
(

𝑌𝑞𝑖 = 𝑦𝑞𝑖
)

× |

|

|

�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖
|

|

|

=
∑

𝑞𝑖∈𝜂

|

|

|

�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖
|

|

|

= |𝜂|||
|

�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖
|

|

|

Due to the bound on the difference between �̄�𝜂⧵𝑞𝑖 and �̂�𝜂⧵𝑞𝑖 in (29),
it follows that

𝑃
(

|

|

|

E
[

𝐺𝜂
]

− E
[

�̂�𝜂
]

|

|

|

< 𝜖�̄�|𝜂|
)

= 𝑃
(

|𝜂||�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖 | < 𝜖�̄�|𝜂|
)

= 𝑃
(

|�̄�𝜂⧵𝑞𝑖 − �̂�𝜂⧵𝑞𝑖 | < 𝜖�̄�
)

≥ 1 − 2 exp−2𝜖
2�̄�

Appendix B. Proof of Corollary 1

By Theorem 1, we obtain the bounds for 𝜂⋆ in (23) and for �̂� in (33)

𝑃
(

|

|

|

E
[

𝐺𝜂⋆
]

− E
[

�̂�𝜂⋆
]

|

|

|

< 𝜖�̄�|𝜂⋆|
)

≥ 1 − 2 exp−2𝜖
2�̄�

𝑃
(

|

|

|

E
[

𝐺�̂�
]

− E
[

�̂��̂�
]

|

|

|
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)

≥ 1 − 2 exp−2𝜖
2�̄�

Note that since �̂� maximizes (33), E
[

�̂��̂�
]

≥ E
[

�̂�𝜂⋆
]

. Hence,

E
[

𝐺𝜂⋆
]

− E
[

𝐺�̂�
]

= E
[

𝐺𝜂⋆
]

− E
[

�̂�𝜂⋆
]

+ E
[

�̂�𝜂⋆
]

− E
[

𝐺�̂�
]

≤
(

E
[

𝐺𝜂⋆
]

− E
[

�̂�𝜂⋆
])

+
(

E
[

�̂��̂�
]

− E
[

𝐺�̂�
])

≤ |

|

|

E
[

𝐺𝜂⋆
]

− E
[

�̂�𝜂⋆
]

|

|

|

+ |

|

|

E
[

�̂��̂�
]

− E
[

𝐺�̂�
]

|

|

|

Then, assuming |𝜂⋆| = |�̂�| = |𝜂|, error in approximation of the
optimal characterization gain is

𝑃
(

E
[

𝐺𝜂⋆
]

− E
[

𝐺�̂�
]

< 2𝜖�̄�|𝜂|
)

≥ 𝑃
(

|

|

|

E
[

𝐺𝜂⋆
]

− E
[

�̂�𝜂⋆
]

|

|

|

+ |

|

|

E
[

�̂��̂�
]

− E
[

𝐺�̂�
]

|

|

|

< 2𝜖�̄�|𝜂|
)

≥ 1 − 2 exp−2𝜖
2�̄�

Appendix C. Table showing the list of variables

See Table C.1.
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