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ABSTRACT
To support initiatives for global emissions targets set by the United Nations Framework Convention
on climate change, sustainable extraction of usable power from freely-available global solar radia-
tion as a renewable energy resource requires accurate estimation and forecasting models for solar
energy. Understanding the Global Solar Radiation (GSR) pattern is highly significant for determin-
ing the solar energy in any particular environment. The current study develops a newmathematical
model based on the concept of Functional Data Analysis (FDA) to predict daily-scale GSR in the Burk-
ina Faso region of West Africa. Eight meteorological stations are adopted to examine the proposed
predictive model. The modeling procedure of the regression FDA is performed using two different
internal parameter tuningapproaches includingGeneralizedCross-Validation (GCV) andGeneralized
Bayesian Information Criteria (GBIC). Themodeling procedure is established based on a cross-station
paradigmwherein the climatological variables of six stations are used to predict GSR at two targeted
meteorological stations. The performance of the proposedmethod is compared with the panel data
regression model. Based on various statistical metrics, the applied FDA model attained convincing
absolute error measures and best goodness of fit compared with the observed measured GSR. In
quantitative evaluation, the predictions of GSR at the Ouahigouya and Dori stations attained corre-
lation coefficients of R = 0.84 and 0.90 using the FDA model, respectively. All in all, the FDA model
introduced a reliable alternative modeling strategy for global solar radiation prediction over the
Burkina Faso region with accurate line fit predictions.
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1. Introduction

The growth in electrical energy demand is becoming a
critical issue, especially as regards promoting sufficient
technologies for solar (and other renewable) energy uti-
lization that must support United Nations Sustainable
Development Goal 7. Over the past three decades, the
main genuine channel of energy as being throughbecause
it can maintain and sustain every process and activity
that enhance the lives of animals, plants and other mate-
rials on earth (Yang, 2019). The main source of energy
that meets the environmental challenges related to lim-
ited reserves and fossil fuels is solar (Li, Bu, Long, Zhao,
& Ma, 2012; Ulgen & Hepbasli, 2004). Other forms of
non-renewable energy can generate significant environ-
mental issues. Renewable energy, includes tidal, solar,
wind and geothermal, are favored because they present
reduced environment impact compared to traditional
means like fossil fuels. Hence, solar energy can be a

CONTACT Zaher Mundher Yaseen yaseen@tdtu.edu.vn

sustainable and promising energy source that can min-
imize environmental hazards (De Souza et al., 2016).

Solar radiation from the sun resulting in solar energy
is an electromagnetic radiation with a varied wave-
length from radio waves (10–8μm) to U-rays (10–6μm)
(Adeyefa & Adedokum, 1991). Extra-terrestrial and
terrestrial spectra deviate from each other owing to
different absorptions in the atmosphere (Ugwuoke
& Okeke, 2012). In general, power per unit area covered
by the sun regarding electromagnetic radiation within
the measuring instrument wavelengths. Solar radiation
helps in improving energy efficiency, de-carbonizing
the global economy and ameliorating greenhouse gas
emitter costs (Besharat, Dehghan, & Faghih, 2013). A
coherent understanding and precise evaluation of solar
radiation is needed for several applications, including:
the supply of energy to natural processes and pho-
tovoltaic cell electrons that are in existence such as
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photovoltaic and thermal photosynthesis systems (Yak-
intepe & Genc, 2015); climatology, meteorology, energy
budgets and radiation, water treatment processes, natu-
ral and heating lighting, use of renewable energy, forestry
and agriculture (De Souza et al., 2016); building energy-
conscious designers and air conditioning engineers (Li
et al., 2012; Muneer & Munawwar, 2006).

Solar radiation changes from one geographical area to
another. It depends on:

(i) meteorological variables including the effects of
cloud cover, evaporation, relative humidity, tem-
perature, precipitation, extra-terrestrial solar radi-
ation and sunshine duration;

(ii) geographical variables including the elevation of
the site, longitude and latitude;

(iii) geometrical variables including the orientation
and inclination angles of solar receivers;

(iv) astronomical variables including hour angle, solar
constant, solar declination and earth–sun dis-
tance; and

(v) physical variables including water vapour content,
scattering due to air molecules, scattering due to
dust, earth–sun distance, and other atmospheric
components such as CO2, N2 and O2.

Different methods and measurements have been
employed in the various parts of the world to measure
global solar radiation. These techniques required con-
sistent measurements using meteorological measuring
instruments including satellite remote sensing and Epp-
ley pyranometer instruments such as Meteosat-images
and Moderate-Resolution Imaging Spectroradiometer
(MODIS) products. Because of the maintenance, cost
and skill required in producing satellite-derived data and
groundmeasurements, especially in developing and rural
nations, several prediction models have been postulated
to generate global solar radiation data that do not require
a high initial outlay for the instrumental network (Sun-
day, Agbasi, & Samuel, 2016; Sunday, Samuel, Agbasi,
& Sylvia, 2016).

Any technologically conscious developing country
can get through conventional or renewable sources. This
might be due to the enormous energy usage required by
some developing countries, expertise, cost of installation,
and required maintenance. Thus, combining both non-
renewable and renewable sources will favor power supply
in developing countries; nevertheless, renewable energy
sources should be focused upon owing to their mini-
mal environmental hazard. Most West African countries
lack global solar radiation data. For the past 30 years,
Global Solar Radiation (GSR) has been evaluated based
on the horizontal interface on a monthly and daily basis.

Different kinds of empirical models have been postu-
lated in several West African countries. Owing to this,
several input variables have been used to achieve many
functional forms. The models that have been employed
fall into six groups, depending on the input variables
used. These models were categorized into several sub-
groups, depending on the year postulated. Overall, a total
of 68 functional forms and 356 empirical models have
been postulated in previous studies for evaluating GSR in
West African countries. Soft and empirical models were
compared for evaluating GSR across West Africa, and
the results obtained reflected a better outcome for soft
computer models.

It is not possible to gather solar radiation data in
many regions/locations owing to the absence of solar
power stations. Thus, the solar radiation data for such
locations have to be predicted, and the accuracy of the
predictions depends on the model used (Yagli, Yang,
& Srinivasan, 2019). Several statistical and data-driven
models have been proposed for solar radiation pre-
diction. For example: Olatomiwa, Mekhilef, Shamshir-
band, and Petković (2015b) developed A Neuro-Fuzzy
Inference System (ANFIS) to predict solar radiation;
Aybar-Ruiz et al. (2016) proposed a grouping genetic
and extreme learning machine algorithms to predict
global solar radiation; Kaplani, Kaplani, and Mon-
dal (2018) investigated a spatiotemporal model for pre-
dicting daily global solar radiation; Meenal and Sel-
vakumar (2018) compared the accuracy of several data-
driven methods in predicting solar radiation; Bahrooz,
Mert, and Kisi (2018) compared four different heuris-
tic regression methods for estimating solar radiation;
Khosravi, Koury, Machado, and Pabon (2018) pro-
posed two machine learning algorithms to predict
the hourly solar irradiance; Cornejo-Bueno, Casanova-
Mateo, Sanz-Justo, and Salcedo-Sanz (2019) compared
severalmachine learning regression techniques for global
solar radiation estimation; and Torres-Barran, Alonso,
and Dorronsoro (2019) evaluated the accuracy of ran-
dom forest, gradient boosted and extreme gradient
boosting regression models in solar radiation predic-
tion. Such models model the data observed from a single
time point. Throughout the literature, multiple investi-
gations have been conducted in this regard, for exam-
ple: solar energy prediction using linear and nonlinear
models by the American Meteorological Society (Aggar-
wal & Saini, 2014); operational and ground-based mod-
els developed for solar radiation prediction for multiple
advanced daily-scales throughout Greece (Kosmopou-
los, Kazadzis, Lagouvardos, Kotroni, & Bais, 2015); the
feasibility of a support vector regression model exam-
ined for solar irradiance prediction throughout coastal
Taiwan (Kosmopoulos et al., 2015); the prediction of
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monthly-scale global solar radiation conducted based on
a statistical distribution modeling strategy using a clear-
ness index for Nigeria (Ayodele & Ogunjuyigbe, 2015);
and hourly-scale solar irradiance prediction established
using the potential of the Long Short-Term Memory
(LSTM) model for Santiago Island, Cape Verde (Qing
& Niu, 2018). The literature has demonstrated notice-
able progress in solar radiation pattern prediction using
diverse advanced methodologies.

Among the procedures for the generation of global
solar data, the ideal method is the use of a proper radio-
metric instrument that will directly measure the solar
data at a given solar farm. However, the cost demand and
expertise required for on-site global solar radiation mea-
surement have limited the availability of radiometric data
in most African and Asian countries (Zou et al., 2019).
Another problem is the hosting of solar radiation sta-
tions in urban areas while effectively neglecting rural
areas, where the energy crisis is more predominant. In
Burkina Faso, most stations owned by the government
do not have the capacity to measure solar radiation data
routinely (Azoumah, Ramde, Tabsoba, & Thiam, 2010),
while monthly or daily radiometric data are missing in
areas with readily available data due to poor calibra-
tion of equipment. Solar radiation can also be gener-
ated using a meteorological reanalysis technique called
Meteoblue (David & Lauret, 2018). This involves the use
of physical models to simulate meteorological parame-
ters physically (5 km× 5 km). This simulation relies on
Non-hydrostatic Meso-scale Modeling (NMM) technol-
ogy, which depends on parameters such as topography,
soil and coverage. One major problem of this approach
is that the generated values are simulated rather than
real. However, its major advantage is the incorporation
of physical processes that influence ground-based solar
radiation.Given thatmathematical equationswith prede-
termined initial andmodel boundary conditions are used
during the simulation, the data observed physically at a
station may differ significantly from the predicted data
(Fabbri, Canuti, & Ugolini, 2017).

Most investigations on solar radiation prediction have
generally been done using empirical datasets collected
from a single time point. However, datasets that are
repeatedly measured over discrete time points may pro-
vide more information. Also, recent technological devel-
opments lead to data collection processes having high-
dimensional and complex structures. Traditional sta-
tistical/mathematical techniques may not be applicable
for such data types because of some difficulties such
as multicollinearity, high dimensionality, high corre-
lation between sequential observations, etc. Analyzing
such datasets using Functional Data Analysis (FDA)
techniques may be more useful since FDA has several

important advantages over traditional statistical tech-
niques. For example, FDA does not suffer from the
missing data problem and the high correlation problem
between repeated measurements; by smoothing the data,
it minimizes the noise present in the data; and it can be
used for irregularly sampled data. Thus, the need for FDA
techniques is gradually increasing.

Functional regression models are used among oth-
ers to explore the relationship between the func-
tional response and predictor variables, and these mod-
els have received substantial attention in the litera-
ture. Also, they have successfully been used in many
areas; see for example Valderrama, Ocana, Aguilera,
and Ocana-Peinado (2010), Ivanescu, Staicu, Scheipl,
and Greven (2015) and Chiou, Yang, and Chen (2016).
See also Ferraty and Vieu (2006), Horvath and Kokoszka
(2012) and Cuevas (2014) for more information about
functional regression models and their applications. In
this paper, we propose a functional regression model to
predict global solar radiation data using meteorological
variables so as to improve prediction accuracy. In sum-
mary, the proposed model works as follows: first, Gaus-
sian basis function expansion and two information crite-
ria – Generalized Cross-Validation (GCV) and General-
ized Bayesian Information Criteria (GBIC) – are used to
convert discretely observed data into a functional form.
Second, the penalized log-likelihood method is used to
estimate the discretized version of the model parameter
matrix. Finally, the coefficient function of the functional
regression model is obtained by applying a smoothing
step. To the best of our knowledge, this work is the first
study to predict global solar radiation data using a func-
tional regressionmodel. For future work, the FDA proce-
dure proposed in this study can be extended to other real-
life problems as an alternative to the methods proposed
by Chau andMuttil (2007), Ghorbani, Kazempour, Chau,
Shamshirband, and Ghazvinei (2017), Yaseen, Sulaiman,
Deo, and Chau (2018) and Moazenzadeh, Mohammadi,
Shamshirband, and Chau (2018).

The rest of the paper is organized as follows. Section 2
presents the details of the proposedmethod and the panel
data regression model. The performance of the proposed
method is evaluated with real-world data and the results
are given in Sections 3 and 4. Section 5 concludes the
paper.

2. Methodology

2.1. Functional regressionmodel

Let {t}Jj=1 ∈ T represent the discrete time points at which
the data is observed. Forn = 1, . . . ,N andm = 1, . . . ,M,
let
(
xnm(s), yn(t); s ∈ Tm, t ∈ T

)
denote them functional
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predictors and a functional response with ranges Tm ⊂
R and T ⊂ R, respectively. The functional relationship
between the predictors and response can be modeled
by the following functional regression model (Matsui,
Kawano, & Konishi, 2009; Ramsay & Silverman, 2005):

yn(t) = β0(t)+
M∑

m=1

∫
Tm

xnm(s)βm(s, t) ds + εn(t), (1)

where β0(t), βm(s, t) and εn(t) represent the inter-
cept function, bivariate coefficient functions and error
functions, respectively. For the sake of clarity, the
role of function β0(t) can be eliminated by centering
the functional predictors and response. Let x∗

nm(s) =
xnm(s)− x̄m(s) and y∗

n(t) = yn(t)− ȳ(t), where x̄m(s) =
N−1∑N

n=1 xnm(s) and ȳ(t) = N−1∑N
n=1 yn(t), denote

the centered functional predictors and response, respec-
tively. Then the functional regression model (1) can be
written as follows:

y∗
n(t) =

M∑
m=1

∫
Tm

x∗
nm(s)βm(s, t) ds + ε∗n(t), (2)

where ε∗n(t) = εn(t)− ε̄(t) is the centered error func-
tions. Hereafter it is assumed that both functional
response and predictors are centered.

The first step in FDA is to smooth the functional
data using a suitable basis function system. Let �k(t) =
{φ1(t), . . . ,φK(t)} denote a system of k, k = 1, . . . ,K,
basis functions; then a function, say y(t), can be defined
as y(t) = ∑K

k=1 ckφk(t) where ck is the coefficient vector
of the kth basis function φk(y). Accordingly, the smooth
functions of the (centered) functional predictors xnm(s)
and functional response yn(t) are defined as follows:

y∗
n(t) =

Ky∑
k=1

cnkφk(t) = c′n�(t) ∀t ∈ T ,

x∗
nm(s) =

Km,x∑
j=1

dnmjψmj(s) = d′
nm�(s) ∀s ∈ Tm, (3)

where �(t) = {φ1(t), . . . ,φKy(t)}′ and �(s) =
{ψm1(s), . . . ,ψmKm,x(s)} are vectors of basis functions
and cn = {cn1, . . . , cnKy}′ anddnm = {dnm1, . . . , dnmKm,x}′
are the corresponding vectors of coefficients. Choosing
the right basis functions is one of themost crucial steps in
FDA. Several types of basis function, such as the Fourier
basis, the B-splines basis and the radial basis, have been
proposed to smooth functional data; please see Ram-
say and Silverman (2005) for more details. We consider
the following Gaussian basis functions in our numerical

analyses (see Matsui et al., 2009):

φk(t) = exp

{
−
(
t − τk+2

)2
2σ 2

}
, (4)

ψmj(s) = exp

⎧⎪⎨
⎪⎩−

(
s − τ

(m)
j+2

)2
2σ 2

m

⎫⎪⎬
⎪⎭ , (5)

where the equally spaced knots τk and τ (m)j determine
the centers of the basis functions, andσ = (

τk+2 − τk
)
/2

and σm =
(
τ
(m)
j+2 − τ

(m)
j

)
/2 are the widths. Another

important task in smoothing functional data is to choose
the optimum number of basis functions K. Generally, (i)
the data is well fitted by the functions whenK is large, but
the noise present in the data may not be eliminated; on
the other hand (ii) some key features of the smooth func-
tion could be ignored when K is too small. To select the
optimal K, we consider the generalized cross validation
and generalized Bayesian information criteria proposed
by Matsui et al. (2009).

Using the basis function, the bivariate coefficient func-
tions βm(s, t) in (1) can be written as follows:

βm(s, t) =
∑
j,k

ψmj(s)bmjkφk(t) = � ′
m(s)Bm�(t), (6)

where Bm = (bmjk)j,k is a coefficient matrix with dimen-
sion Km,x × Ky. From (2), (3) and (6), the functional
regression model given in (1) can be written as follows:

c′n�(t) =
M∑

m=1
d′
nmϒψmBm�(t)+ ε∗n(t),

= g′
nB�(t)+ ε∗n(t), (7)

whereϒψm = ∫
Tm ψm(s)ψ ′

m(s) ds is amatrixwith dimen-
sion Km,x × Km,x, gn = (

d′
n1ϒψ1 , . . . , d′

nMϒψM

)′ is a
vector with length

∑M
m=1 Km,x and B = (B1, . . . ,BM)

′ is
the coefficient matrix with dimension

∑M
m=1 Km,x × Ky.

Accordingly, the functional linear model for the whole
system can be expressed as follows:

C�(t) = GB�(t)+ εεε∗(t). (8)

Several techniques, including the least squares, max-
imum likelihood and penalized maximum likelihood
methods, have been proposed to estimate the coeffi-
cient matrix B, see for example Ramsay and Silver-
man (2005), Yao, Muller, and Wang (2005), Konishi
and Kitagawa (2008) and Matsui et al. (2009). The least
squares and/or maximum likelihood methods provide
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unstable/unfavorable estimates for the model parameters
(Matsui et al., 2009), and thus the penalized maximum
likelihood method proposed by Matsui et al. (2009),
which controls the degree of smoothness of the functions
and provides more flexible results, has been considered
to estimate the functional parameters of the regression
model (8).

Suppose that the error function εεε∗n(t) has the form
εεε∗
n(t) = e′n�(t), where the Ky-dimensional error vectors
en = (en1, . . . , enK)′ are assumed to be independent and
identically distributed Gaussian random variables with
mean 0 and variance–covariance matrix �. Define the
functional regression model (7) by

c′n�(t) = g′
nB�(t)+ e′n�(t). (9)

Multiplying both sides of (9) by �′(t) and integrating
with respect to T yields

c′nϒφ = g′
nBϒφ + e′nϒφ ,

cn = B′gn + en.
(10)

Let f (yn|xn; θ) with parameter vector θθθ = (B,�) denote
the probability density function of the model (10). Then
the penalized log-likelihood function for θ is obtained as
follows:

	λ(θ) =
∑
n

log f (yn|xn; θ)− N
2
tr
{
B′ (�M � �)B

}
,

(11)
where �M = λλλMλλλ

′
M with λλλM = (

√
λ11′

K1,x
, . . . ,√

λM1′
KM,x

) being a (
∑M

m=1 Km,x)× (
∑M

m=1 Km,x)

-dimensional matrix of penalty parameters, � and tr{·}
are, respectively, the Hadamart product and the trace
of a matrix, and � is a positive semi-definite matrix.
Equating the derivatives of the penalized log-likelihood
function given in (11) with respect to θ = (B,�) to 0
gives the penalized maximum likelihood estimators of θ ,
θ̂ =

(
B̂, �̂

)
, as follows:

vec(B̂) =
(
�̂

−1 ⊗ G′G + NIKy ⊗ (�M � �)
)−1

(
�̂

−1 ⊗ G′
)
vec(C),

�̂ = 1
N

(
C − GB̂

)′ (
C − GB̂

)
.

(12)

Finally, the penalized maximum likelihood estimator of
C is obtained as

vec
(
Ĉ
)

= vec
(
GB̂
)

=
(
IKy ⊗ G

)
×
(
�̂

−1 ⊗ G′G + NIKy ⊗ (�M � �)
)−1

×
(
�̂

−1 ⊗ G′
]
vec(C). (13)

In practice, the performance of the penalized maxi-
mum likelihood method vigorously depends on a suit-
able choice of the parameter λ values, since the esti-
mated model parameters θ̂ and Ĉ depend on the penalty
matrix �M . Several information criteria have been pro-
posed to select proper penalty terms, λm, that minimize
the corresponding objective function. Two different tun-
ing parameter techniques including GCV and GBIC are
implemented to obtain the suitable prediction process, as
follows:

GCV =
tr
{(

C − GB̂
)′ (

C − GB̂
)}

NKy
(
1 − tr (Sλ) /

(
NKy

))2 , (14)

GBIC = −2
N∑

n=1
log f (yn|xn; θ̂ )+ Ntr

{
B̂′ (�M � �) B̂

}

+ (r + Kq) logN − (r + Kq) log(2π)

− K log |�M � �|+ + log |Rλ(θ̂)|, (15)

Figure 1. Flowchart of the proposed method.
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Figure 2. Study area; locations of stations.

where q = p − rank(�), p = ∑
m Km,x and r = Ky(Ky +

1)/2, please see Matsui et al. (2009) for the derivation
of GCV and GBIC. To select the best prediction model,
these two criteria work as follows: (1) the functional
regressionmodel is constructed based on the data, which
are approximated by basis function expansion using sev-
eral combinations of smoothing parameter and number
of basis functions; then (2) both theGCVandGBIC select
the best model according to a smoothing parameter –
the number of basis function combinations that produces
minimum GCV and GBIC values.

For the sake of clarity, a flowchart is presented in
Figure 1 to show how the proposed method works to
obtain the experimental results in this paper.

2.2. Panel data regressionmodel

In this study, the finite sample performance of the pro-
posed modeling strategy is compared with the linear
panel data regression model with fixed effects. Let i =
1, . . . ,N denote the individuals observed at time points
t = 1, . . . ,T. Let also yit and xit denote the response and
K-dimensional predictor variables. The linear panel data
regression model is then defined as follows:

yit = αi + β ′xit + uit , (16)

where αi, β and uit represent the individual effects,
coefficient vector, and the error terms, respectively. The
coefficient vector β is estimated using the Ordinary Least
Squares (OLS) method. Briefly, let ȳi, x̄i and ūi denote the
averages of yit , xit anduit for each individual i = 1, . . . ,N.
Then, the OLS estimate of β is obtained as follows:

β̂ =
( N∑

i=1

T∑
t=1

x̃′
it x̃it

)−1 ( N∑
i=1

T∑
t=1

x̃′
it ỹit

)
, (17)

where x̃it = xit − x̄i and ỹit = yit − ȳi. Readers are
referred to Baltagi (2005) for more information about the
linear panel data regression model.

3. Case study

The solar radiation prediction model was developed for
the Burkina Faso region, located in Sub-Saharan Africa
(Figure 2). About 70% of the total power generation
capacity in Burkina Faso is sourced from thermal-fossil
fuel, while hydro-power accounts for the remaining 30%
(REN21 2015, 2017). Owing to the incremental cost of
production, the instability of the oil price, as well as
the ever-increasing demand for electricity, the country
recently installed 28 fossil-fuel powered stations with a
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Figure 3. Time series plots of averaged datasets.

generating capacity of 247MW. The net energy import
of the country from its neighboring countries currently
stands at about 20%. However, fuel-wood, charcoal, agri-
cultural residues and animal dung are used as major
sources of energy in remote villages.

In the present study, the proposed mathemati-
cal model was developed for the prediction of daily
global solar radiation using eight meteorological sta-
tions distributed all over the Burkina Faso region,
namely Bur Dedougou, Bobo Doulasso, Fada N’gourma,
Ouahigouya, Bormo, Dori, Gaoua and Po. The daily-
scale climatological data, obtained from 1 January 1998
to 31 December 2012, consist of six variables: wind

power, temperature, log humidity, the difference between
the saturation and the actual vapour pressure (Es−Ea),
evaporation (Eo) and solar radiation. The datasets were
averaged over the data points obtained from the whole
time span to construct a functional regression model.
The mean value of the climate variables in time series
for each involved meteorological station are plotted in
Figure 3.

4. Application and results

The current study has reported the feasibility of a newly
developedmathematicalmodel called the FDA technique
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Figure 4. Functional datasets for Fada N’gourma city obtained using GBIC. Gray points represent the raw data and the solid (black) lines
are the functions.

to predict daily-scale global solar radiation in the Burkina
Faso region ofWest Africa. The global solar radiationwas
simulated based on various related climatological vari-
ables using a consistent timescale. At first, the datasets of
all the climate variables were converted into functional
form using penalized Gaussian basis function expansion
taking into account the number of basis functions K and
the penalty parameter λ estimated by GBIC and GCV.
The modeling was conducted based on the distinguished
modeling strategy cross-station paradigm simulation. Six
meteorological stations were selected randomly to pre-
dict the solar radiation at two targeted meteorological
stations (i.e. Ouahigouya and Dori). The main merit of
this modeling archetype is the possibility of using the
nearby maintained meteorological stations information
as predictors for any particular station. This is highly
significant and essential in the case where there is no
consistency of monitoring measurements, lack of climate
information over certain historical periods, and other
reasons that might be experienced in such developing

countries. For validation purposes, the predictability per-
formance of the FDA technique was compared with
one of the well-known regression models called panel
regression.

To demonstrate the functionality of GCV and GBIC
over the inspected meteorological dataset, the functions
of the variables for the Fada N’gourma station (selected
as an example) are illustrated using the K̂ and λ̂ val-
ues of GCV and GBIC (see Figures 4 and 5, respec-
tively). Table 1 reports the tuning parameters of K̂ and
λ̂ values in the form of a quantitative presentation. It is
obvious, based on the tabulated values, that GCV per-
forms the regression function with higher magnitudes of
basis functions over those of GBIC to convert the raw
data to functional form. Both functions provide a clear
picture of the raw data as demonstrated in Figures 4
and 5.

The functional regression model was constructed
using the variables of six randomly selected stations,
i.e. Bobo Dioulasso, Boromo, Bur Dedougou, Fada
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Figure 5. Functional datasets for the Fada N’gourma city obtained using GCV. Gray points represent the raw data and the solid (black)
lines are the functions.

Table 1. Estimated number of basis functions and penalty parameters.

Variable

Method Parameter Wind Temperature Humidity Es−Ea Eo Solar radiation

GBIC K̂ 42 42 42 42 42 42
λ̂ 0.7692 −1.7948 0.2564 −0.7692 −0.2564 −1.2820

GCV K̂ 70 68 70 68 62 62
λ̂ 0.7692 −2.8205 −1.2820 −1.7948 0.2564 −0.7692

N’gourma, Gaoua and Po, as follows:

y∗
n(t) =

∫
T
x∗
n1(s)β1(s, t)+

∫
T
x∗
n2(s)β2(s, t)

+
∫
T
x∗
n3(s)β3(s, t),

+
∫
T
x∗
n4(s)β4(s, t)+

∫
T
x∗
n5(s)β5(s, t)+ ε∗n(t),

(18)

where y∗
n, x∗

n1, x
∗
n2, x

∗
n3, x

∗
n4 and x∗

n5 are the centered
functional variables for solar radiation, wind, temper-
ature, log humidity, Es−Ea and Eo, respectively, and
T = {0.5, 1.5, 2.5, . . . , 364.5}. The parameter matrix B

was estimated using the penalized maximum likelihood
method, and GBIC and GCV were used to select the best
model.

Scatter plots of the observed average global solar radi-
ation versus the fitted smooth function values are dis-
played in Figures 6 and 7. These scatter plots show that
the observed solar radiation values were well fitted by
the smooth functions obtained from the proposedmodel.
On the other hand, Figure 8 presents the modeling per-
formance of the panel regression model for the same
modeled six stations. Based on the attained modeling
performance of the six randomly selected meteorolog-
ical stations, the model was platformed to predict the
GSR at the two targeted stations (i.e. Ouahigouya and
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Figure 6. Scatter plots of the observed (average) and fitted (function) solar radiation values obtained from themodel evaluated by GBIC.

Figure 7. Scatter plots of the observed (average) and fitted (function) solar radiation values obtained from themodel evaluated by GCV.
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Figure 8. Scatter plots of the observed and fitted solar radiation values obtained from the panel data model.

Dori). The prediction results for the Ouahigouya and
Dori stations for both the tuning parameter selection cri-
terion and the panel model are presented in Figures 9
and 10. The figures show that the smoothed functions
of the solar radiation data are well approximated by the
predicted functions using the functional regressionmod-
els in comparison with the panel regression model. The
scatter plots of the observed and predicted solar radiation
values are plotted in Figures 11 and 12.

Following several research works in the literature,
the current research modeling was validated statisti-
cally using various performance metrics including root
mean squared errors (RMSE), the determination coef-
ficient (R2) and the correlation coefficient (R) using
the observed (average) solar radiation and fitted and/or
predicted solar radiation functions. The mathematical
formulation can be expressed as follows (Rodrigues
& Henggeler Antunes, 2018; Yadav, Malik, & Chan-
del, 2015):

RMSE = J−1
J∑

j=1
(yj − ŷ(tj))2, (19)

R2 =
∑J

j=1[(yj − ȳ)(ŷ(tj)− ¯̂y(t))]2∑J
j=1(yj − ȳ)2

∑J
j=1(ŷ(tj)− ¯̂y(t))2 , (20)

R =
∑J

j=1(yj − ȳ)(ŷ(tj)− ¯̂y(t))√∑J
j=1(yj − ȳ)2

√∑J
j=1(ŷ(tj)− ¯̂y(t))2

. (21)

Values of all the performance metrics examined (i.e.
RMSE, R2 and R) are reported in Table 2. Note that the
values given in columns three to eight belong to the sta-
tions used in the training modeling phase, whereas the
values in the last two columns belong to the stations for
which the performance metrics were predicted. These
values indicate that the fitted/predicted functions evalu-
ated byGCVprovide slightly better approximations com-
pared to those obtained by GBIC. However, the GCV and
GBIC functions reveal a much better predictive capacity
in comparison with the panel regression model.

The current research results are validated against
established research in the literature and within the
African region. Olatomiwa et al. (2015b) established an
ANFIS method to predict monthly solar radiation at
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Figure 9. Results for the Ouahigouya andDori stations. Gray points are the observed discrete solar radiation data points, black solid lines
are the smoothed raw data, blue solid lines are the predicted functions obtained using the functional regression model, and the brown
dashed lines are the approximate 95% confidence intervals of the predicted functions.

Figure 10. Results for the Ouahigouya and Dori stations. Gray points are the observed discrete solar radiation data points and blue solid
lines are the predicted observations obtained using the panel data model.
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Figure 11. Scatter plots of the observed (average) and predicted (function) solar radiation values.

Figure 12. Scatter plots of the observed and predicted solar radiation values obtained by the panel data model.
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Table 2. Calculated performance metrics (RMSE, R2 and R) at the various test stations.

Station

Performance Bobo Bur Fada
Method metric Doulasso Bormo Dedougou N’gourma Gaoua Po Ouahigouya Dori

GBIC RMSE 0.8080 0.8761 0.8704 0.8827 0.8163 0.8778 1.1640 0.9460
R2 0.7910 0.7527 0.7799 0.7831 0.8587 0.7644 0.7065 0.8212
R 0.8893 0.8675 0.8831 0.8849 0.9267 0.8743 0.8405 0.9062

GCV RMSE 0.8044 0.8725 0.8674 0.8790 0.8129 0.8745 1.1008 0.9733
R2 0.7929 0.7547 0.7814 0.7849 0.8599 0.7644 0.7214 0.8028
R 0.8904 0.8687 0.8840 0.8859 0.9273 0.8753 0.8494 0.8960

Panel regression RMSE 1.0094 0.8989 0.8302 1.0398 0.8338 2.2758 1.4288 5.4919
R2 0.7552 0.7145 0.7886 0.8805 0.8992 0.5803 0.8268 0.0573
R 0.8690 0.8452 0.8880 0.9383 0.9483 0.7618 0.9093 0.2395

Table 3. The statistical performance of the established research
conducted by Olatomiwa et al. (2015a).

Station Model Performance indicator

Iseyin SVM-FFA RMSE = 0.493 and R2 = 0.795
ANN RMSE = 0.550 and R2 = 0.745
GP RMSE = 0.520 and R2 = 0.767

Maiduguri SVM-FFA RMSE = 2.493 and R2 = 0.209
ANN RMSE = 2.608 and R2 = 0.133
GP RMSE = 2.549 and R2 = 0.163

Maiduguri SVM-FFA RMSE = 2.611 and R2 = 0.585
ANN RMSE = 2.979 and R2 = 0.518
GP RMSE = 2.790 and R2 = 0.623

Iseyin, Nigeria. The best prediction attained using the
developed ANFIS model achieved RMSE = 1.758 and
R2 = 0.6567. Recently, newly developed hybrid machine
learning based on the integration of the Support Vec-
tor Machine (SVM) and the bio-inspired FireFly opti-
mization Algorithm (FFA) and two stand-alone machine
learningmodels – i.e. Artificial Neural Networks (ANNs)
and Genetic Programming (GP) – to predict monthly
mean solar radiation at three meteorological stations (i.e.
Iseyin, Maiduguri and Jos) across the Nigeria region

Figure 13. Estimates of coefficient functions βi(s, t), for i = 1, . . . , 5, of the functional regression model given by Equation (18). Note
that the coefficient functions were estimated based on GBIC.
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Figure 14. Estimates of coefficient functions βi(s, t), for i = 1, . . . , 5, of the functional regression model given by Equation (18). Note
that the coefficient functions were estimated based on GCV.

(Olatomiwa et al., 2015a). Another study was devel-
oped using the empirical formulation for diffuse solar
radiation prediction by Khorasanizadeh and Moham-
madi (2015). The results demonstrate six different empir-
ical formulations with prediction accuracy achievement
in the range RMSE = 0.9548–1.1698. Based on the sta-
tistical metrics performance of the prediction reported in
Table 3, in comparison with the current research results,
the performance metrics demonstrate superior predic-
tion performance at the Ouahigouya and Dori stations.

The estimated coefficient functions of the functional
linear model presented in Figures 13 (GBIC) and 14
(GCV). These figures show the effects of the meteoro-
logical variables on the predicted solar radiation. For
example, panel (c) of Figure 13 indicates that, while the
humidity has little effect on the predicted solar radiation
during the early months of the year, it has a large effect in
the last months of the year. Although the attained pre-
dictability performance of the functional data analysis
technique on global solar radiation prediction is good,
there is still room for modeling enhancement via the
incorporation of the physical-based model established

using Meteoblue (Fabbri et al. (2017)). Indeed, formu-
lating such an integrative model based on functional
data analysis and the mathematical formulation of the
Meteoblue method could possibly enhance the predic-
tion capacity performance further.

5. Conclusions

The development of a scientific, robust and reliable mod-
eling strategy to predict global solar radiation in partic-
ular climatic regions could help climate change mitiga-
tion advocates and numerous energy decision-makers.
This is to embrace renewable energy as a dynamic solu-
tion to mitigate the risk of the global warming and cli-
mate change phenomena. Converting global solar radi-
ation into power grids entails an economical and intel-
ligent model authenticated by the reliability of simula-
tion. Hence, the exploration of newly friendly and robust
mathematical models for comprehending the correlated
available climate variables empowers research interest
and innovation for the new era of energy engineer-
ing. The current study was devoted to exploring the
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feasibility of a new mathematical model based on the
functional data analysis modeling technique to simulate
daily timescale global solar radiation in the Burkina Faso
region of West Africa. Two different statistical modeling
procedures were established (i.e. GCV and GBIC) for the
prediction learning process. Fifteen years of daily-scale
climate variables, including wind power, temperature,
log humidity, the difference between the saturation and
the actual vapour pressure (Es−Ea), evaporation (Eo)
and solar radiation, were used to implement the predic-
tion process. The findings of the current research are
presented as follows.

• The conducted FDA modeling technique exhibited a
reliable predictive model for GSR with a high and
acceptable degree of accuracy based on the reported
statistical metrics.

• Based on authentication against well-known machine
learning predictive models conducted in the litera-
ture and within the same region, FDA proved to have
greater prediction capacity based on RMSE and R2.

• The predictability of the established modeling strat-
egy was totally location dependent where the variance
results can be observed. Hence, the idea of initiating
a cross-station paradigm was an excellent proposi-
tion with which to gather more informative climate
information from the nearby meteorological stations
in order to enhance the learning procedure.

• Both of the applied learning procedures (i.e. GCV
and GBIC) demonstrated an efficient computational
methodology for solar radiation simulation based
on various climate input variables. The merit of the
results supports the possibility of embedding the
model as a generalized predictive tool for the simu-
lation of other meteorological stations.

• The investigated FDA predictive model provided a
reasonable solar radiation prediction that is totally
relying on the selected climate input attributes. Also,
the appropriate internal parameters tuning that veri-
fied based on GCV and GBIC approaches were con-
trolling the reliability of the modeling procedure.

Future investigations could be performed on the
uncertainty analysis of data, model structure and input
variability.
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