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Abstract. We establish two Ostrowski type inequalities for double in-
tegrals of second order partial derivable functions which are bounded.
Then, we deduce some inequalities of Hermite-Hadamard type for dou-
ble integrals of functions whose partial derivatives in absolute value are
convex on the co-ordinates on rectangle from the plane. Finally, some
applications in Numerical Analysis in connection with cubature formula
are given.

1 Introduction

Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative f
′
:

(a, b)→ R is bounded on (a, b), i.e., ‖f′‖∞ = sup
t∈(a,b)

|f′(t)| < ∞. Then, the

inequality holds:∣∣∣∣∣∣f(x) − 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a)

∥∥f′∥∥∞ (1)
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for all x ∈ [a, b] [15]. The constant 1
4 is the best possible. This inequality is

well known in the literature as the Ostrowski inequality.
Let f : I ⊂ R → R be a convex mapping defined on the interval I of real

numbers and a, b ∈ I, with a < b. The following double inequality is well
known in the literature as the Hermite-Hadamard inequality [9]:

f

(
a+ b

2

)
≤ 1

b− a

∫b
a

f(x)dx ≤ f(a) + f(b)
2

.

This inequality has attracted considerable attention and interest from math-
ematicians and other researchers as shown by hundreds of papers published
in the last decade one can find by making a simple search in the MathSciNet
database of the American Mathematical Society. For example, Bakula et al.
presented some Hermite-Hadamard type inequalities form-convex and (α,m)-
convex functions in [3].

In a recent paper [2], Barnett and Dragomir proved the following Ostrowski
type inequality for double integrals:

Theorem 1 Let f : [a, b]×[c, d]→ R be continuous on [a, b]×[c, d], f′′x,y = ∂2f
∂x∂y

exists on (a, b)× (c, d) and is bounded, i.e.,

∥∥f′′x,y∥∥∞ = sup
(x,y)∈(a,b)×(c,d)

∣∣∣∣∂2f(x, y)∂x∂y

∣∣∣∣ <∞.
Then, we have the inequality:∣∣∣∣∣∣

b∫
a

d∫
c

f(s, t)dtds− (d− c)(b− a)f(x, y)

−

(b− a) d∫
c

f(x, t)dt+ (d− c)

b∫
a

f(s, y)ds

∣∣∣∣∣∣
≤
[
1

4
(b− a)2 + (x−

a+ b

2
)2
] [
1

4
(d− c)2 + (y−

d+ c

2
)2
] ∥∥f′′x,y∥∥∞

(2)

for all (x, y) ∈ [a, b]× [c, d].

In [2], the inequality (2) is established by the use of integral identity involv-
ing Peano kernels. In [16], Pachpatte obtained a new inequality in the view
of (2) by using elementary analysis. Latif et al. proved some Ostrowski type
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inequalities for functions that are co-ordinated convex in [12]. Sarikaya gave
integral inequalities for bounded functions in [20]. Authors deduced weighted
version of Ostrowski type inequalities for double integrals involving functions
of two independent variables by using fairly elementary analysis in [1], [18],
[19] and [24].

Let us now consider a bidimensional interval ∆ =: [a, b]× [c, d] in R2 with
a < b and c < d. A mapping f : ∆ → R is said to be convex on ∆ if the
following inequality:

f (tx+ (1− t) z, ty+ (1− t)w) ≤ tf (x, y) + (1− t) f (z,w)

holds, for all (x, y) , (z,w) ∈ ∆ and t ∈ [0, 1]. A function f : ∆ → R is said to
be on the co-ordinates on ∆ if the partial mappings fy : [a, b] → R, fy (u) =
f (u, y) and fx : [c, d] → R, fx (v) = f (x, v) are convex where defined for all
x ∈ [a, b] and y ∈ [c, d] (see, [5]).

A formal definition for co-ordinated convex function may be stated as fol-
lows:

Definition 1 A function f : ∆ → R will be called co-ordinated convex on ∆,
for all t, s ∈ [0, 1] and (x, y) , (u, v) ∈ ∆, if the following inequality holds:

f(tx+ (1− t)y, su+ (1− s)v)

≤ tsf(x, u) + s(1− t)f(y, u) + t(1− s)f(x, v) + (1− t)(1− s)f(y, v).

Clearly, every convex function is a co-ordinated convex. Furthermore, there
exists co-ordinated convex function which is not convex, (see, [5]).
Also, in [5], Dragomir established the following similar inequality of Hadamard’s
type for co-ordinated convex mapping on a rectangle from the plane R2.

Theorem 2 Suppose that f : ∆ → R is co-ordinated convex on ∆. Then one
has the inequalities:

f

(
a+ b

2
,
c+ d

2

)
≤ 1
2

[
1

b− a

∫b
a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫d
c

f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫b
a

∫d
c

f (x, y)dydx

≤ 1
4

[
1

b− a

∫b
a

f (x, c)dx+
1

b− a

∫b
a

f (x, d)dx

+
1

d− c

∫d
c

f (a, y)dy+
1

d− c

∫d
c

f (b, y)dy

]
≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

(3)
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The above inequalities are sharp.

In recent years, researchers have studied some integral inequalities by using
variety convex functions on the co-ordinates on a rectangle from the plane
R2. For example, authors gave some Hadamard’s type inequalities involving
Riemann-Liouville fractional integrals for convex and s-convex functions on
the co-ordinates in [4] and [21]. in [6], Dragomir et al. worked an Ostrowski
type inequality for two dimensional integrals in term of Lp-norms. Erden and
Sarikaya deduced weighted version of Hermite-Hadamard type inequalities for
functions whose partial derivatives in absolute value are convex on the co-
ordinates on rectangle from the plane in [7] and [8]. In [10], [12]-[14], [22] and
[23], some integral inequalities for differentiable co-ordinated convex mappings
are obtained. In [21], Sarikaya et al. proved some new inequalities that give
estimate of the difference between the middle and the most right terms of
(3) for differentiable co-ordinated convex functions. In [7], [11] and [17], some
Hermite-Hadamard type inequalities are developed for variety co-ordinated
convex functions.

In this study, we firstly establish an identity for second order partial deriva-
tive functions. Then, two inequalities of Ostrowski type for double integrals
is gotten by using this identity. Also, Hermite-Hadamard type inequalities for
convex mappings on the co-ordinates on the rectangle from the plane are ob-
tained. Finally, some applications of the Ostrowski type inequality developed
in this work for cubature formula are given.

2 Main results

We need the following lemma so as to prove our main results.

Lemma 1 Let f : [a, b]× [c, d]→ R be an absolutely continuous function such
that the partial derivative of order 2 exists for all (t, s) ∈ [a, b]× [c, d]. Then,
for all (x, y) ∈ [a, b]× [c, d], we have the equality

b∫
a

d∫
c

Ph (x, t)Qh (y, s) fts (t, s)dsdt

=

b∫
a

d∫
c

f (t, s)dsdt+mh(x)

d∫
c

[f (b, s) − f (a, s)]ds

(4)
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+mh(y)

b∫
a

[f (t, d) − f (t, c)]dt− (d− c)

b∫
a

f (t, y)dt− (b− a)

d∫
c

f (x, s)ds

+ (b− a) (d− c) f (x, y) +mh(x)mh(y) [f (a, c)−f (a, d)−f (b, c) + f (b, d)]

− (d− c)mh(x) [f (b, y)−f (a, y)]−(b− a)mh(y) [f (x, d) − f (x, c)]

= Sh (x, y, s, t)

for

Ph (x, t) :=


(t− a−mh(x)) , a ≤ t < x

(t− b−mh(x)) , x ≤ t ≤ b

Qh (y, s) :=


(s− c−mh(y)) , c ≤ s < y

(s− d−mh(y)) , y ≤ s ≤ d

where mh(x) = h
(
x− a+b

2

)
and mh(y) = h

(
y− c+d

2

)
, h ∈ [0, 2].

Proof. By definitions of Ph (x, t) and Qh (y, s) , we have

b∫
a

d∫
c

Ph (x, t)Qh (y, s) fts (t, s)dsdt

=

x∫
a

y∫
c

[t− a−mh(x)] [s− c−mh(y)] fts (t, s)dsdt

+

x∫
a

d∫
y

[t− a−mh(x)] [s− d−mh(y)] fts (t, s)dsdt

+

b∫
x

y∫
c

[t− b−mh(x)] [s− c−mh(y)] fts (t, s)dsdt

+

b∫
x

d∫
y

[t− b−mh(x)] [s− d−mh(y)] fts (t, s)dsdt.

(5)

Now, we examine the above integrals. Applying integration by parts twice for
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the first integral in the right hand side of (5), we find that

x∫
a

y∫
c

[t− a−mh(x)] [s− c−mh(y)] fts (t, s)dsdt

= [x− a−mh(x)] [y− c−mh(y)] f (x, y) + [y− c−mh(y)]mh(x)f (a, y)

− [y− c−mh(y)]

x∫
a

f (t, y)dt+mh(y) [x− a−mh(x)] f (x, c)

+mh(x)mh(y)f (a, c) −mh(y)

x∫
a

f (t, c)dt− [x− a−mh(x)]

y∫
c

f (x, s)ds

−mh(x)

y∫
c

f (a, s)ds+

x∫
a

y∫
c

f (t, s)dsdt.

If we calculate the other integrals in a similar way and then we substitute the
results in (5), we obtain desired equality (4) which completes the proof. �

Now, we establish a new integral inequality for double integrals and also
give some results related to this theorem.

Theorem 3 Suppose that all the assumptions of Lemma 1 hold. If fts =
∂2f
∂t∂s

exists on (a, b)× (c, d) and is bounded, i.e.,

‖fts‖∞ = sup
(t,s)∈(a,b)×(c,d)

∣∣∣∣∂2f(t, s)∂t∂s

∣∣∣∣ <∞.
Then, we have the inequality:

|Sh (x, y, s, t)|

≤

[(
b− a

2

)2
+

(
x−

a+ b

2

)2
+ (h− 2)

(
x−

a+ b

2

)
mh(x)

]

×

[(
d− c

2

)2
+

(
y−

c+ d

2

)2
+ (h− 2)

(
y−

c+ d

2

)
mh(y)

]
‖fts‖∞

(6)

for all (x, y) ∈ [a, b] × [c, d], where mh(x) = h
(
x− a+b

2

)
and mh(y) =

h
(
y− c+d

2

)
, h ∈ [0, 2].
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Proof. Taking absolute value of (4) and using bounded of the mapping fts,
we find that

|Sh (x, y, s, t)| ≤ ‖fts‖∞
b∫
a

d∫
c

|Ph (x, t)| |Qh (y, s)|dsdt

= ‖fts‖∞
 x∫
a

|t− a−mh(x)|dt+

b∫
x

|t− b−mh(x)|dt


×

y∫
c

|s− c−mh(y)|dt+

d∫
y

|s− d−mh(y)|ds

 .
(7)

We shall observe the above integrals for the cases a ≤ x ≤ a+b
2 and a+b

2 ≤
x ≤ b;

For all a ≤ x ≤ a+b
2 , we have

x∫
a

|t− a−mh(x)|dt =
(x− a)2

2
− (x− a)mh(x)

and
b∫
x

|t− b−mh(x)|dt =
(b− x)2

2
+ (b− x)mh(x) + [mh(x)]

2 .

For all a+b2 ≤ x ≤ b, we write

x∫
a

|t− a−mh(x)|dt =
(x− a)2

2
− (x− a)mh(x) + [mh(x)]

2

and
b∫
x

|t− b−mh(x)|dt =
(b− x)2

2
+ (b− x)mh(x).

Then, we get

x∫
a

|t− a−mh(x)|dt+

b∫
x

|t− b−mh(x)|dt

=
(b− x)2 + (x− a)2

2
+ 2

(
a+ b

2
− x

)
mh(x) + [mh(x)]

2 .

(8)
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Similarly, we obtain

y∫
c

|s− c−mh(y)|dt+

d∫
y

|s− d−mh(y)|ds

=
(d− y)2 + (y− c)2

2
+ 2

(
c+ d

2
− y

)
mh(y) + [mh(y)]

2 .

(9)

If we substitute the equality (8) and (9) in (7), we easily deduce required
inequality (6) which completes the proof. �

Remark 1 If we take x = a+b
2 and y = c+d

2 in Theorem 3, then we have the
mid-point inequality∣∣∣∣∣∣

b∫
a

d∫
c

f (t, s)dsdt+ (b− a) (d− c) f

(
a+ b

2
,
c+ d

2

)

−(d− c)

b∫
a

f

(
t,
c+ d

2

)
dt− (b− a)

d∫
c

f

(
a+ b

2
, s

)
ds

∣∣∣∣∣∣
≤ 1

16
(b− a)2 (d− c)2 ‖fts‖∞

which was given by Barnett and Dragomir in [2].

Remark 2 Under the same assumptions of Theorem 3 with h = 1 and (x, y) =
(a, c) , then the following inequality holds:∣∣∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)4

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s)dsdt

−
1

2

 1

d− c

d∫
c

[f (b, s) + f (a, s)]ds+
1

b− a

b∫
a

[f (t, d) + f (t, c)]dt

∣∣∣∣∣∣
≤ (b− a) (d− c)

16
‖fts‖∞ .

Similarly, if we choose (x, y) = (a, d) or (x, y) = (b, c) or (x, y) = (b, d) for
h = 1 in Theorem 3, then we deduce inequalities which are the same as the
above result.
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Remark 3 If we choose h = 0 in Theorem 3, then the inequality (6) reduce
to (2).

Theorem 4 Suppose that all the assumptions of Lemma 1 hold. If fts ∈
Lp(∆),

1
p +

1
q = 1 and q > 1, then we have the inequality

|Sh (x, y, s, t)| ≤

[
[b− x+mh(x)]

q+1 + [x− a−mh(x)]
q+1

q+ 1

] 1
q

[
[d− y+mh(y)]

q+1 + [y− c−mh(y)]
q+1

q+ 1

] 1
q

‖fts‖p

(10)

for all (x, y) ∈ [a, b] × [c, d], where mh(x) = h
(
x− a+b

2

)
and mh(y) =

h
(
y− c+d

2

)
, h ∈ [0, 2]. Also, ‖fts‖p is defined by

‖fts‖p =

b∫
a

d∫
c

∣∣∣∣∂2f(t, s)∂t∂s

∣∣∣∣p dsdt


1
p

.

Proof. Taking absolute value of (4) and using Hölder’s inequality, we find that

|Sh (x, y, s, t)| ≤

b∫
a

d∫
c

|Ph (x, t)|
q |Qh (y, s)|

q dsdt


1
q
b∫
a

d∫
c

∣∣∣∣∂2f(t, s)∂t∂s

∣∣∣∣p dsdt


1
p

=

 x∫
a

|t− a−mh(x)|
q dt+

b∫
x

|t− b−mh(x)|
q dt


1
q

×

y∫
c

|s− c−mh(y)|dt+

d∫
y

|s− d−mh(y)|ds


1
q

‖fts‖p .

We need to examine the above integrals for the cases a ≤ x ≤ a+b
2 and

a+b
2 ≤ x ≤ b;

For the case of a ≤ x ≤ a+b
2 , we get

x∫
a

|t− a−mh(x)|
q dt =

[x− a−mh(x)]
q+1 − [−mh(x)]

q+1

q+ 1
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and
b∫
x

|t− b−mh(x)|
q dt =

[b− x+mh(x)]
q+1 + [−mh(x)]

q+1

q+ 1
.

For the case of a+b2 ≤ x ≤ b, we obtain

x∫
a

|t− a−mh(x)|
q dt =

[x− a−mh(x)]
q+1 + [mh(x)]

q+1

q+ 1

and
b∫
x

|t− b−mh(x)|
q dt =

[b− x+mh(x)]
q+1 − [mh(x)]

q+1

q+ 1
.

Then, we can write

x∫
a

|t− a−mh(x)|
q dt+

b∫
x

|t− b−mh(x)|
q dt

=
[b− x+mh(x)]

q+1 + [x− a−mh(x)]
q+1

q+ 1
.

(11)

Similarly, we easily deduce the identity

y∫
c

|s− c−mh(y)|
q dt+

d∫
y

|s− d−mh(y)|
q ds

=
[d− y+mh(y)]

q+1 + [y− c−mh(y)]
q+1

q+ 1
.

(12)

Using the equality (11) and (12), we easily deduce required inequality (10).
Hence, the proof is completed. �

Remark 4 If we take x = a+b
2 and y = c+d

2 in Theorem 4, then we have the
mid-point inequality∣∣∣∣∣∣

b∫
a

d∫
c

f (t, s)dsdt+ (b− a) (d− c) f

(
a+ b

2
,
c+ d

2

)
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−(d− c)

b∫
a

f

(
t,
c+ d

2

)
dt− (b− a)

d∫
c

f

(
a+ b

2
, s

)
ds

∣∣∣∣∣∣
≤ (b− a)1+

1
q (d− c)1+

1
q

4 (q+ 1)
2
q

‖fts‖p

which was given by Dragomir et al. in [6].

Remark 5 If we choose h = 0 in Theorem 4, then we have∣∣∣∣∣∣(b− a) (d− c) f(x, y) − (d− c)

b∫
a

f(t, y)dt

−(b− a)

d∫
c

f(x, s)ds+

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤
∥∥∥∥ ∂n+mf∂tn∂sm

∥∥∥∥
p

[
(x− a)q+1 + (b− x)q+1

q+ 1

] 1
q

×

[
(y− c)q+1 + (d− y)q+1

q+ 1

] 1
q

which was proved by Dragomir et al. in [6].

Remark 6 Under the same assumptions of Theorem 4 with h = 1 and (x, y) =
(a, c) , then the following inequality holds:∣∣∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)4

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s)dsdt

−
1

2

 1

d− c

d∫
c

[f (b, s) + f (a, s)]ds+
1

b− a

b∫
a

[f (t, d) + f (t, c)]dt

∣∣∣∣∣∣
≤ (b− a)1+

1
q (d− c)1+

1
q

4 (q+ 1)
2
q

‖fts‖∞ .
Similarly, if we choose (x, y) = (a, d) or (x, y) = (b, c) or (x, y) = (b, d) for

h = 1 in Theorem 4, then we deduce inequalities which are the same as the
above result.
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For convenience, we give the following notations used to simplify the details
of the next theorem,

A = (b− a)

[
(x− a)2

2
− (x− a)mh(x)

]
+

(b− x)3 − (x− a)3

3

+

[(
b− a

2

)2
+

(
x−

a+ b

2

)2]
mh(x) −

[mh(x)]
3

3
,

B = (b− a)

[
(b− x)2

2
+ (b− x)mh(x)

]
−

(b− x)3 − (x− a)3

3

−

[(
b− a

2

)2
+

(
x−

a+ b

2

)2]
mh(x) +

[mh(x)]
3

3
,

C = (d− c)

[
(y− c)2

2
− (y− c)mh(y)

]
+

(d− y)3 − (y− c)3

3

+

[(
d− c

2

)2
+

(
y−

c+ d

2

)2]
mh(y) −

[mh(y)]
3

3

and

D = (d− c)

[
(d− y)2

2
+ (d− y)mh(y)

]
−

(d− y)3 − (y− c)3

3

−

[(
d− c

2

)2
+

(
y−

c+ d

2

)2]
mh(y) +

[mh(y)]
3

3
.

We give some inequalities by using convexity of |fts (t, s)| in the following
theorem.

Theorem 5 Suppose that all the assumptions of Lemma 1 hold. If |fts (t, s)|
is a convex function on the co-ordinates on [a, b] × [c, d], then the following
inequalities hold:

|Sh (x, y, s, t)|

≤ |fts (a, c)|

(b− a) (d− c)
AC+

|fts (a, d)|

(b− a) (d− c)
A
[
D+ (d− c) [mh(y)]

2
]

+
|fts (b, c)|

(b− a) (d− c)

[
B+ (b− a) [mh(x)]

2
]
C

+
|fts (b, d)|

(b− a) (d− c)

[
B+ (b− a) [mh(x)]

2
] [
D+ (d− c) [mh(y)]

2
]

(13)
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for all a ≤ x ≤ a+b
2 and c ≤ y ≤ c+d

2

|Sh (x, y, s, t)|

≤ |fts (a, c)|

(b− a) (d− c)
A
[
C+ (d− c) [mh(y)]

2
]
+

|fts (a, d)|

(b− a) (d− c)
AD

+
|fts (b, c)|

(b− a) (d− c)

[
B+ (b− a) [mh(x)]

2
] [
C+ (d− c) [mh(y)]

2
]

+
|fts (b, d)|

(b− a) (d− c)

[
B+ (b− a) [mh(x)]

2
]
D

(14)

for all a ≤ x ≤ a+b
2 and c+d

2 ≤ y ≤ d

|Sh (x, y, s, t)|

≤ |fts (a, c)|

(b− a) (d− c)

[
A+ (b− a) [mh(x)]

2
]
C

+
|fts (a, d)|

(b− a) (d− c)

[
A+ (b− a) [mh(x)]

2
] [
D+ (d− c) [mh(y)]

2
]

+
|fts (b, c)|

(b− a) (d− c)
BC+

|fts (b, d)|

(b− a) (d− c)
B
[
D+ (d− c) [mh(y)]

2
]

(15)

for all a+b2 ≤ x ≤ b and c ≤ y ≤ c+d
2

|Sh (x, y, s, t)|

≤ |fts (a, c)|

(b− a) (d− c)

[
A+ (b− a) [mh(x)]

2
] [
C+ (d− c) [mh(y)]

2
]

+
|fts (a, d)|

(b− a) (d− c)

[
A+ (b− a) [mh(x)]

2
]
D

+
|fts (b, c)|

(b− a) (d− c)
B
[
C+ (d− c) [mh(y)]

2
]
+

|fts (b, d)|

(b− a) (d− c)
BD

(16)

for all a+b
2 ≤ x ≤ b and c+d

2 ≤ y ≤ d, where mh(x) = h
(
x− a+b

2

)
and

mh(y) = h
(
y− c+d

2

)
, h ∈ [0, 2].

Proof. If we take absolute value of (4), then we get

|Sh (x, y, s, t)| ≤
b∫
a

d∫
c

|Ph (x, t)| |Qh (y, s)| |fts (t, s)|dsdt.
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Since |fts (t, s)| is a convex function on the co-ordinates on [a, b] × [c, d], we
have ∣∣∣∣fts( b− tb− a

a+
t− a

b− a
b,
d− s

d− c
c+

s− c

d− c
d

)∣∣∣∣
≤ (b− t) (d− s)

(b− a) (d− c)
|fts (a, c)|+

(b− t) (s− c)

(b− a) (d− c)
|fts (a, d)|

+
(t− a) (d− s)

(b− a) (d− c)
|fts (b, c)|+

(t− a) (s− c)

(b− a) (d− c)
|fts (b, d)| .

(17)

Utilizing the inequality (17), we obtain

|Sh (x, y, s, t)|

≤ |fts (a, c)|

(b− a) (d− c)

b∫
a

(b− t) |Ph (x, t)|dt

d∫
c

(d− s) |Qh (y, s)|ds


+

|fts (a, d)|

(b− a) (d− c)

b∫
a

(b− t) |Ph (x, t)|dt

d∫
c

(s− c) |Qh (y, s)|ds


+

|fts (b, c)|

(b− a) (d− c)

b∫
a

(t− a) |Ph (x, t)|dt

d∫
c

(d− s) |Qh (y, s)|ds


+

|fts (b, d)|

(b− a) (d− c)

b∫
a

(t− a) |Ph (x, t)|dt

d∫
c

(s− c) |Qh (y, s)|ds

 .

(18)

We observe that
b∫
a

(b− t) |Ph (x, t)|dt = (b− a)

x∫
a

|t− a−mh(x)|dt

−

x∫
a

(t− a) |t− a−mh(x)|dt+

b∫
x

(b− t) |t− b−mh(x)|dt.

(19)

Now, let us observe that

r∫
p

|t− p| |t− q|dt =

q∫
p

(t− p) (q− t)dt+

r∫
q

(t− p) (t− q)dt

=
(q− p)3

3
+

(r− p)3

3
−

(q− p) (r− p)2

2

(20)
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for all r, p, q such that p ≤ q ≤ r.
We investigate integrals given in the equality (19) for the cases a ≤ x ≤ a+b

2

and a+b
2 ≤ x ≤ b;

For all a ≤ x ≤ a+b
2 , we have

x∫
a

|t− a−mh(x)|dt =
(x− a)2

2
− (x− a)mh(x),

x∫
a

(t− a) |t− a−mh(x)|dt =
(x− a)3

3
−

(x− a)2

2
mh(x)

and using the equality (20) for second integral, we get

b∫
x

|b− t| |t− b−mh(x)|dt = −
[mh(x)]

3

3
+

(b− x)3

3
+

(b− x)2

2
mh(x).

For all a+b2 ≤ x ≤ b, we have

x∫
a

|t− a−mh(x)|dt =
(x− a)2

2
− (x− a)mh(x) + [mh(x)]

2 ,

b∫
x

|b− t| |t− b−mh(x)|dt =
(b− x)3

3
+

(b− x)2

2
mh(x)

and using the equality (20), we obtain

x∫
a

|a− t| |t− a−mh(x)|dt =
[mh(x)]

3

3
+

(x− a)3

3
−

(x− a)2

2
mh(x).

Then, we can write

b∫
a

(b− t) |Ph (x, t)|dt = A

for all a ≤ x ≤ a+b
2 and

b∫
a

(b− t) |Ph (x, t)|dt = A+ (b− a) [mh(x)]
2
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for all a+b2 < x ≤ b.
Similarly, we can easily find the other integrals given in the inequality (18)

for cases a ≤ x ≤ a+b
2 ,

a+b
2 < x ≤ b, c ≤ y ≤ c+d

2 and c+d
2 ≤ y ≤ d. If

we substitute the resulting inequalities for all cases in (18), we obtain desired
inequalities. The proof is thus completed. �

Remark 7 If we take x = a+b
2 and y = c+d

2 in Theorem 5, then we have the
mid-point inequality∣∣∣∣∣∣

b∫
a

d∫
c

f (t, s)dsdt+ (b− a) (d− c) f

(
a+ b

2
,
c+ d

2

)

−(d− c)

b∫
a

f

(
t,
c+ d

2

)
dt− (b− a)

d∫
c

f

(
a+ b

2
, s

)
ds

∣∣∣∣∣∣
≤ (b− a)2 (d− c)2

16

[
|fts (a, c)|+ |fts (a, d)|+ |fts (b, c)|+ |fts (b, d)|

4

]
which was given by Latif and Dragomir in [12].

Corollary 1 Under the same assumptions of Theorem 5 with h = 0, we get
the inequality∣∣∣∣∣∣

b∫
a

d∫
c

f(s, t)dtds+ (d− c)(b− a)f(x, y)

−

(b− a) d∫
c

f(x, t)dt+ (d− c)

b∫
a

f(s, y)ds

∣∣∣∣∣∣
≤

[
(b− a)

(x− a)2

2
+

(b− x)3 − (x− a)3

3

]

×

{
|fts (a, c)|

(b− a) (d− c)

[
(d− c)

(y− c)2

2
+

(d− y)3 − (y− c)3

3

]

+
|fts (a, d)|

(b− a) (d− c)

[
(d− c)

(d− y)2

2
−

(d− y)3 − (y− c)3

3

]}

+

[
(b− a)

(b− x)2

2
−

(b− x)3 − (x− a)3

3

]
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×

{
|fts (b, c)|

(b− a) (d− c)

[
(d− c)

(y− c)2

2
+

(d− y)3 − (y− c)3

3

]

+
|fts (b, d)|

(b− a) (d− c)

[
(d− c)

(d− y)2

2
−

(d− y)3 − (y− c)3

3

]}
for all (x, y) ∈ [a, b]× [c, d].

Remark 8 If we take (x, y) = (a, c) for h = 1 in the inequality (13), then we
have the result∣∣∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)4

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s)dsdt

−
1

2

 1

d− c

d∫
c

[f (b, s) + f (a, s)]ds+
1

b− a

b∫
a

[f (t, d) + f (t, c)]dt

∣∣∣∣∣∣
≤ (b− a) (d− c)

16

[
|fts (a, c)|+ |fts (a, d)|+ |fts (b, c)|+ |fts (b, d)|

4

]
which was proved Sarikaya et al. in [21].

Similarly, if we choose (x, y) = (a, d) in (14) or (x, y) = (b, c) in (15) or
(x, y) = (b, d) in (16) for h = 1, then we obtain inequalities which are the
same as the above result.

Theorem 6 Suppose that all the assumptions of Lemma 1 hold. If |fts (t, s)|
q

is a convex function on the co-ordinates on [a, b]× [c, d], 1p +
1
q = 1 and q > 1,

then the following inequality holds:

|Sh (x, y, s, t)|

≤ (b− a)
1
q (d− c)

1
q

[
[b− x+mh(x)]

p+1 + [x− a−mh(x)]
p+1

p+ 1

] 1
p

×

[
[d− y+mh(y)]

p+1 + [y− c−mh(y)]
p+1

p+ 1

] 1
p

×
{
|fts (a, c)|

q + |fts (a, d)|
q + |fts (b, c)|

q + |fts (b, d)|
q

4

} 1
q

(21)

for all (x, y) ∈ [a, b] × [c, d], where mh(x) = h
(
x− a+b

2

)
and mh(y) =

h
(
y− c+d

2

)
, h ∈ [0, 2].



288 S. Erden, M. Z. Sarikaya

Proof. Taking absolute value of (4) and using Hölder’s inequality, we find that

|Sh (x, y, s, t)| ≤

b∫
a

d∫
c

|Ph (x, t)|
p |Qh (y, s)|

p dsdt


1
q
b∫
a

d∫
c

|fts (t, s)|
q dsdt


1
q

.

By similar methods in the proof of Theorem 4, we obtainb∫
a

d∫
c

|Ph (x, t)|
p |Qh (y, s)|

p dsdt


1
q

=

[
[b− x+mh(x)]

p+1 + [x− a−mh(x)]
p+1

p+ 1

] 1
p

×

[
[d− y+mh(y)]

p+1 + [y− c−mh(y)]
p+1

p+ 1

] 1
p

.

Since |fts (t, s)|
q is a convex function on the co-ordinates on ∆, we have∣∣∣∣fts( b− tb− a
a+

t− a

b− a
b,
d− s

d− c
c+

s− c

d− c
d

)∣∣∣∣q
≤ (b− t) (d− s)

(b− a) (d− c)
|fts (a, c)|

q +
(b− t) (s− c)

(b− a) (d− c)
|fts (a, d)|

q

+
(t− a) (d− s)

(b− a) (d− c)
|fts (b, c)|

q +
(t− a) (s− c)

(b− a) (d− c)
|fts (b, d)|

q .

(22)

Using the inequality (22), it follows thatb∫
a

d∫
c

|fts (t, s)|
q dsdt


1
q

≤ (b− a)
1
q (d− c)

1
q

×
{
|fts (a, c)|

q + |fts (a, d)|
q + |fts (b, c)|

q + |fts (b, d)|
q

4

} 1
q

.

The proof is thus completed. �

Remark 9 If we take x = a+b
2 and y = c+d

2 in Theorem 6, then we have the
mid-point inequality∣∣∣∣∣∣

b∫
a

d∫
c

f (t, s)dsdt+ (b− a) (d− c) f

(
a+ b

2
,
c+ d

2

)
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−(d− c)

b∫
a

f

(
t,
c+ d

2

)
dt− (b− a)

d∫
c

f

(
a+ b

2
, s

)
ds

∣∣∣∣∣∣
≤ (b− a)2 (d− c)2

4 (q+ 1)
2
q

{
|fts (a, c)|

q + |fts (a, d)|
q + |fts (b, c)|

q + |fts (b, d)|
q

4

} 1
q

which was deduced by Latif and Dragomir in [12].

Corollary 2 If we choose h = 0 in Theorem 6, then we have∣∣∣∣∣∣(b− a) (d− c) f(x, y) − (d− c)

b∫
a

f(t, y)dt

−(b− a)

d∫
c

f(x, s)ds+

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ (b− a)

1
q

[
(b− x)p+1 + (x− a)p+1

p+ 1

] 1
p

× (d− c)
1
q

[
(d− y)p+1 + (y− c)p+1

p+ 1

] 1
p

×
{
|fts (a, c)|

q + |fts (a, d)|
q + |fts (b, c)|

q + |fts (b, d)|
q

4

} 1
q

which is a Ostrowski type inequality for co-ordinated convex mappings.

Remark 10 Under the same assumptions of Theorem 6 with h = 1 and
(x, y) = (a, c) , then the following inequality holds:∣∣∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)4

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s)dsdt

−
1

2

 1

d− c

d∫
c

[f (b, s) + f (a, s)]ds+
1

b− a

b∫
a

[f (t, d) + f (t, c)]dt

∣∣∣∣∣∣
≤ (b− a)2 (d− c)2

4 (q+ 1)
2
q

{
|fts (a, c)|

q + |fts (a, d)|
q + |fts (b, c)|

q + |fts (b, d)|
q

4

} 1
q

which was proved Sarikaya et al. in [21].
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Similarly, if we choose (x, y) = (a, d) or (x, y) = (b, c) or (x, y) = (b, d) for
h = 1 in Theorem 6, then we deduce inequalities which are the same as the
above result.

3 Applications to cubature formulae

We now consider applications of the integral inequalities developed in the
previous section, to obtain estimates of cubature formula which, it turns out
have a markedly smaller error than that which may be obtained by the classical
results.

Let In : a = x0 < x1 < . . . < xn−1 < xn = b and Jm : c = y0 < y1 < . . . <

ym−1 < ym = d be divisions of the intervals [a, b] and [c, d] , ξi ∈ [xi, xi+1]
(i = 0, . . . , n− 1) and ηj ∈ [yj, yj+1] (j = 0, . . . ,m− 1) . Consider the sum

T(f, In, Jm, ξ, η) : =

n−1∑
i=0

m−1∑
j=0

lj

xi+1∫
xi

f (t, ηj)dt

+

n−1∑
i=0

m−1∑
j=0

ki

yj+1∫
yj

f (ξi, s)ds−

n−1∑
i=0

m−1∑
j=0

kiljf (ξi, ηj)

−

n−1∑
i=0

m−1∑
j=0

mh(ξi)

yj+1∫
yj

[f (xi+1, s) − f (xi, s)]ds

−

n−1∑
i=0

m−1∑
j=0

mh(ηj)

xi+1∫
xi

[f (t, yj+1) − f (t, yj)]dt

+

n−1∑
i=0

m−1∑
j=0

ljmh(ξi) [f (xi+1, ηj) − f (xi, ηj)]

+

n−1∑
i=0

m−1∑
j=0

kimh(ηj) [f (ξi, yj+1) − f (ξi, yj)]

−

n−1∑
i=0

m−1∑
j=0

mh(ξi)mh(ηj) [f (xi, yj) − f (xi, yj+1)

−f (xi+1, yj) + f (xi+1, yj+1)]

(23)

where ki = xi+1 − xi, lj = yj+1 − yj (i = 0, . . . , n− 1; j = 0, . . . ,m− 1) ,
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mh(ξi) = h
(
ξi −

xi+xi+1

2

)
and mh(ηj) = h

(
ηj −

yj+yj+1

2

)
.

Theorem 7 Let f : [a, b] × [c, d]→ R be an absolutely continuous function
such that the partial derivative of order 2 exists for all (t, s) ∈ [a, b] × [c, d].

If fts =
∂2f
∂t∂s exists on (a, b)× (c, d) and is bounded, i.e.,

‖fts‖∞ = sup
(t,s)∈(xi,xi+1)×(yj,yj+1)

∣∣∣∣∂2f(t, s)∂t∂s

∣∣∣∣ <∞.
Then we have the representation

b∫
a

d∫
c

f(t, s)dsdt = T(f, In, Jm, ξ, η) + R(f, In, Jm, ξ, η)

where S(f, f′, ξ, In) is defined as in (23) and the remainder satisfies the esti-
mations:

|R(f, In, Jm, ξ, η)|

≤
n−1∑
i=0

m−1∑
j=0

[
k2i
4

+

(
ξi −

xi + xi+1
2

)2
+ (h− 2)

(
ξi −

xi + xi+1
2

)
mh(ξi)

]

×

[
l2j

4
+

(
ηj −

yj + yj+1
2

)2
+ (h− 2)

(
ηj −

yj + yj+1
2

)
mh(ηj)

]
‖fts‖∞

(24)

for all (ξi, ηj) ∈ [xi, xi+1]× [yj, yj+1] with (i = 0, . . . , n− 1; j = 0, . . . ,m− 1) ,

where mh(ξi) = h
(
ξi −

xi+xi+1

2

)
and mh(ηj) = h

(
ηj −

yj+yj+1

2

)
with h ∈

[0, 2].

Proof. Applying Theorem 3 on the interval [xi, xi+1]×[yj, yj+1], (i = 0, . . . , n−1;
j = 0, . . . ,m− 1), we obtain∣∣∣∣∣∣∣
xi+1∫
xi

yj+1∫
yj

f(t, s)dsdt− lj

xi+1∫
xi

f (t, ηj)dt− ki

yj+1∫
yj

f (ξi, s)ds+ kiljf (ξi, ηj)

+mh(ξi)

yj+1∫
yj

[f (xi+1, s) − f (xi, s)]ds+mh(ηj)

xi+1∫
xi

[f (t, yj+1) − f (t, yj)]dt

− ljmh(ξi) [f (xi+1, ηj) − f (xi, ηj)] − kimh(ηj) [f (ξi, yj+1) − f (ξi, yj)]
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+mh(ξi)mh(ηj) [f (xi, yj) − f (xi, yj+1) − f (xi+1, yj) + f (xi+1, yj+1)]|

≤ ‖fts‖∞
[
k2i
4

+

(
ξi −

xi + xi+1
2

)2
+ (h− 2)

(
ξi −

xi + xi+1
2

)
mh(ξi)

]

×

[
l2i
4
+

(
ηj −

yj + yj+1
2

)2
+ (h− 2)

(
ηj −

yj + yj+1
2

)
mh(ηj)

]

for all i = 0, . . . , n− 1; j = 0, . . . ,m− 1.
Summing over i from 0 to n − 1 and over j from 0 to m − 1 using the

generalized triangle inequality we obtain the estimation (24). �

Remark 11 If we take h = 0 in Theorem 7, then we recapture the cubature
formula

b∫
a

d∫
c

f(t, s)dsdt = T(f, In, Jm, ξ, η) + R(f, In, Jm, ξ, η)

where the remainder R(f, In, Jm, ξ, η) satisfies the estimation:

|R(f, In, Jm, ξ, η)|

≤ ‖fts‖∞
n−1∑
i=0

m−1∑
j=0

[
k2i
4

+

(
ξi −

xi + xi+1
2

)2][l2j
4
+

(
ηj −

yj + yj+1
2

)2] (25)

which was given by Barnett and Dragomir in [2].

Remark 12 If we choose ξi =
xi+xi+1

2 and ηj =
yj+yj+1

2 in Theorem 7, then
we recapture the midpoint cubature formula

b∫
a

d∫
c

f(t, s)dsdt = TM(f, In, Jm) + RM(f, In, Jm)

where the remainder RM(f, In, Jm) satisfies the estimation:

|RM(f, In, Jm)| ≤
‖fts‖∞
16

n−1∑
i=0

k2i

m−1∑
j=0

l2j .

Theorem 8 Let f : [a, b] × [c, d]→ R be an absolutely continuous function
such that the partial derivative of order 2 exists for all (t, s) ∈ [a, b]× [c, d]. If
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|fts (t, s)|
q is a convex function on the co-ordinates on [a, b]× [c, d], 1p +

1
q = 1

and q > 1, then we have the representation

b∫
a

d∫
c

f(t, s)dsdt = T(f, In, Jm, ξ, η) + R(f, In, Jm, ξ, η)

where S(f, f′, ξ, In) is defined as in (23) and the remainder satisfies the esti-
mations:

|R(f, In, Jm, ξ, η)|

≤
n−1∑
i=0

m−1∑
j=0

k
1
q

i l
1
q

j

[
[xi+1 − ξi +mh(ξi)]

p+1 + [ξi − xi −mh(ξi)]
p+1

p+ 1

] 1
p

×

[
[yj+1 − ηj +mh(ηj)]

p+1 + [ηj − yj −mh(ηj)]
p+1

p+ 1

] 1
p

×
{
|fts (xi, yj)|

q + |fts (xi, yj+1)|
q + |fts (xi+1, yj)|

q + |fts (xi+1, yj+1)|
q

4

} 1
q

for all (ξi, ηj) ∈ [xi, xi+1]× [yj, yj+1] with (i = 0, . . . , n− 1; j = 0, . . . ,m− 1) ,

where mh(ξi) = h
(
ξi −

xi+xi+1

2

)
and mh(ηj) = h

(
ηj −

yj+yj+1

2

)
with h ∈

[0, 2].

Proof. Applying similar methods in the proof of Theorem 7 and then using
the inequality (21), we obtain desired result. �
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