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Abstract: We consider a new kind of helicoidal surface for natural numbers (m,n) in the
three-dimensional Euclidean space. We study a helicoidal surface of value (m, n), which is locally
isometric to a rotational surface of value (m,n). In addition, we calculate the Laplace-Beltrami
operator of the rotational surface of value (0,1).
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1. Introduction

The notion of the finite-type immersion of submanifolds of a Euclidean space has been used in
classifying and characterizing well-known Riemannian submanifolds [1]. Chen posed the problem of
classifying the finite-type surfaces in the three-dimensional Euclidean space E3. Then, the theory of
submanifolds of a finite type was studied by many geometers [1-21].

Lawson [22] gave the general definition of the Laplace—Beltrami operator in his lecture notes.
Takahashi [23] stated that minimal surfaces and spheres are the only surfaces in E* satisfying the
condition Ar = Ar, A € R. Ferrandez, Garay and Lucas [10] proved that the surfaces of E satisfying
AH = AH, A € Mat(3,3) are either minimal, or an open piece of a sphere, or of a right circular
cylinder. Choi and Kim [5] characterized the minimal helicoid in terms of a pointwise one-type Gauss
map of the first kind.

Dillen, Pas and Verstraelen [7] proved that the only surfaces in E® satisfying Ar = Ar + B,
A € Mat(3,3), B € Mat(3,1) are the minimal surfaces, the spheres and the circular cylinders. Senoussi
and Bekkar [24] studied helicoidal surfaces M? in [E3, which are of the finite type in the sense of Chen
with respect to the fundamental forms I, IT and I11.

The right helicoid (resp. catenoid) is the only ruled (resp. rotational) surface that is minimal in
classical surface geometry in Euclidean space. If we focus on the ruled (helicoid) and rotational
characters, we see Bour’s theorem in [25]. The French mathematician Edmond Bour used the
semi-geodesic coordinates and found a number of new cases of the deformation of surfaces in 1862.
He also gave in [25] a well-known theorem about the helicoidal and rotational surfaces.

Kenmotsu [26] focused on the surfaces of revolution with the prescribed mean curvature.
Regarding helicoidal surfaces, do Carmo and Dajczer [3] proved that, by using a result of Bour [25],
there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface. Hitt
and Roussos [27] also studied the helicoidal surfaces with constant mean curvature. Ikawa [14,15]
determined pairs of surfaces by Bour’s theorem. Giiler [28] also studied the isometric helicoidal and
rotational surfaces of value m. Giiler and Yayl [12] focused on the generalized Bour’s theorem in
three-space.

We consider a new kind of helicoidal surface of value (m,n) in Euclidean three-space E2 in this
paper. We give some basic notions of the three-dimensional Euclidean geometry in Section 2. In
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Section 3, we give the definition of a helicoidal surface of value (m, 1) and obtain isometric helicoidal
and rotational surfaces of value (m, n) (resp. of value (0, 1) in Section 4) via Bour’s theorem. We also
calculate the mean curvature and the Gaussian curvature of the rotational surface of value (0,1) in
Section 4. Moreover, in Section 5, we calculate the Laplace-Beltrami operator of the rotational surface
of value (0,1). Finally, we give the rotational surface satisfying ARg; = ARy in E? in the last section.

2. Preliminaries

We shall identify a vector (a,b,c) with its transpose. In this section, we will obtain the rotational
and helicoidal surfaces in E3. The reader can find basic elements of differential geometry in [29,30].

We define the rotational surface and helicoidal surface in E3. For an open interval I C R, let
7 : I — Tl be a curve in a plane I, and let £ be a straight line in I1. A rotational surface in E? is
defined as a surface rotating the curve 7 around the line / (these are called the profile curve and the
axis, respectively). Suppose that when a profile curve vy rotates around the axis /, it simultaneously
displaces parallel lines orthogonal to the axis /, so that the speed of displacement is proportional to
the speed of rotation. Then, the resulting surface is called the helicoidal surface with axis ¢ and pitch
a€RT

Let ¢ be the line spanned by the vector (0,0,1). The orthogonal matrix that fixes the above vector
is given by

cosf —sinf 0
M) =] sinf cos® 0 |, 0€R
0 0 1

The matrix M is found by solving the following equations: M{ = ¢, M'M = MM' = I,
det M = 1, simultaneously. When the axis of rotation is /, there is a Euclidean transformation by which
the axis is ¢ transformed to the z-axis of E3. The profile curve is given by (r) = (r,0, ¢ (r)), where
¢ (r) : I C R — R is a differentiable function for all r € I. A helicoidal surface in three-dimensional
Euclidean space which is spanned by the vector (0,0, 1) with pitch a is as follows

H(r,0) = M(6)y(r) + ab/.
When a = 0, the helicoidal surface is just a rotational surface.

3. Helicoidal Surfaces of Value (m,n)

We define a new type of helicoidal surface. Using Bour’s theorem on the helicoidal surface, we
obtain an isometric rotational surface in this section.

Definition 1. A helicoidal surface of value (m,n) is given by
Hy (r,0) = Hy, (r,0) + Hy, , (1,6), 1)

where m,n € N, H}, (r,0) = RL,.71, + a6¢, HZ, , (r,0)=R2 7%, + a0, the rotating matrices R}, and
R2, , are

cos[(m+1)60] sin[(m+1)6] 0
RL(0)=| —sin[(m+1)8] cos[(m+1)6] 0
0 0 1

and
cos[(m+2n+1)0] —sin[(m+2n+1)6] 0
R2 . (0)=| sin[m+2n+1)60] cos[(m+2n+1)60] 0
0 0 1
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¢ = (0,0,1) is the rotating axis, and the profile curves are
1 B pm+1 1 ) a pm+2n+1 1
7h() = (5 70300)), Bnl) = (g 0390

meR—{-1}inyl,meR—{-1-2n}in~2, r€RY,0<6 < 2mand the pitcha € RT. Since
the helicoidal surface is given by rotating the profile curves <y around the axis £ and simultaneously displacing
parallel lines orthogonal to the axis £, the speed of displacement is proportional to the speed of rotation.

Next, we give a theorem about locally isometric helicoidal-rotational surfaces of value (m, n).

Theorem 1. A helicoidal surface of value (m, n)

pm+2n+1

m+1
ﬁlcos [(m+1)6] — %lcos [(m+2n+1)6]
Hyn (r,0) = — g sin[(m+1) 0] — Sy sin [(m + 2n + 1) 6] 2
¢ (r)+ab
is isometric to the rotational surface of value (m,n)
r{r{H—l r{{"+2"+1
mtlalcos [(m+1)6R] — 7m73+”zﬂlcos [(m+2n+1)6g]
Run(rR,0R) = | _TK_ sin [(m + 1) 6g] — 2Ky sin [(m + 21 + 1) 6g] ®)
R (TR)

by Bour’s theorem, where

G =1 (m + 3n) G¥' +2 (m + 2n) G" cos[2(m + n + 1)6]

2
—2G"sin2(m+n+1)0] + m+n} ] det

2

+(2m+2)r~1}
L AR sin’2(m + 0+ D]
R (rk 4 20 cos[2(m -+ 1+ 1)0r] +1)
[ - 2o @Om 4 Do) 1],

2
[ P22 L (O + 6n) 111 4 (4m + 8n) ¥ cos[2(m + n + 1)6] ] G

'R = \/E,
o = 0+ [ o
R - G 7
E = o (r‘“‘ —2r?" cos[2(m +n +1)0] + 1) +97,
F = 2" sin2(m+n+1)6] +a¢/,
G = rmt? (r4” +2r*" cos[2(m 4+ n +1)0] + 1) +a?,
det] = EG-P?,

meR—{-1,-1-2n},neR,re R, 0 €1CRand the pitcha € R*.
Proof. The line element of the the helicoidal surface Hy, ,, (7, 0) is

ds? = {r?"(r¥" — 2r?" cos[2(m +n +1)0] + 1) + ¢'2}dr?
+2{2r2m 2+ L sin[2(m + n +1)0] + ag' }drdo (4)
+ {232 (14 4 2r cos[2(m + n + 1)0] + 1) + a}d6>.
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Helices in Hy, ,, are curves defined by r = const. Therefore curves in Hy, , that are orthogonal to helices
supply the orthogonality condition F dr 4+ G df = 0. Thus, we obtain § = — [ é dr + c, where c is
constant. Hence, if we put § = 0 + [ £ dr, then curves orthogonal to helices are given by 6 = const.
Substituting the equation df = df — édr into the line element (4), we have

ds? = % dr? + G do’, )

where Q := det I. Setting 7 := \/g dr, Q(7) :== v/G, (5) becomes
ds? = d7* + 02 (7) d". ©6)

The rotational surface (3) has the line element

i = R g2 G, @)
Gr
where
Er = r&"(rF +1—2% cos2(m +n+1)0g]) + ¢
R \'R R R PR/
Fr = 23" lsin2(m+n+1)6g],
Gr = rit? (r}l{” + 1+ 2r% cos[2(m +n + 1)91{}) .

Again, setting 7g := \/%II: drr, Qr(7r) := V/Gg, then (7) becomes
ds% = di + O (7r) d0x. ®)

Comparing (6) with (8), if we take 7 = 7g, 6 = 0r, Q (7) = Qg (7r), then we have an isometry
between Hy, , (7, 0) and Ry, (rr, Or ). Therefore, it follows that

\/gdr = @dm. )
GG
TR GG

We give the helicoidal surface of value (0, 1) using Bour’s theorem in this section.

Substituting the equation

into (9), we get the function gg. O

4. Helicoidal Surface of Value (0,1)

Proposition 1. A helicoidal surface of value (0,1): (see Figure 1)

rcos (0) — § cos (36)
Ho1 (r,0) = [ —rsin(6) — § sin (36) |- (10)
¢ (r)+ab
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is isometric to the rotational surface of value (0,1)

VG cos [<6+fédr)} - %\/acos [3 (B—i-fédr)}

Ry (7R, 0R) = —+/Gsin {(9—}— f édr)} — %\/@Sin [3 (9+ f %dr)}

¢r (TR)
where
n  [{3G*+4Gcos (46) — 2Gssin (46) + 1}]° det
R [r2{6r3 + 812 cos (40) +2r—1}]* G
4G%sin® [4 (0+ [ Lr)]
G {Gz +2G cos [4 (9 + [ édr)} + 1]

- {GZ—ZGCOS [4 (9+/§dr>} +1],

E = r*—2r%cos (46) +1+ ¢,
F = 2°sin(40) +ag/,
= r [r4 4 2r% cos (46) + 1] + a2,

detI=EG—F%,r,acRT,0<0<2m.

Proof. Taking m = 0, n = 1 in the previous theorem, we easily get the results. [

VS

3 ~— l“‘ o~
= 111 /##
,’I‘I/I//
: b

¥z
4 /<

LD L T LR IR i
-0.8-0.6-04-02 0 02 04 06 08
¥

Figure 1. Two views of the helicoidal surface of value (0,1), ¢ (r) = 2.

7

50f12

(11)

Corollary 1. Whena =0, ¢ (r) = r in (10), we obtain a rotational surface of value (0,1) (see Figure 2).
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Figure 2. Two views of the rotational surface of value (0,1), ¢ (r) =r.

2

Corollary 2. When a = 0and ¢ (r) = r*cos (20) in (10) , we have Enneper’s minimal surface (see Figure 3).

Figure 3. Two views of the Enneper minimal surface of value (0,1),a = 0, ¢ (r) = 1> cos (26).

Proposition 2. The mean curvature and the Gaussian curvature of (10) are as follows

1 4 6 4 2 2\ 1
H = —{r(—-1)(r’+2r"cos(40) +r“+a
2(det1)3/2{ ( ) (46) )
+7%(3r* + 21 cos (40) — 1) " — 6ar® sin(46) 9"
+[2r%(—57° + 1* — 342) cos (46) + 110 — 87° + 4a*r*

—1? —2a%]¢’ + 2ar (6r6 —2r* + az) sin(46)}

and

1
K = 3rt 4219 (r* — 1) cos(48) — 417 + %) ¢’
G 2 Dcostan) 47+ g
—2ar°(r* — 1) sin(46) }¢” + [—2r°(3r* + 1)
—2r(r® — 1) cos(40)]¢* — 2ar> (3 — 111*) sin(40)] ¢’

+4a%?(3r* — 1) cos(46) — a? (91’8 —2rt 4 1) .

respectively, where det] = EG — F?, ¢/ = ’Z—f, r,ac RT,0<0<2m.
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Proof. Taking the differential with respect to 7, 6 to Hy 1, we have

cos () — 12 cos (36)

(Hp1), = | —sin () —r?sin(30)
(P/
and
—rsin(f) + r3sin(30)
(Ho1)g = | —rcos(f) —r3cos(30) |,
a

The coefficients of the first fundamental form of the surface are

E = [r4 — 27 cos (40) + l] + ¢,
F = 2°sin(40) +a¢/,
= 7 [1’4 4 2r% cos (46) + 1} +a?

Then, we get

detlI = [r®+2r*cos (49) + 7] <p'2 — 4ar®sin (40) ¢’
10 2¢6 4 a?r* — 2a%1% cos (46) + r* 4 a%.

Using the second differentials

—2rcos (30) — sin() + 3r* sin(30)
(Hoi),, = | —2rsin(36) (Ho1),p = | —cos(8) —3r?cos(30) |,

) o
[

—rcos(8) + 313 cos(30)

(Hoj)gp = rsin(6 —|—3r sin(30) ,

and the Gauss map (the unit normal)

1 (3 cos (30) + rcos (0)) ¢’ — a(r? sin (30) + sin (0))
e=——— | (r*sin(30) —rsin ()¢’ + a(r*cos (30) — cos (6))

detI /5

@

—r

of the surface Hy 1, we have the coefficients of the second fundamental form of the surface as follows

1

L = ——[(r=1)¢" —r*(r* + cos (40)) ¢’ — 2arsin (40)],
detl[( )¢ ( (49)) e (40)]
1

M = 213 sin (30) ¢’ — 3ar* + 2ar? cos (460) + al,
L_piina)g (40) +a
1

N = ———[(3r° — 1>+ 2r* cos (40)) ¢’ — 2ar3 sin (40)].
L (40))9 (40

Therefore, we can see the results easily. O
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Corollary 3. If the helicoidal surface of value (0,1) is minimal, then we get the differential equation as follows
r(r* —1)(r® 4 2r* cos(40) + 1 + a?) "
+7%(3r* + 21 cos (48) — 1) " — 6ar® sin(46) 9"
+12r%(—5r° 4+ 12 — 3a%) cos (40) + 10 — 816 4 4a?r
2 —2a2)¢’ 4 2ar (61’6 —2r + a2) sin(46) = 0.

The helicoidal surface of value (1, 1) is the same surface for value three in [28].

5. Laplace-Beltrami Operator

The Laplace-Beltrami operator of a smooth function ¢ = ¢(r,0) |p (D C R3) of class C> with
respect to the first fundamental form of surface M is the operator A, which is defined as follows

12
A Y 12
v \f” 1ax’ <\/7g ax]) (12
where (g) = (giy) ' and g = det (8ij) - Clearly, we write A¢ as follows
Ap = 1 axl (\f‘o’ll%) oo (\fgu a¢) 13)
- 2 0 :
V8 | =g (Ve 5 + o (VES™3E)

Using a more transparent notation, we get

__1 [e G4’H—F‘Pv> <F<Pu E(Pvﬂ
AP vdet] [a”< det] R det I ’ (14)

where ¢ = det (g;j) = det .
Now, we consider the rotational surface

rcos (0) — gcos (360)

Ro1(r,0) = | —rsin(6) — @3 sin (30) |- (15)
¢ (r)
The first fundamental matrix of the surface is as follows
[ r* —2r2 cos (40) + 1 + ¢’ 273 sin (40)
N 2r3 sin (46) r2(r* +2r% cos (40) +1) |~

The inverse matrix of I is as follows

(Ifl) _ 1 2 (r* + 2r2 cos 46 + 1) —2r3sin 46
det! —2r3sin 40 r* — 212 cos46 + 1+ ¢

where
det] = ”2((74 - 2) r+ (r4 + 21 cos 40 + l) ¢ +1).

The Laplace-Beltrami operator ARy ; of a rotational surface R is given by

1 0 0
AR=——— (Z—U-=V),
vdet] (8r a0 >



Mathematics 2018, 6, 226 90f12

where
GR, — FRy Vo FR, — ERy

vdetl] ’ vdetl]

Then, we obtain the following results

U:

) —12 (r* — 1) (cos 0 + % cos 30)
U - 2 (r* — 1) (sinf — r?sin 36) ,
Vdet] r2¢/ (r* +2r2 cos (40) + 1)

r((1+¢?—rt)sind+r* (1 —r* — ¢*) sin30)
r((1+ ¢¥ —r*) cosf —r* (1 — r* — ') cos 30)
2r3¢’ sin (46)

1
det]

Using differentials of r, 8 on U, V, respectively, we get

1 0 ]
Ip _ _ Vv
AR = det! (81’ ©) 89( )>
3 J19'¢" + 29" + 39 + I

r N

= m Tl(p(p +T2¢/4+T3(P/2+T4 ,
Ql (PIS (PH + Q2 (P/Z (PH + QB(qu)N 4 Q4(P/3 + QS

where

Ji=r(1+rt—2%)cosf+7r3(2—1t —18) cos30 + 13 (1 — 1) cos 50 + 1° (1 — r*) cos 76,

Jo = —cos 0 + 4r* cos 0 + 3r° cos 30 + r2 cos 50 4 r* cos 76,

I3 = (=3+7r*+14r%) cos® + r?(—6+7r*+11r8) cos30 + 12 (1+3r*)cos50 +
r* (=34 7r*) cos 76,

Ja=2(—1+3r* =38 +r12) cos 6 + 6r> (=1 + 3r* — 3r® + r12) cos 36,

Ty =r(1—7r8)sind+r> (—1+78)sin360 + 213 (1 — r*) cos40sin 6 + 2r° (—1 + r*) sin 360 cos 46,

T,=(-1+ 4r4) cos 0 + 37° cos 30 + 12 cos 50 + r* cos 76,

T = (—2—3r*+5r%) cosf + (—1+6rt+3r%)sing + r?(3—6r*—58)sin30 +
3r2 (=1 —r*+2%) cos30 + r?(1—r*)cos50 + 8rfsinfcos4d + 4r* (1—3r?)sin36cos46
+ 1t (=1+71*) cos70,

Ty = (—1+43r* — 3r® +r12) (cos 6 + sin 0 + cos 30 — sin36),

Q1 =7+4r +2r° + 17 + 4 (r* + cos” 46) cos 46,

Qy = —r—2r" =17 — 413 (1 4+ r* + r? cos46) cos 49,

Qs=r—7 =1 +r134+2r3 (1 —2r* +18) cos 40,

Qu=1—4r*+3r8 — 212 (1 — 1) cos 46,

Qs =147r* — 98 + 112 472 (-2 + 12r* — 10r8) cos 46.

Remark 1. When the rotational surface Ro has the equation ARg1= 0, we have to solve the system of
equations as follows
Lho'e" + e+ 92+ s =0,
Ty gD/(P// + T2g0’4 + T3q)/2 + Ty =0,
Q] q)/3§0// + qu)/zqo// + ng)/q)// + Q4q0/3 + QS — 0

here, finding the function ¢ is a problem.
Corollary 4. When ¢ = c = const., then we get
2cos 0 + 612 cos 30

cos 0 + sin 0 + 312 (cos 30 — sin 30)
0

—14+ 3t =38 4412

ARp1 =
M2 —2) 1]
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6. Rotational Surface Satisfying ARg; = AR in k3

Theorem 2. Let Ro : M? — E3 be an isometric immersion given by (15). Then, ARy = AR, if and
only if M? has zero mean curvature.

Proof. The Gauss map of the rotational surface Ry ; is

1 (cos 0 + r? cos 30) ¢’
e=— | (—sin6+r*sin30)¢’ |,
W 4
—147
where
W= \/(74 —2)rt 4 (r* +2r2cos40 + 1) ¢’ + 1.
We use

—2He = AROJ, (16)

where A = (a;;) is a 3 x 3 matrix. The equation ARg1 = ARy by means of

[ r* —2r% cos (40) + 1 + ¢’ 273 sin (40)
B 2r3 sin (46) r2(r* +2r2cos (40) +1) |

and ARg1 = —2He give rise to the following system of ODEs

3 3
0O(cos 0 + % cos 30) ¢’ — ayy (r cos (0) — %cos (36)) —ap (—r sin (0) — %sin (39)> = a3,

3 3
Q(—sin6 +r?sin30) ¢’ — ay (rcos (0) — %cos (36)) ) (—rs'm (0) — %sin (36)) = @ap3,

3 3
Q (—1 + r4) = a3 (r cos (6) — %cos (39)) +az <—r sin (0) — %sin (39)) + @ass,

where Q (r) = 2. Differentiating the ODEs with respect to 6, we have

a13 = ap3 = a33 = 0, O (1’) =0. (17)
From (17), we get

3 3

—a (r cos (6) — 5 cos (30)) —ap (—r sin (0) — 3 sin (39)) = 0,
3 3

—a (rcos (0) — 5 cos (39)) —ax (—r sin (0) — 3 sin (39)) = 0,
3 3

as1 (TCOS () — 5 cos (39)) +az (r sin (0) — 7 sin (39)) = 0.

here, cos and sin are linearly independent functions of 6, then we have that a;; = 0. From Q) (r) = %,
we obtain H = 0. Finally, Rg 1 is a minimal rotational hypersurface. O
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