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ABSTRACT
We propose a new class of continuous distributions called the generalized Kumaraswamy-G family which extends the
Kumaraswamy-G family defined by Cordeiro and de Castro [1]. Some special models of the new family are provided. Some of
its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi
entropy, order statistics and characterizations are derived. The new location-scale regression model is introduced based on the
new generated distribution. The maximum likelihood is used for estimating the model parameters. The flexibility of the gener-
ated family is illustrated by means of two applications to real data sets.
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1. INTRODUCTION

Recently, the interest in developing more flexible generators remains strong. Many generalized distributions have been developed over the
past decades for modeling data in several areas such as biological studies, environmental sciences, economics, engineering, finance and
medical sciences. There has been an increased interest in defining new generated families of univariate distributions by introducing addi-
tional shape parameters to the baseline model. For example, the Marshall-Olkin-G [2], beta-G [3], Kumaraswamy-G (K-G) [1], transmuted
geometric-G [4], beta transmuted-H [5] and the generalized transmuted-G [6] families. However, in many applied areas, there is a clear
need for extending forms of the classical models.

The generated distributions have attracted several statisticians to develop new models because the computational and analytical facilities
available in most symbolic computation software platforms. Several mathematical properties of the extended distributions may be easily
explored using mixture forms of exponentiated-G (exp-G) distributions.

Consider a baseline cumulative distribution function (cdf)G (x; 𝜑) and probability density function (pdf) g (x; 𝜑) depending on a parameter
vector 𝜑, where 𝜑 = (𝜑k) = (𝜑1, 𝜑2, …). Thus, Cordeiro and de Castro [1] defined the K-G family by the cdf and pdf given by

F (x; a, b, 𝜑) = 1 − [1 − G (x; 𝜑)a]b (1)

and

f (x; a, b, 𝜑) = abg (x; 𝜑)G (x; 𝜑)a−1 [1 − G (x; 𝜑)a]b−1 , (2)

respectively, where g (x) = dG (x) /dx and a and b are two additional positive shape parameters. Clearly, for a = b = 1, we obtain the
baseline distribution. The additional parameters a and b aim to govern skewness and tail weight of the generated distribution. An attractive
feature of this family is that a and b can afford greater control over the weights in both tails and in the center of the distribution. Further
details can be found in Cordeiro and de Castro [1].

In this paper, we define and study a new family of distributions by adding one extra shape parameter in (1) to provide more flexibility
to the generated family. To this end, we construct a new generator so-called the generalized Kumaraswamy-G (GK-G) family and give a
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comprehensive description of some of its mathematical properties. We hope that the newmodel will attract wider applications in reliability,
engineering and other areas of research.

The cdf of the GK-G family is defined (for x > 0) by

F (x; a, b, 𝛼, 𝜑) =
1 − [1 − 𝛼G (x; 𝜑)a]b

1 − (1 − 𝛼)b
. (3)

The corresponding pdf of (3) is given by

f (x; a, b, 𝛼, 𝜑) = 𝛼abg (x; 𝜑)
1 − (1 − 𝛼)b

G (x; 𝜑)a−1 [1 − 𝛼G (x; 𝜑)a]b−1 , (4)

where 0 < 𝛼 ≤ 1, a > 0 and b > 0 are shape parameters.

Henceforth, a random variable X having the density function (4) is denoted by X ∼GK-G (a, b, 𝛼, 𝜑).
The hazard rate function (hrf) of X, say 𝜏 (x), is given by

𝜏 (x) =
𝛼abg (x; 𝜑)G (x; 𝜑)a−1 [1 − 𝛼G (x; 𝜑)a]b−1

[1 − 𝛼G (x; 𝜑)a]b − (1 − 𝛼)b
.

Some special cases of the new family are listed in Table 1.

The rest of the paper is outlined as follows. In Section 2, three special models of GK-G family including Weibull, log-logistic and gamma
are presented. In Section 3, some of mathematical properties of the proposed family including linear representation, ordinary and incom-
plete moments, mean deviations, moment generating function (mgf), Rényi entropy and order statistics are obtained. Maximum likelihood
estimation of the model parameters is investigated in Section 4. In Section 5, we provide a simulation study to evaluate the performance of
the maximum likelihood method in estimating the parameters of the GK-G family. The log-generalized Kumaraswamy-Weibull regression
model is defined in Section 6. Section 7 is devoted to applications to prove empirically the flexibility of the proposed models. Finally, some
concluding remarks are given in Section 8.

2. SPECIAL MODELS

In this section, we provide four special models of the GK-G family, namely, GK-Weibull, GK-log logistic and GK-gamma distributions.
These sub-models generalize important existing distributions in the literature.

2.1. The GK-Weibull (GKW) Distribution

The Weibull (W) distribution, with positive parameters 𝜆 and 𝛽, has pdf and cdf given (for x > 0) by g (x) = 𝜆𝛽x𝛽−1e−𝜆x
𝛽
and G (x) =

1 − e−𝜆x
𝛽
, respectively. Then, the GKW pdf reduces to

f (x) = 𝛼ab𝜆𝛽x𝛽−1e−𝜆x
𝛽

1 − (1 − 𝛼)b
(
1 − e−𝜆x

𝛽
)a−1

[1 − 𝛼
(
1 − e−𝜆x

𝛽
)a
]
b−1

.

The GKW distribution reduces to the GK-exponential (GKE) distribution when 𝛽 = 1. Also, when a = b = 0, it reduces to the W
distribution. Figure 1 displays some possible shapes of the density and hazard rate functions of this distribution.

Table 1 Sub-models of the GK-G family.

a b 𝛼 Reduced Model Authors

a b 1 K-G family Cordeiro and de Castro [1]
1 b 𝛼 Ex-G family New
a 1 − exp-G family Gupta et al. [7]
1 1 − G

(
x; 𝜑

)
–
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2.2. The GK-Log Logistic (GKLL) Distribution

The log-logistic (LL) distribution with positive parameters 𝜆 and 𝛽 has pdf and cdf given by g(x)= 𝛽𝜆−𝛽x𝛽−1 [1+
( x
𝜆
)𝛽]−2

(for x > 0) and

G (x) = 1 − [1+
( x
𝜆
)𝛽]−1

, respectively. Then, the pdf of the GKLL distribution is given by

f (x) = 𝛼ab𝛽𝜆−𝛽x𝛽−1

1 − (1 − 𝛼)b [1 +
( x
𝜆
)𝛽
]
−2

{1 − [1 +
( x
𝜆
)𝛽
]
−1

}
a−1

×
(
1 − 𝛼 {1 − [1 +

( x
𝜆
)𝛽
]
−1

}
a)b−1

.

The GKLL model reduces to the LL distribution when a = b = 1. Plots of the density and hazard rate functions of the GKLL distribution
are displayed in Figure 2 for some parameter values.

2.3. The GK-Gamma (GKGa) Distribution

By takingG (x) and g (x) in (4) to be the cdfG (x) = 𝛾 (𝜆, x/𝛽) /Γ (𝜆) and the pdf g (x) = x𝜆−1e−x/𝛽/𝛽𝜆Γ (𝜆) of the gamma (Ga) distribution,
where 𝜆 > 0 is a shape parameter and 𝛽 > 0 is a scale parameter. Then, the pdf of the GKGa (for x > 0) reduces to

f (x) = 𝛼ab [𝛾 (𝜆, x/𝛽) /Γ (𝜆)]a−1

𝛽𝜆Γ (𝜆) [1 − (1 − 𝛼)b]
x𝜆−1e−x/𝛽 {1 − 𝛼 [𝛾 (𝜆, x/𝛽) /Γ (𝜆)]a}b−1 .

This distribution reduces to the Ga distribution if a = b = 1. For 𝜆 = 1, we obtain the GK-exponenial (GKE) distribution. Figure 3 displays
plots of the density and hazard rate functions for the GKGa distribution for selected parameter values.

Figure 1 pdf (left) and hrf (right) plots of GK-Weibull (GKW) distribution.

Figure 2 pdf (left) and hrf (right) plots of GK-log logistic (GKLL) distribution.
Pdf_Folio:331
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Figure 3 pdf (left) and hrf (right) plots of GK-gamma (GKGa) distribution.

3. MATHEMATICAL PROPERTIES

3.1. Linear Representation

In this section, we provide a useful representation for the GK-G pdf. Consider the power series, for |z| < 1 and 𝜌 > 0 real non-integer,

(1 − z)𝜌−1 =
∞
∑
k=0

(−1)k
(
𝜌 − 1
k

)
zk. (5)

After applying the power series (5) to (4), we obtain

f (x) = b
1 − (1 − 𝛼)b

∞
∑
k=0

(−1)k 𝛼k+1
(
b − 1
k

)
ag (x)G (x)a(k+1)−1 .

Further, we can write the last equation as

f (x) =
∞
∑
k=0

𝜐k ha(k+1) (x) , (6)

where

𝜐k =
(−1)k 𝛼k+1

1 − (1 − 𝛼)b
(

b
k + 1

)
and ha(k+1) (x) = a (k + 1) g (x) G (x)a(k+1)−1 is the exp-G density with power parameter a (k + 1) > 0.

Thus, several mathematical properties of the GK-G family can be derived from those properties of the exp-G family. For example, the
ordinary and incomplete moments and mgf of X can be obtained directly from those of the exp-G class.

The cdf of theGK-G family can also be expressed as amixture of exp-G densities. By integrating (6), we obtain the same linear representation

F (x) =
∞
∑
k=0

𝜐k Ha(k+1) (x) ,

where H(k+1)a (x) is the cdf of the exp-G family with power parameter (k + 1) a.

The formulae derived throughout the paper can be easily handled in most symbolic computation software platforms such as Maple, Math-
ematica and Matlab because of their ability to deal with analytic expressions of formidable size and complexity. Established explicit expres-
sions to evaluate statistical measures can be more efficient than computing them directly by numerical integration. We have noted that the
infinity limit in these sums can be substituted by a large positive integer such as 50 for most practical purposes.

3.2. Quantile Function

The quantile function (qf) of X, say Q (u) = F−1 (u), can be obtained by inverting (3) numerically and it is given by

Q (u) = G−1 {𝛼−1 [1 − (1 − ud)
1
b ]}

1
a
,

where d = 1 − (1 − 𝛼)b.Pdf_Folio:332



Z.M. Nofal et al. / Journal of Statistical Theory and Applications 18(4) 329–342 333

3.3. Moments

Hereafter, Y(k+1)a denotes the exp-G distribution with power parameter a (k + 1). The rth moment of X, say 𝜇′r, follows from (6) as

𝜇′r = E (X r) =
∞
∑
k=0

𝜐k E
(
Y r
a(k+1)

)
.

3.4. Generating Function

Here, we provide two formulae for the mgfMX (t) = E
(
et X

)
of X. Clearly, the first one can be derived from (6 ) as

MX (t) =
∞
∑
k=0

𝜐k Ma(k+1) (t) ,

whereMa(k+1) (t) is the mgf of Ya(k+1). Hence,MX (t) can be determined from the exp-G generating function.

A second formula forMX (t) follows from (6) as

MX (t) =
∞
∑
k=0

𝜐k 𝜏 (t, k) ,

where 𝜏 (t, k) = ∫ 1
0
exp [t QG (u)] ua(k+1)−1du and QG (u) is the qf corresponding to G (x; 𝜙), i.e., QG (u) = G−1 (u; 𝜙).

3.5. Incomplete Moments

The sth incomplete moment, say 𝜑s (t), of X can be expressed from (6) as

𝜑s (t) = ∫
t

−∞
x sf (x) dx =

∞
∑
k=0

𝜐k ∫
t

−∞
x s ha(k+1) (x) dx. (7)

The mean deviations about the mean [𝛿1 = E
(
|X − 𝜇′1|

)
] and about the median [𝛿2 = E (|X −M|)] of X are given by 𝛿1 = 2𝜇′

1F
(
𝜇′1
)
−

2𝜑1
(
𝜇′1
)
and 𝛿2 = 𝜇′1 − 2𝜑1 (M), respectively, where 𝜇′1 = E (X),M = Median (X) = Q (0.5) is the median, F

(
𝜇′1
)
is easily evaluated from

(3) and 𝜑1 (t) is the first incomplete moment given by (7) with s = 1.

Now, we provide two ways to determine 𝛿1 and 𝛿2. First, a general equation for 𝜑1 (t) can be derived from (7) as

𝜑1 (t) =
∞
∑
k=0

𝜐k Ja(k+1) (t) ,

where Ja(k+1) (t) = ∫ t−∞ x ha(k+1) (x) dx is the first incomplete moment of the exp-G distribution.

A second general formula for 𝜑1 (t) is given by

𝜑1 (t) =
∞
∑
k=0

𝜐k vk (t) ,

where vk (t) = a (k + 1) ∫G(t)
0

QG (u) ua(k+1)−1du can be computed numerically.

These equations for 𝜑1 (t) can be applied to construct Bonferroni and Lorenz curves defined for a given probability 𝜋 by B (𝜋) =
𝜑1

(
q
)
/
(
𝜋𝜇′1

)
and L (𝜋) = 𝜑1

(
q
)
/𝜇′1, respectively, where 𝜇′1 = E (X) and q = Q (𝜋) is the qf of X at 𝜋. These curves are very useful in

economics, reliability, demography, insurance and medicine.

3.6. Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The Rényi entropy is defined by

I𝜃 (X) =
1

1 − 𝜃 log
(
∫
∞

−∞
f (x)𝜃 dx

)
, 𝜃 > 0 and 𝜃 ≠ 1.
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Using the pdf (4), we can write

f (x)𝜃 =
(
𝛼ab
d

)𝜃
g (x)𝜃 G (x)𝜃(a−1) [1 − 𝛼G (x)a]𝜃(b−1) .

Applying the power series (5) to the last term, we obtain

[1 − 𝛼G (x)a]𝜃(b−1) =
∞
∑
k=0

(−1)k
(
𝜃 (b − 1)

k

)
𝛼kG (x)ak

f (x)𝜃 =
(
ab
d

)𝜃 ∞
∑
k=0

(−1)k 𝛼k+𝜃
(
𝜃 (b − 1)

k

)
g (x)𝜃 G (x)a(k+𝜃)−𝜃

=
∞
∑
k=0

𝜂k g (x)𝜃 G (x)a(k+𝜃)−𝜃 ,

where

𝜂k = (−1)k 𝛼k+𝜃
(
ab
d

)𝜃 ( 𝜃 (b − 1)
k

)
.

Then, the Rényi entropy of the GK-G family is given by

I𝜃 (X) =
1

1 − 𝜃 log [
∞
∑
k=0

𝜂k ∫
∞

−∞
g (x)𝜃 G (x)a(k+𝜃)−𝜃 dx] .

3.7. Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let X1, … ,Xn be a random sample from the GK-G
family. The pdf of Xi∶n can be written as

fi∶n (x) =
f (x)

B (i, n − i + 1)

n−i

∑
j=0

(−1) j
(
n − i
j

)
F (x) j+i−1, (8)

where B (⋅, ⋅) is the beta function. Based on (3), we have

F j+i−1 (x)=
j+i−1

∑
l=0

(−1)l
s j+i−1

(
j + i − 1

l

)
[1 − 𝛼G (x; 𝜑)a]l b ,

where s = 1 − (1 − 𝛼)b .
Using (4) and the above equation, we can write

f (x) F (x) j+i−1 = 𝛼ab
j+i−1
∑
l=0

(−1)l
s j+i

(
j + i − 1

l

)
g (x; 𝜑)G (x; 𝜑)a−1

× [1 − 𝛼G (x; 𝜑)a]b(l+1)−1 .

After a power series expansion, the last equation reduces to

f (x) F (x) j+i−1 = ab
j+i−1
∑
l=0

∞
∑
k=0

(−1)l+k 𝛼k+1

s j+i

(
j + i − 1

l

)
×
(
b (l + 1) − 1

k

)
g (x; 𝜑)G (x; 𝜑)a(k+1)−1 . (9)

Then, we have

f (x) F j+i−1 (x)=
∞
∑
k=0

dk ha(k+1) (x) , (10)
Pdf_Folio:334
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where

dk =
j+i−1

∑
l=0

(−1)l+k b𝛼k+1

a (k + 1) s j+i

(
j + i − 1

l

)(
b (l + 1) − 1

k

)
.

Substituting (10) in (8), the pdf of Xi∶n can be expressed as

fi∶n (x) =
∞
∑
k=0

n−i

∑
j=0

(−1) j
(
n − i
j

)
B (i, n − i + 1) dk ha(k+1) (x) ,

where ha(k+1) (x) is the exp-G density with power parameter a (k + 1) .
(10) reveals that the density function of the GK-G order statistics is a linear combinations of exp-G densities. So, based on (10), we can
derive the properties of Xi∶n from those properties of Ya(k+1).

For example, the qth moments of Xi∶n is given by

E
(
Xq
i∶n
)
=

∞
∑
k=0

n−i

∑
j=0

(−1)j
(
n − i
j

)
B (i, n − i + 1) dk E

(
Y(k+1)a

)
. (11)

4. CHARACTERIZATIONS

Here, we provide two characterization theorems. We will use the following two Lemmas to prove our main results.

Assumptin A.

Suppose the random variable X has an absolutely continuous cdf F (x) and pdf f (x). Let 𝛾 = sup {X|F (x) > 0} and 𝛿 = inf {X|F (x) > 1} .

Lemma 1. Suppose X be a random variable having the assumption A. Let

E
(
X|X ≤ x

)
= m (x) 𝜏 (x) ,

wherem (x) is a continuous differentiable function with the condition

∫
x

𝛾

u −m′ (u)
m (u) du < ∞ for all x,

𝛾 < x < 𝛿 and 𝜏 (x) = f (x) /F (x) .Then

f (x) = ce
∫ x
𝛾
u−m′(u)
m(u)

du
,

where c is determined such that 1c = ∫
𝛿

𝛾
f (x) dx.

Lemma 2. Suppose X be a random variable having the assumption A. Let

E
(
X|X ≥ x

)
= n (x) r (x) ,

where n (x) is a continuous differentiable function with the condition

∫
x

𝛾

u − n′ (u)
n (u) du < ∞ for all x,

𝛾 < x < 𝛿 and r (x) = f (x) / [1 − F (x)] .Then

f (x) = ce
− ∫ x

𝛾
u+n′(u)
n(u)

du
,

where c is determined such that 1c = ∫
𝛿

𝛾
f (x) dx.
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Theorem 1. Suppose that X is an absolutely continuous random variable with cdf F (x) and pdf f (x). We assume 𝛾 = 0, 𝛿 = ∞ and
E (X) < ∞. Then

E
(
X|X ≤ x

)
= m (x) 𝜏 (x) ,

where

m (x) = 1
g (x)G (x)𝛼−1 [1 − 𝛼G (x)a]b−1

𝜇1 (x) ,

𝜇1 (x) = ∫
x

0
ug (u)G (u)𝛼−1 [1 − 𝛼G (x)a]b−1 du

and 𝜏 (x) = f (x) /F (x) .
Proof. It is easy to show that if

f (x) =
𝛼abg (u)G (x)𝛼−1 [1−𝛼G (x)a]b−1

1− (1−𝛼)b ,

then

m (x) = 1
g (x)G (x)𝛼−1 [1−𝛼G (x)a]b−1

𝜇1 (x) .

We prove here the only if condition.

Suppose that

m (x) = 1
g (x)G (x)𝛼−1 [1−𝛼G (x)a]b−1

𝜇1 (x) ,

𝜇1 (x) = ∫
x

0
ug (u)G (u)𝛼−1 [1−𝛼G (u)a]b−1 du.

mm′ (x) = x− m (x)
g (x)G (x)𝛼−1 [1−𝛼G (x)a]b−1

×
(
{[g′(x)G (x)+ (𝛼 − 1)g (x)]2}G (x)𝛼−2 [1−𝛼G (x)a]b−1

− (b− 1) [1−𝛼G (x)a]b−2 𝛼aG (x)𝛼+a−2g (x)2 [1−𝛼G (x)a]b−1
)
.

We have

x−m′ (x)
m (x)

= 1
g (x)G (x)𝛼−1 [1−𝛼G (x)a]b−1

×
(
{[g′(x)G (x)+ (𝛼 − 1)g (x)]2}G (x)𝛼−2 [1−𝛼G (x)a]b−1

− (b− 1) [1−𝛼G (x)a]b−2 𝛼aG (x)𝛼+a−2g (x)2 [1−𝛼G (x)a]b−1
)

Thus by Lemma 1

f ′ (x)
f (x) = 1

g (x)G (x)𝛼−1 [1−𝛼G (x)a]b−1

×
(
{[g′(x)G (x)+ (𝛼 − 1)g (x)]2}G (x)𝛼−2 [1−𝛼G (x)a]b−1

− (b− 1) [1−𝛼G (x)a]b−2 𝛼aG (x)𝛼+a−2g (x)2 [1−𝛼G (x)a]b−1
)
.
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On integrating both sides of the above equation, we obtain

f (x) = cg (x)G (x)𝛼−1 [1−𝛼G (x)a]b−1 .

Using the boundary condition ∫∞
0 f (x) dx = 1, we obtain c = 𝛼ab

1− (1−𝛼)b
. □

Theorem 2. Suppose that X is an absolutely continuous random variable with cdf F (x) and pdf f (x). We assume 𝛾 = 0, 𝛿 = ∞ and
E (X) < ∞. Then

E
(
X|X ≥ x

)
= n (x) r (x) ,

where

n (x) = 1
g (x)G (x)𝛼−1 [1 − 𝛼G (u)a]b−1

𝜇∗1 (x) ,

𝜇∗1 (x) = ∫
∞

x
ug (u)G (u)𝛼−1 [1 − 𝛼G (u)a]b−1 du

and r (x) = f (x) / [1 − F (x)] .
Proof. The if condition is easy to show. We will prove here the only if condition.

If

n (x) = 1
g (x)G (x)𝛼−1 [1−𝛼G (u)a]b−1

𝜇∗
1 (x) ,

□

𝜇∗1 (x) = ∫
∞

x
ug (u)G (u)𝛼−1 [1 − 𝛼G (u)a]b−1 du.

Then

n′ (x) = − x − n (x)
g (x)G (x)𝛼−1 [1 − 𝛼G (x)a]b−1

×
(
{[g′(x)G (x) + (𝛼 − 1)g (x)]2}G (x)𝛼−2 [1 − 𝛼G (x)a]b−1

− (b − 1) [1 − 𝛼G (x)a]b−2 𝛼aG (x)𝛼+a−2g (x)2 [1 − 𝛼G (x)a]b−1
)
.

Thus

−x + n′ (x)
n (x) = 1

g (x)G (x)𝛼−1 [1 − 𝛼G (x)a]b−1

×
(
{[g′(x)G (x) + (𝛼 − 1)g (x)]2}G (x)𝛼−2 [1 − 𝛼G (x)a]b−1

− (b − 1) [1 − 𝛼G (x)a]b−2 𝛼aG (x)𝛼+a−2g (x)2 [1 − 𝛼G (x)a]b−1
)
.

By Lemma 2, we have

f ′ (x)
f (x)

= 1
g (x)G (x)𝛼−1 [1 − 𝛼G (x)a]b−1

×
(
{[g′(x)G (x) + (𝛼 − 1)g (x)]2}G (x)𝛼−2 [1 − 𝛼G (x)a]b−1

− (b − 1) [1 − 𝛼G (x)a]b−2 𝛼aG (x)𝛼+a−2g (x)2 [1 − 𝛼G (x)a]b−1
)
.
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On integrating both sides of the above equation, we obtain

f (x) = cg (x)G (x)𝛼−1 [1 − 𝛼G (x)a]b−1 .

Using the boundary ondition ∫∞
0

f (x) dx = 1, we obtain c = 𝛼ab
1 − (1 − 𝛼)b

.

Remark 1. m (x) and n (x) can be given for the GKW, GKLL and GKGa distributions.

5. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we determine the MLEs of the parameters of the new GK-G family from complete samples only. Let x1, … , xn be a random
sample from the GK-G family with parameters 𝜆, a, b and 𝜑. Let 𝜃 =(a, b, 𝛼, 𝜑⊺) ⊺ be the

(
p × 1

)
parameter vector. Then, the log-likelihood

function for 𝜃, say ℓ = ℓ (𝜃) , is given by

ℓ = n log𝛼 + n log a + n log b − n log s + (a − 1)
n
∑
i=1

logG (xi; 𝜑)

+
n
∑
i=1

log g (xi; 𝜑) + (b − 1)
n
∑
i=1

log [1 − 𝛼G (xi; 𝜑)a] , (12)

where s = 1 − (1 − 𝛼)b.
(12) can be maximized either directly by using the R (optim function), SAS (PROCNLMIXED) or Ox program (sub-routine MaxBFGS) or
by solving the nonlinear likelihood equations obtained by differentiating (12).

The score vector components, sayU (𝜃) = 𝜕ℓ
𝜕𝜃 =

(
𝜕ℓ
𝜕a ,

𝜕ℓ
𝜕b ,

𝜕ℓ
𝜕𝛼 ,

𝜕ℓ
𝜕𝜑k

)⊺
=
(
Ua,Ub,U𝛼,U𝜑k

)⊺, are available with the authors upon request.
Setting the nonlinear system of equations Ua = Ub = U𝛼 = U𝜑k

= 0 and solving them simultaneously yields the MLE ̂𝜃 =
(
â, b̂, �̂�, ̂𝜑⊺

)⊺
of 𝜃 = (a, b, 𝛼, 𝜑⊺)⊺. These equations cannot be solved analytically and statistical software can be used to solve them numerically using
iterative methods such as the Newton-Raphson type algorithms. For interval estimation of the model parameters, we require the observed
information matrix whose elements are available with the corresponding author.

6. SIMULATION STUDY

In this subsection, a simulation study is conducted to examine the performance of the MLEs of the generalized Kumaraswamy normal
(GKN) parameters. We generate 10,000 samples of size, n = 50, 500 and 1,000 of the GKN model. The precision of the MLEs is discussed
by means of the following measures: mean, mean square error (MSE), estimated average length (AL) and coverage probability (CP). The
empirical study was conducted with software R. The empirical results are given in Table 2. The values in Table 1 indicate that the estimates
are quite stable and, more importantly, are close to the true values for the these sample sizes. The simulation study shows that the maximum
likelihood method is appropriate for estimating the GKN parameters. In fact, the means of the parameters tend to be closer to the true
parameter values when n increases. This fact supports that the asymptotic normal distribution provides an adequate approximation to the
finite sample distribution of the MLEs.

Table 2 Simulation results of the GK-N distribution for several values of parameters.

𝛼 a b 𝜇 𝜎 n Mean MSE

𝛼 a b 𝜇 𝜎 𝛼 a b 𝜇 𝜎

0.5 0.5 2 0 1 50 0.3641 0.6933 2.2054 −0.1111 1.0367 0.1296 0.3960 0.2200 0.3944 0.0857
500 0.3991 0.5997 2.0905 −0.0906 1.0334 0.0814 0.1150 0.0610 0.1732 0.0408
1000 0.4669 0.5507 2.0448 −0.0245 1.0224 0.0510 0.0547 0.0286 0.0811 0.0205

0.3 2 0.5 0 1 50 0.0517 2.2070 0.1416 −0.0938 0.9765 1.0513 0.8443 0.4594 0.0919 0.0258
500 0.2085 2.1592 0.3098 −0.0988 0.9879 0.4034 0.3933 0.1505 0.0471 0.0118
1000 0.1871 2.1492 0.3888 −0.0642 0.9919 0.3583 0.3828 0.0755 0.0612 0.0089

0.7 1.5 2.5 0 1 50 0.4229 2.0211 2.8649 −0.2270 1.1292 0.2230 0.8115 0.3188 0.3174 0.1674
500 0.5629 1.8111 2.6869 −0.1810 1.0252 0.0730 0.4305 0.1898 0.1404 0.0165
1000 0.6727 1.5157 2.4998 −0.0182 0.9933 0.0294 0.0253 0.0144 0.0108 0.0084
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7. THE LOG-GENERALIZED KUMARASWAMY-WEIBULL (LGKW) REGRESSION MODEL

The GKW distribution with five parameters, 0 < 𝛼 ≤ 1, a > 0, b > 0, 𝜆 > 0 and 𝛽 > 0, introduced in Section 3.1. Let X is a random
variable following the GKW density function and Y is defined by Y = log (X). The density function of Y obtained by replacing 𝜆 = 1/𝜎 and
𝛽 = exp (𝜇) reduces to

f
(
y
)
=

𝛼ab
𝜍 exp [

( y−𝜇
𝜍

)− exp
( y−𝜇

𝜍
)
]

1 − (1 − 𝛼)b

× {1 − exp [− exp
(y − 𝜇

𝜎
)
]}

a−1
[1 − 𝛼 {1 − exp [− exp

(y − 𝜇
𝜎

)
]}

a
]
b−1

(13)

where y ∈ ℜ, 𝜇 ∈ ℜ, 𝜎 > 0, 0 < 𝛼 ≤ 1, a > 0 and b > 0. We refer to (13) as the LGKW distribution, say Y ∼ LGKW (𝛼, a, b, 𝜎, 𝜇), where
𝜇 ∈ ℜ is the location parameter, 𝜎 > 0 is the scale parameter and 𝛼, a and b are shape parameters.

The corresponding survival function is

s
(
y
)
=
[1−𝛼 {1− exp [−exp

( y−𝜇
𝜍

)
]}a]

b
− (1 − 𝛼)b

1 − (1 − 𝛼)b
(14)

and the hrf is simply h
(
y
)
= f

(
y
)
/S

(
y
)
. The standardized random variable Z = (Y − 𝜇) /𝜎 has density function

f (z) = 𝛼ab exp [z − exp (z)]
1 − (1 − 𝛼)b

{1 − exp [− exp (z)]}a−1 [1 − 𝛼 {1 − exp [− exp (z)]}a]b−1 (15)

Parametric regressionmodels to estimate univariate survival functions for censored data are widely used. A parametric model that provides
a good fit to lifetime data tends to yield more precise estimates of the quantities of interest. Based on the LGKWdensity, we propose a linear
location-scale regression model linking the response variable yi and the explanatory variable vector vTi =

(
vi1, ..., vip

)
given by

yi = vTi 𝛽 + 𝜎zi, i = 1, ... , n (16)

where the random error zi has density function (15), 𝛽 =
(
𝛽1, … , 𝛽p

)T , 𝜎 > 0, 0 < 𝛼 ≤ 1, a > 0 and b > 0 are unknown parameters. The
parameter 𝜇i = vTi 𝛽 is the location of yi. The location parameter vector 𝜇 = (𝜇1, … , 𝜇n)

T is represented by a linear model 𝜇 = V𝛽, where
V = (v1, … , vn)T is a known model matrix.

Consider a sample
(
y1, v1

)
, … ,

(
yn, vn

)
of n independent observations, where each random response is defined by yi =

min {log (xi) , log (ci)}. We assume non-informative censoring such that the observed lifetimes and censoring times are independent. Let F
and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respectively. The log-likelihood function for the vector of
parameters 𝜏 =

(
𝛼, a, b, 𝜎, 𝛽T)T from model (16) has the form l (𝜏) = ∑

i∈F
li (𝜏) + ∑

i∈C
l(c)i (𝜏), where li (𝜏) = log [f

(
yi
)
], l(c)i (𝜏) = log [S

(
yi
)
],

f
(
yi
)
is the density (13) and S

(
yi
)
is the survival function (14) of Yi. Then, the total log-likelihood function for 𝜏 reduces to

ℓ (𝜏) = r log
(
𝛼ab
𝜎

)
− r log [1 − (1 − 𝛼)b] + ∑

i∈F
(zi − ui)+

(a − 1)∑
i∈F

log {1 − exp [−ui]} + (b − 1)∑
i∈F

log [1 − 𝛼 {1 − exp [−ui]}a]

∑
i∈C

log { [
1 − 𝛼 {1 − exp [−ui]}a]

b − (1 − 𝛼)b

1 − (1 − 𝛼)b
} (17)

where ui = exp (zi), zi =
(
yi − vTi 𝛽

)
/𝜎 and r is the number of uncensored observations (failures) and c is the number of the censored

observations. TheMLE ̂𝜏 of the vector of unknown parameters can be evaluated bymaximizing the log-likelihood (17).We use the statistical
software R to determine the estimate ̂𝜏.
Further, we can use the likelihood ratio (LR) statistic for comparing LGKW model with its sub-models. We consider the partition 𝜏 =(
𝜏T1 , 𝜏T2

)T, where 𝜏1 is a subset of parameters of interest and 𝜏2 is a subset of remaining parameters. The LR statistic for testing the null
hypothesis H0 ∶ 𝜏1 = 𝜏(0)1 versus the alternative hypothesis H1 ∶ 𝜏1 ≠ 𝜏(0)1 is given by w = 2 {ℓ ( ̂𝜏) − ℓ ( ̃𝜏)}, where ̃𝜏 and ̂𝜏 are the estimates
under the null and alternative hypotheses, respectively. The statistic w is asymptotically (as n → ∞) distributed as 𝜒2

k , where k is the
dimension of the subset of parameters 𝜏1 of interest.Pdf_Folio:339
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8. APPLICATIONS

8.1. First Application

In this section, we illustrate the fitting performance of GKGa distribution by means of real data sets. We compare the fitting performance
of GKGa distribution with its sub-models. The sub-models of the GKGa distribution are given as follows: (i) Gamma distribution, (ii)
exponentiated Gamma distribution, (iii) extended Gamma distribution (new), (iv) Kumaraswamy-Gamma distribution.

The used data set consists of prices (×104 dollars) of 428 new vehicles for the 2004 year (Kiplinger’s Personal Finance, Dec 2003) (see for
details Oluyede et al. [8]). The required computations are carried out using the R software. Summary statistics of used data set are presented
in Table 3.

The measures of goodness-of-fit including the−log-likelihood function evaluated at the MLEs, Anderson-Darling (A∗) and Cramer-von
Mises (W∗) are calculated to compare the fitted models. In general, the smaller the values of these statistics, the better the fit to the data.

Table 4 gives the parameter estimates and their corresponding errors, theW∗ andA∗ statistics, theminus log-likelihood values and p-values.
Based on Table 4, it is clear that GKGa distribution provides the overall best fit and therefore could be chosen as the most adequate model
among the considered models for modeling the used data set. Here, we also applied LR tests. The LR tests can be used for comparing the
GKGa distribution with its sub-models. For example, the test of H0 ∶ 𝛼 = 1 against H1 ∶ 𝛼 ≠ 1 is equivalent to comparing GKGa and
K-Ga distributions with each other. For this test, the LR statistic can be calculated by the following relation

LR = 2 [ℓ
(
�̂�, â, b̂, ̂𝜆, ̂𝛽

)
− ℓ

(
1, â∗, b̂∗, ̂𝜆∗, ̂𝛽∗

)
] ,

where â∗, b̂∗, ̂𝜆∗ and ̂𝛽∗ are the ML estimators of a, b, 𝜆 and 𝜆, respectively, obtained under H0. Under the regularity conditions and if H0
is assumed to be true, the LR test statistic converges in distribution to a chi square with r degrees of freedom, where r equals the difference
between the number of parameters estimated under H0 and the number of parameters estimated in general, (for H0 ∶ 𝛼 = 1, we have
r = 1). Table 5 gives the LR statistics and the corresponding p-values for the first data set.

Based on Table 5, we reject all the null hypotheses and conclude that the GKGa fits the used data set better than the its sub-models according
to the LR test.

We also plotted the fitted pdfs of the considered models for the sake of visual comparison, in Figure 4. Figure 4(a) represents that the GKGa
fits the right skewed data very well. In addition, we presented the plots of the fitted density, cumulative and survival functions as well as the
probability-probability (P-P) plot for the GKGa model in Figure 4(b). These plots reveal that the GKGa distribution is a suitable model for
the data.

Table 3 Descriptive statistics of turbocharger failure time data set (𝛾1 and 𝛾2 are pearson skewness and kurtosis
coefficients, respectively).

Data set Mean Median SD 𝛾1 𝛾2
Prices (×104 dollars) of 428 new vehicles 3.3 2.7 1.9 2.8 16.7

Table 4 Parameters estimates of proposed model and other competitive models.

Models 𝛼 a b 𝜆 𝛽 A∗ W∗ −ℓ p− value

Ga 1 1 1 4.071 1.242 4.308 0.646 777.719 0.035
− − − 0.267 0.086

Ex-Ga 0.005 1 681.384 4.247 0.848 1.668 0.234 758.5601 0.422
0.011 − 93.441 0.294 0.115

Exp-Ga 1 111.785 1 0.078 0.602 1.175 0.156 754.536 0.550
− 44.434 − 0.030 0.033

K-Ga 1 2.500 0.344 3.426 2.310 1.558 0.215 757.241 0.244
− 0.011 0.017 0.005 0.005

GKGa 0.005 449.042 437.736 0.016 0.404 0.433 0.047 748.677 0.916
0.024 94.829 44.201 0.040 0.063

Table 5 LR tests results for first data set.

Models Hypotheses LR Statistic w pValue

GKGa vs Ga H0 = a = b = 𝛼 = 1 58.084 < 0.0001
GKGa vs Ex-Ga H0 = 𝛼 = 1 19.766 < 0.0001
GKGa vs Exp-Ga H0 = b = 𝛼 = 1 11.718 0.003
GKGa vs K-Ga H0 = 𝛼 = 1 17.128 < 0.0001
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8.2. Second Application

The dataset contains 100 observations on HIV+ subjects belonging to an Health Maintenance Organization(HMO). The HMO wants to
evaluate the survival time of these subjects. In this hypothetical data set, subjects were enrolled from January 1, 1989 until December 31,
1991. Study follow-up then ended on December 31, 1995. This data set are reported in Hosmer and Lemeshow [9] and also can be found in
R package Bolstad2. The variables involved in the study are: yi - observed survival time (in months); censi - censoring indicator (0 = alive at
study end or lost to follow-up, 1 = death due to AIDS or AIDS related factors) and xi1

(
1 = yes, 0 = no

)
represents the history of drug use.

The aim of the study is to relate the survival time (y) with the history of drug use (v). We consider the following regression model

yi = 𝛽0 + 𝛽1vi + 𝜎zi,

where yi has the LGKW density (13), for i = 1, … , 100. Table 6 represents the MLEs of the model parameters of the LGKW and LW
regression models fitted to the current data and the log-likelihood and AIC statistics. These results indicate that the LGKW regression
model has the lowest values of these statistics, and so LGKW model provides better fitting than LW model for current data. For the fitted
regression models, note that 𝛽1 is marginally significant at the 1% level and then there is a significant difference between the drug user and
drug non-user for the survival time.

A comparison of the LGKW regression model with LW regression model using LR statistics is performed. LR test statistic is calculated
as 11.066 and corresponding p-value is 0.011. These results indicate that the LGKW model provides better fit to these data than the LW
regression model.

The plots in Figure 5(a) provide the Kaplan-Meier (KM) estimate and the estimated survival functions of the LGKW regression model.
There is significant difference between drug users and drug non-users survival functions. The plots of the hrf in Figure 5(b) corresponding
to the survival time variable under the LGKW regression model indicate that the hrf is larger for drug non-users than drug users. Based on
these plots, we conclude that the LGKW regression model provides a good fit to these data.

9. CONCLUSION

We propose a new class of continuous distributions named the generalized Kumaraswamy family to extended the some classes of distribu-
tions such as Exp-G by Gupta et al. [7] and K-G by Cordeiro and de Castro [1].We obtain somemathematical properties of proposed family
including quantile function, moments, generating function, entropies, order statistics and probability weighted moments. The maximum

Figure 4 (a) Fitted densities of models and (b) fitted functions of GK-gamma (GKGa) for used data set.

Table 6 MLEs of the parameters (standard errors in parentheses and p-values in [ ⋅ ]) and the log-likelihood and AIC
measures.

Model 𝛼 a b 𝜎 𝛽0 𝛽1 −ℓ AIC

LW 1 1 1 1.070 3.003 −1.051 146.437 298.875
− − − (0.088) (0.166) (0.239)

[< 0.001] [< 0.001]
LGKW 4.07E-09 22.383 25.742 3.675 −2.255 −0.865 140.904 293.808

(0.0001) (4.098) (4.379) (1.917) (4.393) (0.271)
[0.607] [0.001]
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Figure 5 (a) Estimated survival functions and the empirical survival: :Log-generalized Kumaraswamy-Weibull
(LGKW) regressionmodel versus KM. (b) Fitted hrf using the LGKW regressionmodel for the history of drug use.

likelihood method is used to estimate the model parameters and the performance of the maximum likelihood estimators are discussed in
terms of biases, mean squared errors, coverage probability and estimated average length by means of Monte-Carlo simulation study. The
usefulness of the proposed family is discussed by means of two real data applications.
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