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In study, we show the existence and integral representation of solution for ener-
gy-dependent fractional Sturm-Liouville impulsive problem of order with a € (1,2]
impulsive and boundary conditions. An existence theorem is proved for energy-de-
pendent fractional Sturm-Liouville impulsive problem by using Schaefer fixed
point theorem. Furthermore, in the last part of the article, an application is given
for the problem and visual results are shown by figures.
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Introduction

Sturm-Liouville problems is the main problem of applied science and have a lot of
applications in engineering, physics, and mathematics. During history, many researchers have
studied many subjects about this topic to develop the theory of classical Sturm-Liouville [1-4].
In recent years, however, the theory of fractional Sturm-Liouville which is become more advan-
tageous than the classical models has drawn interest so much. Some initial study has done about
fractional Sturm-Liouville problem [5-11]. In [5, 6], Klimek and Agrawal investigated frac-
tional Sturm-Liouville operator involving left-sided Riemann-Liouville derivative (RLD) and
right-sided Caputo derivative (CD). Furthermore, fractional Sturm-Liouville problem including
different types of fractional operators is figured out numerical methods [12]. Differential equa-
tions involving impulses, firstly considered by Milman and Myshkis [13] in the 1960’s, are used
to characterize sudden changes in the real world phenomena and many evolutionary processes
involving short term perturbations. This process is modeled naturally with impulsive differen-
tial equations. Therefore, impulsive differential equations always attract comprehensive interest
and find many application areas in literature. The basic results are given by Lakshmikantham et
al. [14]. There are many works on this problem in diverse fields such as medicine, biotechnol-
ogy, pharmacokinetics, environmental science, pest control, hematopoiesis. For examples, by
using radial acceleration control of the satellite orbit, periodic treatment of some diseases, death
in the populations, non-autonomous equations, industrial robotics [15].

Fractional differential equations have developed as a popular and interesting research
field and have great interest, because they have both theoretical and physical, biological appli-
cations in various sciences. Furthermore, modeling by fractional calculus become more advan-
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tageous than the integer order models [16-20]. The growing development on fractional differ-
ential equations has motivated the recent papers. However, fractional differential impulsive
problem has not explored in any respect yet and these problems play a significant role in theory
and applications recently. A lot of authors have handled fractional differential impulsive equa-
tions for diverse equations and conditions [21-25]. The works on this topic concern the exis-
tence solutions and many significant results have been reported. Agarwal ef al. [26] handled the
existence of solutions of fractional differential impulsive problem including the Caputo frac-
tional derivatives. Furthermore, Zhou and Feng [27] studied fractional Sturm-Liouville prob-
lem under impulsive condition. However, this study is firstly about this topic. Diffusion equa-
tion, one of the natural laws of physics, arises in numerous situations of science. The simplest
description of the diffusion equation in physics is the transport of fluid, chemical species or
energy from the area of higher concentration to one of lower concentration. One of the main
problems in physics is that describing interactions among colliding particles. A well-known
theoretical model can express to this problem. Therefore, from collision experiments, s-wave
scattering matrix to s-wave binding energies are assumed to be known precisely. The s-wave
Schroedinger equation with a radial static potential, V', depending energy in some way is given:

u"+[E—V(r)]u =0,r>0
Let U(7),Q(r) are complex functions. The V' has equation of energy dependence:

v[(r.E)]=UG)+[2VEQ() |

Several scientists use contraction mapping principle, Banach fixed point theorem or
Krasnoselskii’s fixed point theorem to give the existence results of solutions for fractional dif-
ferential impulsive problem. Here, we obtain results of our problem by using Schafer fixed
point theorem.

In this study, we analyze energy-dependent fractional Sturm-Liouville impulsive
problem:

~D§_h(r) Df,u(r) + {2Ap(r) + q(r) J}u(r) =0 (1
Au|r=rk = I [u(r)], Au'|r=rk =I;[u(n)], n, € (0,7), k=1,2,..,n ()
au(0) + S (0) =0, ayu(z) + pyu'(r) =0 3)

where D? is the RLD [17], €D, — the (CD) [17], 1}7%, I}-* — the Riemann-Liouville inte-
gral [17], h — real-valued continuous positive function in interval [0,7], p e W, q € I*[0, 7],
[,I; : R>Rand a,a,,B,p, €R, and qya, + o, 8, + &, 3 20, 0=1y <1 <..<r, <r,, =T,
Au\r:rk =[u(n’) —u(r )], u(r ) =lim,  u[n +h] stand for the right and left limits of u(r) at
r=n, k=12,.,n, Au'|r:r is a similar meaning for u'(r).

Firstly, we obtain the integral representation for solution of energy-dependent farc-
tional Sturm-Liouville impulsive problem and secondly we establish an operator, H, for system
of'egs. (1)-(3), then demonstrate the compactness of H by applying Arzela Ascoli theorem and

we prove existence result for problem (1)-(3).

Preliminaries

Let PC Banach space is PC(X,R)={u:X - R:uecC((r,r,,],R) and there exist
[u(r)] and [u(r)], u(r ) =u(n),k =1,2,...,n} where X =[0,7] and the norm is defined:
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e . = supecr)
reX

Definition 1. [28] If K is a compact metric space then a subset F < C(K) of the space
of continuous functions on K equipped with the uniform distance, is compact if and only if it
is closed, bounded, equicontinuous.

Lemma 2. [23] Let, ¢, e R. Then “D%h(r) =0, has solution:

h(ry=cy +cr+ czrz +..+ cnr"_1 , (i=0,1,2,...,n) n=[a]+1

Lemma 3. [23] Let a > 0. Then:

I°DYh(r) = h(r) + ¢y + e + cyr? +...+ ¢,y

for some n=[a]+1.

Lemma 4. [17] Re(er) >0, n=Re(a)+1 and let f,_, (x) =(I;=% 1) (x) be the fraction-
al integral of order n—a.

If 1<p<ooand f(x)ely (L,), then:

75Dy f1(x) = /()

where

(L) ={f1f =159, peL,(L,)}

,,,,,

115 D5 1100 = 1) —| 3D g
b"" ST@-j+1)
holds almost everywhere on [a,b].
Lemma 5. [28] (Schaefer fixed point theorem)
Let T:J — J is a compact and continuous mapping where J is a Banach space. If the
set:

{xeT:x=AT(x) for some A €[0,1]}
is bounded, then H has a fixed point.

Main results

Theorem 6. Let 1<a <2 and let u e PC(X,R) . The solution of energy-dependent
fractional Sturm-Liouville impulsive problem has integral representation given with:

u(r)= { %ﬁlﬁ_ (22p($)+q(£))u(<) |dS +
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CaB| ] ((ﬂ-n)(n»—é“) ) (=o)L (24p(¢)+ )
7 ZM N I R T B R

L ol () )]-

,3152”(”—41)0!72 1,
u I M (a-1) h(;)Iﬂf(ul’(é“)W(C))u(g“)dg_

1 L1 T a2 1 o,
_;A@lei(c—c) Tg)(ﬁz,—(ﬂbp(gﬁQ(g))u(g)df)}_

_%ﬁlﬂ2gli* (”(’2)) + 051;52” :Jj (ﬁl:(i))a_ h(lé,) I7_ (ZAp(c;) + q(g))u(g)dg +

o[ 2 [((F=m)(5=¢)7) (-
+iala2r;{nj][( o) )+(lr(i,)) Jh(lé/)lff’(2/1p(§)+q(§))u(§)d§]+

+§[li(u(n-))+If(u(ri))(”—ri)] (4)

if and only if u is a solution of the eqs. (1)-(3) problem, where y=a,f —aqja,7— oy f, .
Proof. Assuming u satisfies (1)-(3). If » €[0,7], then:

D¢ _h(r)D u(r)=[2p(r) + q(r)]u(r)
by means of Lemma 4

h(r) DG u(r) =[ 1 (22p(r) + q(r))u(r) ]
na _L a
D5 u(r)=— B 17 _[24p(r)+q(r)]u(r)

if by,b, € R and Lemma 3 implies:

u(r)y=1g, ﬁl;”_ (2/1p(r) + q(r))u(r) +by +br=
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() m’i—[Mp(é“)w(g“)]u(;)dmbo+blr

It follows from of eq. (5) that:

r-¢)7 1,
(o t) we) e (2AP(©)ra())u($)a +h

If re(s,n], then, ¢y,¢; eR, we can write:

r _ a-1 1 .,
0= [ A EENE v
1 f 2 1

u'(r) = m}[(r - ml;;(_ (24p() +4(¢))u($)dS +¢

=j(r—é“)““ 1

u'(r) :j.
0

©)

Using the impulse conditions Au|r:r1 =1 (u(rn)) and Au'| =1 (u(1)), we find that:
r=i

¢ :1‘(’”11:(?; ﬁl’? (2,1p(§)+q(§))u(§)d§+b0 +b1r+11(u(1’1))

oo (20(6) o€ (Do b))

Thus:
u(r):j.(rl:(il); #{)Ig’(2/1p(§)+q(§))u(§)d§+
S I e @aa6) el o
+b0+b1r+11<u(r1))+11*(u(r1 ))(r—rl)
and
u'(r) =ﬁj‘(lf—()a_zﬁ[;‘,_(22p(§)+q(§))u(§)d§+
1 4 a2 1 .

+m£(ﬁ —{) MI”’_ (22p($)+q($))u(S)dS +by + 17 (u(n))

repeating the previous procedure for » € (7, ,7,,,], we obtain:

(=" 1 L (Nl de +
Moy gy - (AP(E)rae)u()|a¢

u(r)= j
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+z{ J [((V—lri)((s:g) ) )+(ri1:(i))a_ Jh(lg)[g;{(2,1p(;)+q(g))u(§)]d§]+

+b +br+2[ () + 17 (u(r))(r=1)] (©)
Let u(0)=b, , u'(0) = b and:
u(z) = J <) ! Iz (24p(¢)+q(£))u(4)dS +

(a) h(¢) ™
n (ﬂ—n)("i—é’)“—2 -9 1 .
ZM ey e Jh<¢>(’”’-[“"(””(”D”(W]*

+b, +b17r+i[li (u(r))+ 17 (u(n ))(ﬁ—ri)]

]El: a -2 (14)([7‘;‘_(21p(§)+q(§))u(f)):|d§+

h(¢) "
+h, +,Z;:Ii* (u(rl))

Using boundary conditions, we have:

Z(ﬁ“” TGl Wp@)w(é))u(:)da}

1 -9 1,
b = ;{alaz DW@Q (22p($)+q(¢))u(S)ds +

Z{I F(”_ﬁsz e L(”;(ij; _l]h(;)fz,_(up<c>+q<:>>u<c>d4+

(1 () + 1 () -n)) |+

Va

(s j “zﬁla [24p(¢)+q(&)Ju(&)dS +

+a, 5 [

- R .
+Z(m j (1 =¢) m[lﬂ,,(up(c)w(:))u(;)]d:+L- (u(rl-))ﬂ} (7)

i=1

1 (7? §)a1 T + u +
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*ﬁ{rﬁ[((ﬁﬁ?_? e _]},,(lg)f:i-[21p<c)+q<:>]u<:>d4+

(1)) + 1 L)) ]+

ﬁlﬂzlf G L e Toap(c) e g()]u(¢)dc +

T(a-1) (<)
ILI (r - ) 2 14)1,7(Zﬂp(§)+q(§))“(§)d§+ﬁ(u(ri))ﬂ} N

Substituting eqgs. (7) and (8) into eq. (6) we obtain eq. (4).
Theorem 7. Presume that / is real-value continuous function, g € L[0,7], peW .
There are constants M,N,R,m >0 satisfying:

|p(r)| < R,|A| < N,min |h(r)| = m, |q(r)|<M, foreachreX
and there exist constant ¢,,c, >0 satisfying:

|Ik(u)| <c,

IZ(u)| <¢, k=1l..n,

where the functions 7,,1; : R — R are continuous.

Then the problem (1)-(3) has at least one solution on X.

Proof. Defining following operator we can change the (1)-(3) problem into a fixed
point problem:

H : PC(X,R)—> PC(X,R)
given by:

Hu(r) = J (r; 20:—1 #) (12 (24p(¢)+a())u(¢))dS +

h («r e _g))a 2’+“r_(§; 1]h(la’?—[up(e“)+q(:)]u(:)d4 -

TE-0"" 1
—;azﬂliwmh,(24p(§)+q(§))“(§)d§_

N (a7 e
[u ot (= )} L_1e_(24p(¢)+q(¢))u()dS +

1
Ti-1

T (a) I'(a-1) h(¢)
+1,(u () + 17 (u () (7 =1)] -

—Bb [I%ﬁzz(up@)w(c))u(g)dg]—

i=1

__azﬁlz[
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_ﬂlﬁz 1 1 t _ a72; a *
A e ) (e CL AL DL RIS
aarf(z-0)"" 1 0,
e - A () ac +
0‘10‘2’” =" ((”_”f)(”i _é/)a_z) 1 Y
Tu nbl[ M@ T(a-1) h(é)(]””(Mpm+q(§))”(§))d4+

+1; (u(r)) + I (u(};))(;r—};)}+

a1ﬂ2” (77 g)az |
.[ ) h(g)Iﬁr(z’lp(év)Jrq(éV))”(?)déuﬂL

ro,f (7 [ S apfor
7 njl{r(a—l) h(é“)I”’_[Mp({)Jrq(g)]u(g)}d{+ )

1 (u() + 17 () (r = 13) ]
Now, using Schaefer fixed point theorem, let as prove that A has a fixed point and it
will be proven in four steps.
First Step. Let as show H is continuous.
ue PC(X,R), {u,} is a sequence satistfying u, — u. Foreach r € X:

+z{

i=1

el (22 (€)+ () (€)-u(¢))]de +

}Fmﬁv*v—m+m—@*q I
I'(a-1) L(a) |h(<)

Ti-1

-0
|H(un)(r)—H(u)(r)| S;[ F(a) _1

12 (220() + (), (:)—u<4>)\d4]+

a2ﬁ1 T (r— g)a_l 1
| h($)

15 (22p(£)+4()) (e, (§) (&) d& +
He-0@-n) 6= ] 1 |E- (22 +a )] |
V_J[ I'(a-1) I'(a) }h(g)'(u,,(cj)—u(g)) ‘dgi
B 21 Lo ()] L) o 1 L )] 1 [ ) ]+

/BlﬂZ (77 ;)az 1
I ~1) h(é“)

J(r O

i=1

+%a2ﬁ1i[

17 (22p(£) +4()) (s () -u(£))|d +

Lns [ e RO EREI

~1) h
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+— ﬂlﬂ2

i=1

+almrf<”—4>“ iz (22(¢) ¥ () ua(€)-u(€) )]s +

T(a) (<)

aa,r (=" (x - ), (F—C)m1 1
T ZI{ F(a-) i

alaz U[ [u ]—Il- [u(rl-)]‘ﬁL I

alﬂz’”"‘(” g)az 1
-1) h(i)

0!1,32 G —C) 1
i=1 [r"ll

I (Mp(é“ )+4(¢))
UCAGRI()

u (r,.)}—1;‘[u(r,-)]\(’f-rfﬂ+

12 (24p(§)+ () (n (§) ~u(£))|d¢ +

‘dcj+

=l

h(¢)

+al—’82rn Suw, (1)) =1 (u(r)) +
2 (o ()= 1 ()

e[ Ly ()] =1, L) 1 o ()] 2 L) ] =)

Since [;,I, are continuous (k =1,...,n), we get ||H(un) - H(”)”w —0, asn —> oo,

Second Step. Let as show H operator is bounded into bounded sets in PC(X, R).

Absolutely, we will demonstrate that there exists a real constant y >0 satisfying for
each ue B={ue PC(X, R)| ”””w <n} for any >0 and we get [H(u)|, <y. There exists
constant K >0 satisfying [|1;_(2Ap({)+q(¢))u(¢)|< K. Due to expression of the theorem,
we have for each r e X :

Kr® [azﬁl (1+n)+ u( n+l:| [n+1a1,82+n(y+a2ﬂ1)1
+ +
C(a+1) [(a)

1“,_<2zp<:)+q<c))(un(¢>—u<4>)\d¢]+

|Hu(r)|

[ﬁ1ﬂ2 n+l ]

Kz alaz(n+1) +a1a2n +
m,uF mp

C(a+1) T(a)
+72(a2,817r + Bfy + oyt + oy o+ 7z,u) + %(azﬂl + oo+ 1)
The right of the last inequality is constant, so we can write the following inequality:
7 ), <7

Proof is completed.

Third Step. H bounded into equicontinuous sets of PC(X, R).

Let 7,7, € X, 7, <7,, B be a bounded set of PC(X,R) as in Step 2, and let u e B.
Then:
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|H(u)(Tz) H(u)(ﬂ)| ”(72 —O)* T (g =) ﬁ]oc (2/1p(§) (5))u(§)‘d§+
@ j \(rz =0 @L‘;ﬁ, (22p(&)+a(€)u(¢)ac+

H(ry - mz{ j( ) (é,)lf;,(up(a)w(:))u(;)‘d;}

a0, (Tz_fl)f(ﬂ_g)a 1

—If:,(up<4>+q<:)>u(:>\d:+

' Ma) i)
2(2'2 Tl)l§ [rj‘l|:(l’ ?)(‘;2(17; V) (r — g)al}Ih(lg I?_(Zﬂp(§)+q(§))u(§')‘d§+

+‘Ii(u(ri))‘+‘li u ri (ﬂ—};)H+
Lah —TOT (m=¢)"”

e [up@)w(s)]u(g)\dm

(a=1) |n($) ™
ap, =01 + u +
T I)ED iy gy - P a(E) (;)‘d;

i ]+ 2 o)) )

As 7, — 717, the right-hand of the inequality above goes to zero. As a result of Step 1
to Step 3 by Arzela-Ascoli theorem, H operator is completely continuous and continuous.
Fourth Step. Now, let as demonstrate that the set:

L={uePC[X,R]| u=9H(u), 0<9<l]

is bounded.
Let ue L. Then u=9H(u), for some 0<9<1. Thus for each r € X, we have:
utr=9] (Ff)) St () a()ul)ag
*‘?MQ S R S s e -
e[ R e ) i

__19012,312[ ( (’?))+I:(u(’?))(”_’?)+

i=l1
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f [(’?_g)a_z(ﬁ—riﬂ G- )1,
+Jl[ ra-1)  T(a) h(;)’m—(2/1P(§)+q(§))u(§)dg -

a-2 1

S e A€ e )u(€)de -

rio

F(a-1) A(Z)

‘igﬂlﬁé[jl (rf(fi;ﬁli(Mp(c)w(é))u(c)dmfi(u(n))]+

+3aihrj(ﬂ£ézj4hég)q;(zzp(g)+q(g»u(§)dg

Sacr (<r—4>“(ﬂ 0 -0
ZJ { (@-0 " T(a) h(lc)

llr

# 2AL S 1 )+ 1 o)) (=) ]+

H i=1

19a1ﬂ2 J‘(ﬂ( é')a)z h(lg)l,f,_(2/1p(§)+q(§))u(§)d§+

+9alﬁzr2[] (i =)™ ;zz(up(¢>+q(§))u(4)dé+l:‘(u(n-))]+

#o5|7 Tla=) a(e) "

+3iznl:[li (u(ri))+[l.* (u(ri))(r—ri):|

This implies by expression of theorem that for each » € X we have:

()| < {[a2 B(1+n)+ p(n + 1)]

[(a+1)

[n(,u+a2ﬂ1)+(n+l)alﬁ2] Kz Kz aqqaon  (n+1)eye,
" I'(a) +m,uF [ﬁlﬂz n+11 m F(a)+ I(a+1) "

ne
+72(0‘2,317T + A+’ + o for + ”ﬂ) +71(a2ﬂ1 o+ p) =y

Thus for every r € X we have ||u||oo <y.
So, the set L is bounded. H has a fixed point in the solution of energy-dependent frac-
tional Sturm-Lioville impulsive problem (1)-(3) by Schaefer’s fixed point theorem.
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Application

Let as take into consideration the following energy-dependent fractional Sturm-Liou-
ville problem:

~D3. Dg,u(r) +[22p(r) + g(r)]u(r) =0 o
157 D] =e u(0)=c,
Using Laplace transform for eq. (9), we obtain the following equalities:
—2{D, [ “DEu) ||+ (22p0)+ 4(r))u(r) = 0
—s“ﬁ[ CD&M(}’)] B CDngu(r)‘r:O +[2Ap(r) +q(r)] £[u(r)]=0

s {s“Lu(r)] = s u0)} - ¢ +[22p(r) + ¢()] £[u(r)] =0
—SZO’L'[u(r)] +57%7 e, o) + [2Ap(r)+q(r)] L[u(r)]=0

20-1
¢ s

(2Ap+q)-s>* e (2Ap+q)-s**

L{u(r)} =

_ —¢ _072 2a
s —(2Ap+q) s s —(2Ap+q)

By taking the inverse Laplace transform and using initial conditions, we obtain the
analytical solution:

u(r)= _—cl[ralEa’a (\/ZAp +qr& ) - r“ilEa’a (—«/2/11) +qr” )} +

2 2Ap+q
+c, {1 +%[Ea (\/ZAp + qr“)—Ea (—«/21[) +qr® )}}

Conclusion

In this study, we use different fractional composition operators including CD and
RLD. The classical Sturm-Liouville problem under the impulsive condition is analyzed for the
situation of our energy-dependent fractional Sturm-Liouville problem. We show an explicit
representation of the solution of energy-dependent fractional Stum-Liouville impulsive prob-
lem order « € (1,2] and by using Schaefer fixed point theorem and also we proved it. At last,
we give symbolic an application for the aforementioned problem.

By means of figures, we also show the behaviors of solutions visually. According to these
solutions, in the figs. 1 and 2, we see curvilinear behavior of solution for ¢ =0.6, @ =0.7,
a=08,a=0.9, where (1=2,p=1,g=0) and (1=2,p=1,4=1), recpectively. For fixed
a = 0,6, according to other data, we show behaviors of solutions by figs. 3 and 4.
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