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Abstract. In this study, the stress state of a polygonal plate having a central circular hole with two linear
cracks was considered. External forces were applied to the contours of polygonal plate and internal forces were
applied to the contours of the circular hole. Conformal mapping function, initially developed by Kuliyev, was
used to the make stress analysis of the polygonal plate in physical non-linear statement. As a result, stress
concentrations were determined by using conformal mapping function at the end points of cracks. Critical loads
where fracture began were defined for different loads. Analytical results of solutions were compared and found
to be in agreement with the numerical results in the literature.

1 Introduction

In recent years, solution of physical non-linear problems in
the fields of physics and engineering that cannot be solved
through linearization of assumptions and principal equations
(such as stress-strain relationship), has necessitated making
improvements in classical elasticity theory, which in turn has
led to the development of non-linear elasticity theory.

All assumptions and resulting errors mentioned in elastic-
ity theory up to date have shown that, there is insufficient in-
formation on the new variants of non-linear elasticity theory.
In classic elasticity theory, linearization is mainly assumed
to be in two directions. The first one is the geometry of a de-
formable body and the other is physical properties of material
(relationship of stress-strain, i.e. the Hooke’s law).

Since classical elasticity theory cannot be applied for non-
linear materials, Muskhelishvili (1962) developed a method
to solve the stress states of non-linear materials, in which
complex variable functions are used to make stress analysis.

Stress concentration around a hole in an infinite plate sub-
jected to a uniform load was investigated by Batista (2011)
using Muskhelishvili’s (1962) conformal mapping complex
variable method. Pan et al. (2013) performed the stress anal-
ysis of a finite plate having a rectangular hole subjected to

uniaxial tension using a modified form of Muskhelishvili’s
(1962) conformal mapping function. Sharma (2012) exam-
ined the stress distribution around polygonal holes in an in-
finite plate subjected to arbitrary biaxial in-plane loadings at
infinity also by using Muskhelishvili’s (1962) complex vari-
able method. In his study, plane stress finite models were pre-
pared in ANSYS and the results were compared with those of
the complex variable method (Sharma, 2012). Sharma (2015)
obtained a general solution in hypocycloidal hole with cusps
in infinite anisotropic plate in order to calculate the stress
intensity factors by using Muskhelishvili’s (1962) complex
variable method. Kuliyev (2003), on the other hand, investi-
gated the stress-strain state of a polygonal plate weakened by
a central elliptic hole with two linear cracks by using mod-
ified conformal mapping function. Kuliyev (2010) also ob-
tained the solution for critical angular velocity in polygonal
plate weakened by elliptic holes using a modified version of
conformal mapping function.

In this paper, stress components of a polygonal plate hav-
ing central circular hole with two linear cracks were ob-
tained. Conformal mapping function which was developed
by the author (Kuliyev, 1991, 2017) was used to determine
the stress intensity factors for complex geometries. In this
work, a complex geometry with additional two linear cracks
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is solved for the first time using Kuliyev’s mapping function,
and the results were compared with the literature findings
which proved to be in good agreement.

2 Problem statement and solution methods

Physical law of deformability, i.e., relationship of stress-
strain components is explained in two ways:

1. General functional relationship of stress and strain (be-
tween two different power symmetric tensor compo-
nents) (Kauderer, 1961).

2. Inclusion of deformation energy function into elasticity
potential (Globenko, 1974).

As mentioned above, determination of real physical relation-
ships between stress-strain components and solution of some
complex problems in engineering constitute the essence of
non-linear elasticity theory.

As reported in the literature (Kuliyev, 1991, 2001; Amen-
zade, 1976; Berezhnitskii et al., 1919; Sherman, 1947, 1951)
Airy Stress Function F (n) is determined by two analytic func-
tions, namely ϕ(z) and ψ(z) in linear elasticity theory (plane
problems)

F (0)
= Re

[
z ·ϕ(z)+

∫
ψ(z)dz

]
(1)

where, Re shows the real part of the expression in bracket.
The functions of elasticity theory named as ϕ(z) and ψ(z)

in finite or infinite form of bodies (plate, cylinder, prism and
etc.) and connected domains are taken as follows (Kuliyev,
1991, 2001; Amenzade, 1976; Berezhnitskii et al., 1919;
Sherman, 1947, 1951).

2.1 For finite doubly – connected domains

The regular functions ϕ(z) and ψ(z) are as follows (Kuliyev,
1991, 2001; Amenzade, 1976; Sherman, 1947, 1951).

ϕ(z)=
∞∑
k=1

αk · ξ
−k
1 +

∞∑
k=0

Ak

( z
A

)k
ψ(z)=

∞∑
k=1

βk · ξ
−k
1 +

∞∑
k=0

Bk

( z
A

)k
(2)

where ξ1 is the function of ξ = χ (z), inverse function (z=
ω(ξ1)) of which conforms L1 inner contour around the unit
circle in Fig. 1 (Kuliyev, 1991, 2001).

The coefficients Ak and Bk of analytic functions are as
follows:

Ak =

∞∑
n=k

∗a(k)
n · a

(n)
n−k
q

Bk =

∞∑
n=k

∗bn · a
(n)
n−k
q

(3)

Figure 1. A hexagonal cross-section under interior and exterior
pressure.

The coefficient a(k)
n in Eq. (3) is found for total contour and

given in table form in (Kuliyev, 2017). The symbol ∗ indi-
cates the indices in series Eq. (3) with increment q. We as-
sume that contours L1 and L2 are concentric in doubly con-
nected domains.

Here, F (0) is the Airy stress function in zero approxi-
mation. The function F (0) is given by the known formula
(the plate is under the influence of internal p1 and external
pressure p2 equi-distributed hydrostatic pressure in Fig. 1)
for polygonal doubly connected plates (Kuliyev, 1991, 2001;
Muskhelishvili, 1962; Amenzade, 1976; Berezhnitskii et al.,
1919).

In the considered case, the boundary conditions are as fol-
lows in zero approximation:

– on the inner contour L1 (with r radius circle and two
linear cracks)

σ (0)
ρ

∣∣
ρ=t1 =−P1 (4)

on the outer contour L2 (equilateral polygon)

σ (0)
ρ

∣∣
ρ=t2 =−P2 (5)

For the next approximations (the first and the second), the
boundary conditions are as follows:

σ (1)
ρ

∣∣
ρ=t1 = 0 , σ (1)

ρ

∣∣
ρ=t2 = 0 (6)

In Eqs. (4), (5), (6), t1 and t2 are the affixes of the points of
the contours Lj (j = 1;2), respectively. The function F (1) is
found from the solution of Eq. (1).

11F (2)
+L2

[
F (0),F (1)

]
= 0 (7)
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The solution of Eq. (7) is found from the sum of general so-
lution 11F (1)

= 0 of the first differential equation
(
F

(1)
gen.

)
and the special solution

(
F

(1)
spec.

)
of the mentioned differen-

tial equation.

F (1)
= F (1)

gen.+F
(1)
spec. (8)

It is known that the general solution of the homogeneous dif-
ferential equation 11F (1)

= 0 is taken in the following way
(in the general case):

F (1)
gen. = c1 · lnρ+ c2 · ρ

2 (9)

Note that, if we pass to polar (ρ,θ ) coordinates, we get
the following differential equation for the function F (1)

(Kuliyev, 2017).

11F (1)
=

∞∑
k=1

ρ−k ·V1(k)+
∞∑
k=0

ρk ·V2(k) (10)

In this equation, the quantities V1(k) and V2(k) are algebraic
sums of the same power terms of the variable p (for the fixed
θ angle). The special solution F (1)

spec. is found from fourfold
integration of Eq. (10) in the following way (Kuliyev, 1991,
2001):

F (1)
spec. =

∞∑
k=0

ρ−k+4
·α ·V1(k)

+

∞∑
k=0

β · ρk+4
·V2(k) (11)

where

α =
[
(4− k)2

· (2− k)2
+α1+α2

]−1

β =
[
(k+ 4)2

· (2+ k)2
+β1+β2

]−1
(12)

The unknown coefficients c1 and c2 in Eq. (9) are found from
the boundary conditions of the considered problem (stress-
strain state of a doubly-connected polygonal plate subjected
to equi-distributed internal pressure p1 and external pressure
p2) (Kuliyev, 1991, 2001).

If on the L1 inner contour

ρ = t1 then σ (1)
ρ = 0

If on the L2 external contour

ρ = t2 = A then σ (1)
ρ = 0 (13)

After finding the expression F (ρ,θ,λt)= F (0) (ρ,θ )+
λF (1) (ρ,θ )+ λ2

·F (2) (ρ,θ )+ . . . for the stress components
σρ and σθ we get the following expressions in the form of the
following series:

σρ = σ
(0)
ρ + λ · σ

(1)
ρ + λ

2
· σ (2)
ρ + . . .

σθ = σ
(0)
θ + λ · σ

(1)
θ + λ

2
· σ

(2)
θ + . . .

τρθ = τ
(0)
ρθ + λ · τ

(1)
ρθ + λ

2
· τ

(2)
ρθ + . . . (14)

Figure 2. Hollow round cylinder under interior and exterior pres-
sure.

The obtained general solution is demonstrated by the numer-
ical examples.

2.2 Numerical Results

2.2.1 Stress state of a cylinder made of small physical
nonlinear material and possessing an annular
hole and two linear cracks

In linear elasticity theory, this problem was solved com-
pletely (within Hooke’s law). Therefore, here we give only
the results obtained in Kuliyev (1991, 2001).

The ratio of the main measures of the cross section is given
in two variants (Fig. 2):

– Variant I: r/R = 0.5; e = 0.6R; l = 0.1R

– Variant II: r/R = 0.7; e = 0.8R; l = 0.1R.

The stresses σ (0)
ρ and σ (0)

θ found from characteristic points of
the section (as tangential stresses τρθ are too small, accepted
τρθ ≈ 0) are given in Table 1. Stress intensities and critical
stress values are given in Table 2.

At the most critical point of the section (at the end points
of the cracks: z=±e), we get the following values of
10K1/p1

√
l for the stress intensity factor K1:

– 7.00 for variant I and

– 11.68 for variant II.

The following estimates are found for the critical value of the
internal pressure p1 = p (i.e. fracture of the body-minimal
stress for elongation of cracks):
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Figure 3. Hollow cylinder under interior pressure. The dotted line
indicates a linear problem, the solid line a non-linear problem. (1:
pure copper; 2: open heath steel).

– For variant I: Pcr = 1,46[σb]

– For variant II: Pcr = 0,883[σb] (Table 2)

where technical ultimate stress [σb] (maximum stress of the
material) is known from references (Kuliyev, 1991, 2001).

After finding the functions ϕ(z) and ψ(z), within the linear
elasticity theory (in zero approximation), the stress function
F (0) (x,y)= F (0) (ρ,θ ) is found by Eq. (1). Then F (1) (ρ,θ )
is found from Eq. (10) of the stress function in the first ap-
proximation. According to the found expression of the stress
function F (1) (ρ,θ ), the stress σθ found from the characteris-
tic points of the section by means of Eq. (14) is given in and
Fig. 3.

2.2.2 Stress state of a hexagonal plate with annular
hole and two linear cracks in physical non-linear
statement

The solution of this problem in linear elasticity theory is
known from references (Kuliyev, 1991, 2001). The stresses(
σ

(0)
θ

)
found at any point of a hexagonal plate are calculated

for different variants (for different values of the ratio of cross
section measures) and given in the table. The stress inten-
sity factor (K1) and critical value Pcr of internal pressure are
found and given for each variant at the end of Tables 3 and 4
according to the stresses found at the end points of the linear
cracks. The known expression of the function is taken into
account in differential Eq. (10) obtained for the solution of
physical non-linear problem and accordingly, the stress for
different values of internal pressure Pcr at the most critical

points F (0) (x,y)= F (0) (ρ,θ ) of the section are found and
given in table form.

The following expressions were considered for the stresses
at the tips of the cracks.

– Variant I: r/A= 0.5; e/A= 0.6; m= 0.04; b = 1,922;

σθ/p = σ
(0)
θ/p +ασ

(1)
θ /p = 1.68− 9.2 ·α ·p2

– Variant II: r/A= 0.7; e/A= 0.8; m= 0.04; b = 1.37r

σθ/p = σ
(0)
θ/p +ασ

(1)
θ /p = 3.21− 14.62 ·α ·p2

where

α = λ=
g2k

(3K +G)G2 = 0.225× 10−6 cm4 kg−2

for pure copper.

α = λ= 0.032× 10−6 cm4 kg−2

for open-hearth steel.

As indicated by the numerical results of both problems in
physical non-linear statement, the maximal values of stresses
are smaller than that of the linear statement (peak points of
stress diagrams are smoothened) (Fig. 1).

2.2.3 Stress state of a thick-walled pipe (Lame problem)
in small physical non-linear statement

In classic elasticity theory, the following formula is obtained
for the stress function F (0) (Kuliyev, 1991, 2001).

F (0) (ρ,θ )= β1 ·
ρ2

r2 + d1 · r · lnρ (15)

When the pipe is under the internal pressure p1 and external
hydrostatic pressure p2, the coefficients β1 and d1 are deter-
mined by the following expressions (Kuliyev, 1991, 2001).

β1 =
r

2
·
p1 · r

2
−p2 ·R

2

R2− r2 ; d1 =
r2R2

· (p2−p1)(
R2− r2

)
· r

(16)

if the Eq. (16) is written in Eq. (15);

F (0) (ρ,θ )=
r2R2

· (p2−p1)
R2− r2 · lnρ

+
1
2
p1 · r

2
−p2 ·R

2

R2− r2 ρ2 (17)

The obtained expression completely coincides with the ex-
pressions obtained by Tsurpal (1962). The measures of thick-
walled pipes (the ratio of radius R of external circle with
radius r of internal circle) were given in two variants (pure
copper, aluminum, bronze and open–heath steel were chosen
as pipe’s materials. The following expressions are obtained
for stress concentration on the inner circle for the considered
problem (Lame Problem).
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Table 1. Stress coefficient concentrations.

Variants P Linear Pure copper Aluminum Silver Open heath steel
statement λ= 0.255× 10−6 λ= 0.053× 10−6 λ= 0.032× 10−6

I 20 1.76 1.759102 1.7598317 1.7593984

r/R = 0.5
50 1.76 1.7549383 1.758948 1.759365

100 1.76 1.73975 1.755792 1.75746

e/R = 0.6
200 1.76 1.6791012 1.74317 1.74984
500 1.76 1.253825 1.654795 1.6965

II 20 2.92 2.918793 2.419738 2.919842

r/R = 0.7
50 2.92 2.912123 2.91836 2.91901

100 2.92 2.88848 2.91345 2.916065

e/R = 0.8
200 2.92 2.79393 2.8938 2.9042
500 2.92 2.23205 2.75623 2.82112

Table 2. Stress intensity (by 10K1/P
√
l) and critical value of stress.

Variant Pressure P Pure copper λ− 0.255× 10−6 Open heath steel

K1 Critical pressure (Pcr) K1 Critical load Pcr

I 100 6.958 1.48 [σb] 7.024 1.467 [σb]
r
R
= 0.5 200 6.726 1.535 [σb] 6.999 1.473 [σb]

e
R
= 0.6 500 5.015 2.05 [σb] 6.792 1.51 [σb]

II 100 11.552 0.892 [σb] 11.664 0.884 [σb]
r
R
= 0.7 200 22.176 0.922 [σb] 11.616 0.887 [σb]

e
R
= 0.8 500 8.928 1.155 [σb] 11.284 0.914 [σb]

Table 3. Stress concentrain of a hexogonal plate.

Variants P Linear theory Non linear theory

σθ/p Pure copper Alluminium silver Open heath steel
λ= 0.255× 10−6 λ= 0.053× 10−6 λ= 0.032× 10−6

I 20 1.68 1.679185 1.6659 1.6798984
r
A
= 0.5 50 1.68 1.67494 1.6654 1.6793648

100 1.68 1.65975 1.6636 1.67746
e
A
= 0.6 200 1.68 1.59901 1.6566 1.669835

500 1.68 1.17384 1.607 1.61648

II 20 3.21 3.20874 −2.66588 −2.66593
r
A
= 0.7 50 3.21 3.20212 −2.6652 −2.6655

100 3.21 3.168482 −2.6515 −2.6629
e
A
= 0.8 200 3.21 3.083928 −2.654 −2.6587

500 3.21 2.52205 −2.591 −2.2106

– Variant I: σθ/p = 1.666− 4.444 · λ ·p2; p1 = p

– Variant II: σθ/p = 4.55− 25.3 · λ ·p2; p1 = p

The stresses “σθ” were calculated for different values of in-
ternal pressure (p1) (20≤ p ≤ 500) by means of the formu-
las given in graphic form in both variants (Fig. 4). In the
graph, the straight line represents the problem in non–linear
statement and the dotted line represents the problem in linear
statement.

As seen in the tables, a decline at a rate of 0.1 % occurs
for the values lower than 100 MPa, resulting in a negligible
difference between linear and non-linear states. As for the
values higher than or equal to 100 MPa, the stress difference
between linear and nonlinear states is observed to be signifi-
cantly high.
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Table 4. Stress intensity coefficient (10K1/¶
√
l) and critical value of load (Pcr) (hexagonal cylinder).

Variant Pressure P Pure copper λ= 0.255× 10−6 Open heath steel

K1 Critical pressure (Pcr) K1 Critical load (Pcr)

I 100 6.624 1.56 [σb] 6.708 1.5386 [σb]
r
R
= 0.5 200 6.352 1.623 [σb] 6.6792 1.543 [σb]

e
R
= 0.6 500 4.4 2.343 [σb] 6.464 1.595 [σb]

II 100 12.68 0.803 [σb] 12.824 0.804 [σb]
r
R
= 0.7 200 12.24 0.842 [σb] 12.776 0.807 [σb]

e
R
= 0.8 500 11.92 0.865 [σb] 12.44 0.829 [σb]

Figure 4. The Lame problem statement.

3 Conclusion

In this work, stress concentrations were determined by us-
ing conformal mapping function at the end points of cracks.
Critical loads where fracture began were defined for differ-
ent loads. Analytical results of solutions were compared and
found to be in agreement with the numerical results in the
literature. The obtained numerical calculations show that, as
the nonlinearity of the materials increase, the stress distribu-
tions at the peak points of the stresses become more regu-
lar and physical–nonlinearity of the material smoothens the

peaks of stresses by decreasing maximum value of stresses
and moderately increasing minimum values. Also, the phys-
ical nonlinearity of the material decreases the stress con-
centration, thus decreasing the maximum stress at the inner
points of the cross-section.

Data availability. The underlying research data can be provided
upon reasonable request by Etimad Bayramoglu Eyvazov (eti-
madeyvazov@karabuk.edu.tr).
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Appendix A: Nomenclature

K bulk modulus
k(s0) mean stress of s0 function
g(t20 ) intensity function
G shear modulus
s0 expression for the reduced mean stress
E Young modulus
F Airy stress function
I1 strain tensor
L(n) linear operator
λij the coefficients which determine the physical properties of the considered materials
τ0 expression for intensity of the reduced tangential stresses
υ Poisson ratio
χ elongation function
ϒ shear strain function
εij strain components
δij the coefficients which determine the physical properties of the considered materials
σij stress components
1 Laplace operator
ϕ(z), ψ(z) analitic functions
q symmetry axis number

www.mech-sci.net/10/553/2019/ Mech. Sci., 10, 553–560, 2019
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