
 

 

 



FOREWORDS
Dear Conference Participants,

First of all, I would like to thank you for coming today to participate at this opening ceremony and I wish to
welcome you to Turkey and Kırşehir. I hope we will have a good time during this conference.

Kırşehir Ahi Evran University was founded on March 17, 2006 in Kırşehir which is located in the center of
Turkey. With approximately 22 thousand students and more than 800 academicians, our university is a young
and dynamic university. Our university consists of 39 academic units, including 8 faculties, 3 institutions, 5
schools of higher education, 7 vocational schools of higher education and 16 research and application centers,
and 7 different campuses in which education maintains.

Kırşehir Ahi Evran University, by the President of the Republic of Turkey Mr. Recep Tayyip Erdogan made a
statement on 18.01.2016, is selected as one of five pilot universities in the field of agriculture and geothermal by
within the scope of “Regional Development Focused Mission Differentiation and Specialization Project”. Ahi
Evran University is also the first and only university to be awarded the ISO 9001: 2015 Quality Management
System Certificate by successfully completing the ISO 9001: 2015 Quality Management Standard External
Audit Process with all its units.

The projects of our university are

• Geothermal Welding and Transmission to Project Fields

• Clustering Project in Thermal Sera

• Roughage Production Project

• Walnut-Focused Development and Development Project

• Geothermal Rehabilitation Center Project

• Sportsman Health Research, Application and Thermal Rehabilitation Center Project

• Training and Promotion Project of Pilot University Projects.

The fundamental duty of universities is to produce information. The means of these are conferences, sympo-
siums, workshops, etc. In this sense, we will discuss problems related to mathematics and reach to solutions in
this conference.

The purpose of this conference is to bring together experts and young analysts from all over the world working
in different fields of mathematics and its applications to present their researches, exchange new ideas, discuss
challenging issues, foster future collaborations and interact with each other.

This conference allows the participation of many prominent experts from different countries who will present
works on different fields of mathematics, especially fixed point theory, approximation theory, nonlinear analysis,
variational analysis, optimization, summability theory, sequence spaces, dynamical systems and their applica-
tions, and also algebra, geometry.

It bring together more than 130 participants from countries of different part of the world for example Algeria,
Ajarian, Azerbaijan, Egypt, Congo, Yemen, Korea, China, India, Iran, Sudan, Morocco, Saudi Arabia, Tunisia,
Ghana, Turkey, Uzbekistan, United States of America, Jordan, out of which 124 are contributing to the meeting
with oral and 3 with poster presentations, including five plenary talks.

We also thank pleanery speaker distinguished Prof. Mohammad MURSALEEN, distinguished Prof. Zuhair
NASHED, distinguished Prof. Jong Kyu KIM, distinguished Prof. Qamrul Hasan ANSARI and distinguished
Prof. Bayram ŞAHİN for contribution to the our symposium.

We hope to promote collaborative and networking opportunities among senior scholars and graduate students in
order to advance new perspectives. The additional emphasis at ICAA-2018 is to put importance on applications
in related areas, as well as other science, such as natural science, economics, computer science and various
engineering sciences.
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The papers presented in this conference will be considered in the journals listed on the conference websites and
below:

• Journal of Nonlinear and Convex Analysis (SCI-Exp.)

• Carpathian Journal of Mathematics (SCI-Exp.)

• Bulletin of Mathematical Analysis and Applications (E-SCI)

• Journal of Inequalities and Special Functions (E-SCI)

• Creative Mathematics and Informatics

• Istanbul Commerce University Journal of Science

• Nonlinear Functional Analysis and Applications (SCOPUS)

This booklet contains the titles and extended abstracts of some contributed talks at the 4th International Con-
ference on Analysis and Its Applications. Only some abstracts were not available at the time of printing the
booklet. They will be made available on the conference website icaa2018.ahievran.edu.tr when the organizers
receive them. All talks will take place in Faculty of Arts and Sciences in Ahi Evran University, Bağbaşı Campus,
Kırşehir/Turkey.

Finally, we thank you for your participation and wish you a productive time during conference in Kırşe-
hir, Turkey.

Prof. Vatan KARAKAYA
On Behalf of Organizing Committee

Chairman
(Rector of Kırşehir Ahi Evran University)
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Analysis is one of the most important topics in mathematics and has been a focus of attention of all great
mathematicians. There are many areas comes under this topic. However, this conference mainly devoted to
some selected topics from analysis, mainly, Theory of Summability and Approximation, Fixed Point Theory,
Fourier Analysis, Wavelet and Harmonic Analysis, Variational Analysis, Convex Analysis and Optimization,
Geometry of Banach Spaces, Sequence Spaces and Matrix Transformations. During the last half century,
nonlinear and variational analysis have been developed very rapidly because of their numerous applications
to optimization, control theory, economics, engineering, management, medical sciences and other disciplines.
On the other hand, the modern summability theory plays a very important role in linking theory of sequence
spaces and matrix transformations with measures of noncompactness. Measures of noncompactness are widely
used tools in fixed point theory, differential equations, functional equations, integral and integro-differential
equations, optimization, etc. In the recent years, measures of noncompactness have also been used in defining
geometric properties of Banach spaces as well as in characterizing compact operators between sequence spaces.
We expect the participation of many prominent experts from different countries who will present their current
research work and will also mention some hot topics for further research.

Prof. Qamrul Hasan ANSARI

It was a great moment of excitement when Prof. Vatan Karakaya, Rector, Ahi Evran University, discussed
with me the matter of organizing the “International Conference on Analysis and Its Applications (ICAA-2018)”
at Ahi Evran University, Kırşehir. Now it is a matter of great pleasure that the matter of holding this conference
is finally materialized. This conference is in the sequel of the first one which was held during December 19-21,
2015 (ICAA-2015) in Aligarh Muslim University, India with over 100 participants, the second one which was
held during July 12-15, 2016 (ICAA-2016) in Ahi Evran University, Kırşehir, Turkey with over 300 participants
and third one was held during November 20-22, 2017 (ICAA-2017) in Aligarh Muslim University, India, with
over 100 participants. Being one of the Co-Chairmen of the conference, I feel privileged and delighted to
welcome all delegates, eminent mathematicians, speakers and young researchers in this international event.
It is expected that the delegates and the participants will be benefitted by the experience of this conference
and the legacy of knowledge dissemination will be continued.I wish all of you to have a nice and enjoyable
participation in the conference.

Prof. Mohammad MURSALEEN
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• Res. Assist. Emirhan HACIOĞLU, Yildiz Technical University, Istanbul, Turkey

• Phd. Stud. Muhammed KNEFATIi, Yildiz Technical University, Istanbul, Turkey

• Msc. Stud. Zhamile ASKEROVA, Istanbul Commerce University, Turkey
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• Assist. Prof. Dr. Nil MANSUROĞLU, Ahi Evran University, Kirsehir, Turkey

• Assist. Prof. Dr. Sezin AYKURT SEPET, Ahi Evran University, Kirsehir, Turkey
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Ömer KİŞİ and Erhan GÜLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Lacunary I2-Invariant Convergence of Double Sequences of Functions on Amenable Semigroups
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Abstract: Supply of missing data is one of the image processing applications.
Shearlet transform, which is an important affine transformation, can be used for
multivariate data analysis. In this study, we used shearlet transform in the supply
of missing data and we compared the obtained results.

1. Introduction

In imaging science, image processing is any form of signal processing for which the input is an image,
such as a photograph or video frame; the output of image processing may be either an image or a set of
characteristics or parameters related to the image. Most image-processing techniques involve treating the image
as a two-dimensional signal and applying standard signal-processing techniques to it.

In almost any research performed, there is the potential for missing or incomplete data. Incomplete or
missing data can occur for many reasons. Incomplete data are a common occurrence and can have a significant
effect on the conclusions that can be drawn from the data. It can reduce the representativeness of the image and
can therefore distort inferences about the images. If it is possible, preventing data from missingness before the
actual data gathering takes place is useful. However, this technique may not be practical especially working
with medical data. In situations where incomplete data are likely to occur, the researcher is often advised to
plan to use robust methods of data analysis. Two recent papers related to supply of missing data (inpainting)
problem are interesting [2,3]. In [2] mathematical theory of shearlet and wavelet transforms related to inpainting
problem are studied and numerical application results are compared. In [3] several inpainting methods applied
to images with different maskings.

2. Basics Shearlet Transform

Shearlets has emerged in recent years with many successful applications; some related work can be listed
as [1,4,6,9]. The emergence of wavelets about 30 years ago represents a milestone in the development of efficient
encoding of piecewise regular signals. Wavelet Transform decomposes an image by projecting onto several
dilated and translated version of one single function, namely the mother wavelet. The key property enabling
such a unified treatment of the continuum and digital setting is a Multiresolution Analysis, which allows a direct
transition between the realms of real variable functions and digital signals. Despite their success, wavelets
unfortunately have a very limited ability to resolve edges and other distributed discontinuities which usually
occur in multidimensional data.Wavelet representations are optimal for approximating data with pointwise
singularities only and cannot handle equally well distributed singularities such as singularities along curves.
However, in dimensions two and higher, distributed discontinuities such as edges of surface boundaries are
usually present or even dominant, and as a result wavelets are far from optimal in dealing with multivariate data.
The limitations of wavelets and traditional multiscale systems have stimulated a flurry of activity involving

*Presented by Cuneyt YAZICI, cuneyt.yazici@kocaeli.edu.tr
†suleyman.cetinkaya@kocaeli.edu.tr
‡hkodal@kocaeli.edu.tr
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mathematicians, engineers, and applied scientists. In 2006, shearlets were introduced by Guo, Kutyniok, Labate,
Lim, and Weiss. This approach was derived within a larger class of affine-like systems the so-called composite
wavelets as a truly multivariate extension of the wavelet framework. One of the distinctive features of shearlets
is the use of shearing to control directional selectivity, in contrast to rotation used by curvelets. This is a
fundamentally different concept, since it allows shearlet systems to be derived from a single or finite set of
generators, and it also ensures a unified treatment of the continuum and digital world due to the fact that the
shear matrix preserves the integer lattice. The shearlet transform is a non-isotropic version of the wavelet
transform. It was shown that the asymptotic decay rate of the continuous shearlet transform, for fine scales, can
be used to find both the location and the orientation of the edges of an image, and that the coefficients of large
magnitude will come from edges. Also, the decay rate across scales can be used to distinguish between noise
spikes and edges.

3. The Supply of Missing Data (Image Inpainting)

The main inpainting methods are primarily divided into three categories: sparsity-based, variational, and
patch-based. Sparsity-based methods involve a combination of harmonic analysis with convex optimization (see,
for example, [7, 8, 10]). Recently the compressed sensing methodology, namely exact recovery of sparse or
sparsified data from highly incomplete linear nonadaptive measurements by l1 minimization or thresholding, has
been very effectively applied to this problem. The pioneering paper is [7] which uses curvelets as sparsifying
system for inpainting. Also, some work has been done to compare variational approaches with those built on l1
minimization [11, 12]. It also prohibits a deep understanding of why directional representation systems such
as shearlets outperform wavelets when inpainting images strongly governed by curvilinear structures such as
seismic images. Variational methods have been used on a number of papers in image processing literature.
A few of these are [13-16]. The main idea of variational-based inpainting is that information is propagated
from the boundary of the holes along isophotes (edges) in the image to fill them in. Many of the methods are
inspired by real physical processes, like diffusion, osmosis, and uid dynamics. In patch based or exemplar based
inpainting, information is also propagated from the edge(s) of the missing data inward. However, in contrast to
the variational approaches, the hole is iteratively filled using patches or averages of patches from other parts of
the image [3]. Some examples of exemplar based inpainting are [17-20].

4. Numerical Results

In this study, we want to present the results of our approach with two medical images. This two images,
obtained through Medical School’s Hospital at Kocaeli University in Turkey, are vessel contour image shown in
Fig. 1 (a) and chest X-ray image in Fig. 1 (b).

Fig. 1. (a) Vessel contour image; (b) Chest X-Ray image

Our contribution is two-fold. We will present a horizontal masking of arbitrary height, a circular masking
of arbitrary radius and an elliptic masking of arbitrary semi-major and semi-minor axis lengths. Then we will
describe the missing traces recovery as an image inpainting problem using shearlets with iterative thresholding
for medical images. Also we will give the PSNR values for all mask situations.

Horizontal masking code is written for arbitrary height, Circular masking code is written for arbitrary
radius and elliptic masking code is written for arbitrary semi-major and semi-minor axis lengths in Matlab. A
horizontal masking is shown in Figure 2 (a), a circular masking is shown in Figure 2 (b) and an elliptic masking
is shown in Figure 2 (c). Obtained all maskings are applied to two images, see Figures 3(b), 4(b), 5(b), 6(b) and
7(b), 8(b). Masked images are inpainted by shearlets shown in Figures 3(c), 4(c), 5(c), 6(c) and 7(c), 8(c). For
shearlets, some part of the shearlet program codes are obtained at the shearlet web site [5].

The algorithms for both horizontal masking and shearlet inpainting problem are shown in Table 1 and
Table 2, respectively. The algorithms for other masking situations are shown similarly.
The phrase peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term for the ratio between
the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its
representation. Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of
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Fig. 2. (a) Horizontal Masking; (b)Circular Masking; (c) Elliptic Masking

Fig. 3. (a) Vessel Contour image; (b) Vessel Contour image after horizontal masking; (c) inpainting of Vessel
Contour image with shearlet transformation

Fig. 4. (a) Chest X-ray image; (b) Chest X-ray image after horizontal masking; (c) inpainting of Chest X-ray
image with shearlet transformation

Fig. 5. (a) Vessel Contour image; (b) Vessel Contour image after circular masking; (c) inpainting of Vessel
Contour image with shearlet transformation

Fig. 6. (a) Chest X-ray image; (b) Chest X-ray image after circular masking; (c) inpainting of Chest X-ray
image with shearlet transformation

the logarithmic decibel scale. As a performance measure, computation of PSNR values can be calculated as
PSNR = 10log10

(
MAXI

2

MSE

)
.

Here, MAXI is the maximum possible pixel value of the image. The mean squared error (MSE) which for
two m×n monochrome images I and K where one of the images is considered a noisy approximation of the
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Fig. 7. (a) Vessel Contour image; (b) Vessel Contour image after elliptic masking; (c) inpainting of Vessel
Contour image with shearlet transformation

Fig. 8. (a) Chest X-ray image; (b) Chest X-ray image after elliptic masking; (c) inpainting of Chest X-ray
image with shearlet transformation

Table 1. Horizontal Mask Pseudocode
Parameters:
Height parameter h.
Image size parameters.
Zero matrix with the same size as the image matrix.
Step size.
Algorithm:
Obtaining horizontal mask with height h.
Flooring horizontal masks with height h in the whole image.
Output:
Horizontal mask matrix.

Table 2. Inpainting Algorithm Pseudocode with Shearlet Transformation
Parameters:
Image.
Horizontal mask.
Iteration parameter.
Shearlet transformation filters.
Algorithm:
1. Applying horizontal mask algorithm to image.
2. Determining threshold value using iterative thresholding.
3. Obtaining image with shearlet transformation.
4. Calculating PSNR values.
Output:
Horizontal masked image.
Inpainted image.
PSNR values.

other is defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

( I(i.j)−K(i, j) )2.

In Table 3, it can be seen PSNR values of shearlet inpainting method with horizontal masking, In Table 4, it can
be seen PSNR values of shearlet inpainting method with circular masking and In Table 5, it can be seen PSNR
values of shearlet inpainting method with elliptic masking.
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Table 3. Comparison the PSNR values of shearlet inpainting method for the medical images with horizontal
masking

Image h=5 h=6 h=7 h=8
Vessel con-
tour

32,8797dB 31.5355dB 31.3063dB 30.9861dB

Chest
X-ray

46,9872dB 45.8738dB 45.2786dB 43.8633dB

Table 4. Comparison the PSNR values of shearlet inpainting method the medical images with circular mask-
ing

Image r=8 r=10 r=12 r=15
Vessel con-
tour

34.5548dB 31.2077dB 28.7652dB 25.5612dB

Chest
X-ray

39.7342dB 38.0187dB 36.8234dB 33.7826dB

Table 5. Comparison the PSNR values of shearlet inpainting method for the medical images with elliptic
masking

Image a=10, b=5 a=10, b=7 a=9, b=12 a=10,b=15 a=14,b=15
Vessel con-
tour

34.7668dB 33.1736dB 31.2363dB 29.0471dB 25.2422dB

Chest
X-ray

35.9250dB 34.6950dB 31.1084dB 29.0614dB 27.2058dB

5. Conclusions

In this paper we develop and use a horizontal masking algorithm with arbitrary height for medical images,
we develop and use a circular masking algorithm with arbitrary radius for medical images and we develop and
use an elliptic masking algorithm for arbitrary semi-major and semi-minor axis lengths. Also we observed
that, we apply shearlet image inpainting to recover horizontal masked data including two medical images with
20% of the test data masked, we apply shearlet image inpainting to recover circular masked data including two
medical images with 22% of the test data masked and we apply shearlet image inpainting to recover elliptic
masked data including two medical images with 23.5% of the test data masked.
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Abstract: In this paper, we give definitions of asymptotically ideal equiva-
lent, asymptotically invariant equivalent and strongly asymptotically invariant
equivalent for double sequences. Also, we give some properties and examine the
existence relationships among these new type equivalence concepts.

1. Introduction and Background

Let σ be a mapping of the positive integers into themselves. A continuous linear functional φ on `∞, the space
of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1, ...) and

3. φ(xσ(n)) = φ(xn) for all x ∈ `∞.

The mappings σ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m, where
σm(n) denotes the m th iterate of the mapping σ at n. Thus, φ extends the limit functional on c, the space of
convergent sequences, in the sense that φ(x) = limx for all x ∈ c.

In the case σ is translation mappings σ(n) = n+1, the σ -mean is often called a Banach limit and the space Vσ ,
the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences
ĉ. It can be shown that

Vσ =

{
x = (xn) ∈ `∞ : lim

m→∞

1
m

m

∑
k=1

xσk(n) = L, uniformly in n

}
.

Several authors have studied invariant convergent sequences (see, [11–15, 19–21, 23–25]). The concept of
strongly σ -convergence was defined by Mursaleen in [12]:

A bounded sequence x = (xk) is said to be strongly σ -convergent to L if

lim
m→∞

1
m

m

∑
k=1
|xσ k(n)−L|= 0,

uniformly in n. It is denoted by xk→ L[Vσ ].

By [Vσ ], we denote the set of all strongly σ -convergent sequences.

*edundar@aku.edu.tr
†ulusu@aku.edu.tr
‡fnuray@aku.edu.tr
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In the case σ(n) = n+1, the space [Vσ ] is the set of strongly almost convergent sequences [ĉ].

The concept of strongly σ -convergence was generalized by Savaş [20] as below:

[Vσ ]p =

{
x = (xk) : lim

m→∞

1
m

m

∑
k=1
|xσ k(n)−L|p = 0, uniformly in n

}
,

where 0 < p < ∞.

If p = 1, then [Vσ ]p = [Vσ ]. It is known that [Vσ ]p ⊂ `∞.

The idea of statistical convergence was introduced by Fast [6] and studied by many authors. The concept of
σ -statistically convergent sequence was introduced by Savaş and Nuray in [23]. The idea of I -convergence
was introduced by Kostyrko et al. [8] as a generalization of statistical convergence which is based on the
structure of the ideal I of subset of the set of natural numbers N. Similar concepts can be seen in [7, 14].

A family of sets I ⊆ 2N is called an ideal if and only if (i) /0 ∈I , (ii) For each A,B ∈I we have A∪B ∈I ,
(iii) For each A ∈I and each B⊆ A we have B ∈I .

An ideal is called non-trivial if N /∈I and non-trivial ideal is called admissible if {n} ∈I for each n ∈ N.

Recently, the concepts of σ -uniform density of subset A of the set N and corresponding Iσ -convergence for real
number sequences was introduced by Nuray et al. [14]. Marouf [10] presented definitions for asymptotically
equivalent sequences and asymptotic regular matrices. Then, the concept of asymptotically equivalence has
been developed by many other researchers (see, [16, 17, 22]).

Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically equivalent if lim
k

xk
yk

= 1. It is

denoted by x∼ y.

Convergence and I -convergence of double sequences in a metric space and some properties of this convergence,
and similar concepts which are noted following can be seen in [1, 2, 9, 18].

A double sequence x = (xk j) is said to be bounded if supk, j xk j < ∞. The set of all bounded double sequences of
sets will be denoted by `2

∞.

A nontrivial ideal I2 of N×N is called strongly admissible ideal if {i}×N and N×{i} belong to I2 for each
i ∈ N.

It is evident that a strongly admissible ideal is admissible also.

Let (X ,ρ) be a metric space and I2 be a strongly admissible ideal in N × N.
A sequence x = (xmn) in X is said to be I2-convergent to L ∈ X , if for any ε > 0

A(ε) =
{
(m,n) ∈ N×N : ρ(xmn,L)≥ ε

}
∈I2.

It is denoted by I2− lim
m,n→∞

xmn = L.

Let A⊆ N×N and

smn := min
k, j

∣∣A∩
{(

σ(k),σ( j)
)
,
(
σ2(k),σ2( j)

)
, ...,

(
σm(k),σn( j)

)}∣∣

and
Smn := max

k, j

∣∣A∩
{(

σ(k),σ( j)
)
,
(
σ2(k),σ2( j)

)
, ...,

(
σm(k),σn( j)

)}∣∣.

If the following limits exists

V2(A) := lim
m,n→∞

smn

mn
and V2(A) := lim

m,n→∞

Smn

mn
,

then they are called a lower and an upper σ -uniform density of the set A, respectively. If V2(A) =V2(A), then
V2(A) =V2(A) =V2(A) is called the σ -uniform density of A.

Denote by I σ
2 the class of all A⊆ N×N with V2(A) = 0.

Throughout the paper we let I σ
2 ⊂ 2N×N be a strongly admissible ideal.

Dündar et al. [3] studied the concepts of invariant convergence, strongly invariant convergen, p-strongly
invariant convergen and ideal invariant convergence of double sequences.

A double sequence x = (xk j) is said to be I2-invariant convergent or I σ
2 -convergent to L if for every ε > 0

A(ε) =
{
(k, j) : |xk j−L| ≥ ε

}
∈I σ

2 ,
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that is, V2
(
A(ε)

)
= 0. In this case, we write I σ

2 − limx = L or xk j→ L(I σ
2 ).

The set of all I2-invariant convergent double sequences will be denoted by Iσ
2 .

A double sequence x = (xk j) is said to be strongly invariant convergent to L if

lim
m,n→∞

1
mn

m,n

∑
k, j=1,1

∣∣xσk(s),σ j(t)−L
∣∣= 0,

uniformly in s, t. In this case, we write xk j→ L
(
[V 2

σ ]
)
.

A double sequence x = (xk j) is said to be p-strongly invariant convergent to L, if

lim
m,n→∞

1
mn

m,n

∑
k, j=1,1

∣∣xσ k(s),σ j(t)−L
∣∣p = 0,

uniformly in s, t, where 0 < p < ∞. In this case, we write xk j→ L
(
[V 2

σ ]p
)
.

The set of all p-strongly invariant convergent double sequences will be denoted by [V 2
σ ]p.

Hazarika [4] introduced the notion of asymptotically I -equivalent sequences and investigated some properties
of it. Definitions of P-asymptotically equivalence, asymptotically statistical equivalence and asymptotically
I2-equivalence of double sequences were presented by Hazarika and Kumar [5] as following:

Two nonnegative double sequences x = (xkl) and x = (ykl) are said to be
P-asymptotically equivalent if

P− lim
k,l

xkl

ykl
= 1,

denoted by x∼P y.
Two nonnegative double sequences x = (xkl) and y = (ykl) are said to be asymptotically statistical equivalent of
multiple L provided that for every ε > 0

P− lim
m,n

1
mn

∣∣∣∣
{

k ≤ m, l ≤ n :
∣∣∣∣

xkl

ykl
−L
∣∣∣∣
}∣∣∣∣= 0,

denoted by x∼S L
y and simply asymptotically statistical equivalent if L = 1.

Two nonnegative double sequences x = (xkl) and x = (ykl) are said to be asymptotically I2-equivalent of
multiple L provided that for every ε > 0

{
(k, l) ∈ N×N :

∣∣∣∣
xkl

ykl
−L
∣∣∣∣≥ ε

}
∈I2.

denoted by x∼I L
2 y and simply asymptotically I2-equivalent if L = 1.

2. Asymptotically I σ
2 -Equivalence

Definition 2.1 Two nonnegative double sequences x = (xkl) and y = (ykl) are said to be asymptotically invariant
equivalent or asymptotically σ2-equivalent of multiple L if

lim
m,n→∞

1
mn

m,n

∑
k,l=1,1

xσ k(s),σ l(t)

yσ k(s),σ l(t)
= L,

uniformly in s, t. In this case, we write x
V σ

2(L)∼ y and simply σ2-asymptotically equivalent, if L = 1.

Definition 2.2 Two nonnegative double sequences x = (xkl) and y = (ykl) are said to be asymptotically I σ
2 -

equivalent of multiple L if for every ε > 0,

Aε :=
{
(k, l) ∈ N×N :

∣∣∣∣
xkl

ykl
−L
∣∣∣∣≥ ε

}
∈I σ

2 ,

i.e., V2(Aε) = 0. In this case, we write x
I σ

2(L)∼ y and simply asymptotically
I σ

2 -equivalent, if L = 1.
The set of all asymptotically I σ

2 -equivalent of multiple L sequences will be denoted by Iσ
2(L).

Theorem 2.3 Suppose that x = (xkl) and y = (ykl) are bounded double sequences. If x and y are asymptotically
I σ

2 -equivalent of multiple L, then these sequences are σ2-asymptotically equivalent of multiple L.
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Proof. Let m,n,s, t ∈ N be arbitrary and ε > 0. Now, we calculate

u(m,n,s, t) :=

∣∣∣∣∣
1

mn

m,n

∑
k,l=1,1

xσ k(s),σ l(t)

yσk(s),σ l(t)
−L

∣∣∣∣∣ .

We have
u(m,n,s, t)≤ u(1)(m,n,s, t)+u(2)(m,n,s, t),

where

u(1)(m,n,s, t) :=
1

mn

m,n

∑
k,l=1,1∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ε

∣∣∣∣∣
xσk(s),σ l(t)

yσk(s),σ l(t)
−L

∣∣∣∣∣

and

u(2)(m,n,s, t) :=
1

mn

m,n

∑
k,l=1,1∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣<ε

∣∣∣∣∣
xσ k(s),σ l(t)

yσ k(s),σ l(t)
−L

∣∣∣∣∣.

We get u(2)(m,n,s, t)< ε , for every s, t = 1,2, ... . The boundedness of x = (xkl) and y = (ykl) implies that there
exists a M > 0 such that ∣∣∣∣∣

xσk(s),σ l(t)

yσ k(s),σ l(t)
−L

∣∣∣∣∣≤M,

for k, l = 1,2, ..., s, t = 1,2, ... . Then, this implies that

u(1)(m,n,s, t) ≤ M
mn

∣∣∣∣
{

1≤ k ≤ m, 1≤ l ≤ n :
∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ ε

}∣∣∣∣

≤ M
max

s,t

∣∣∣∣
{

1≤ k ≤ m, 1≤ l ≤ n :
∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ ε

}∣∣∣∣
mn

= M
Smn

mn
,

hence x and y are σ2-asymptotically equivalent to multiple L.

The converse of Theorem 2.3 does not hold. For example, x = (xkl) and y = (ykl) are the double sequences
defined by following;

xkl :=





2 , if k+ l is an even integer,

0 , if k+ l is an odd integer.

ykl := 1

When σ(m) = m + 1 and σ(n) = n + 1, this sequences are asymptotically
σ2-equivalent but they are not asymptotically I σ

2 -equivalent.
Definition 2.4 Two nonnegative double sequence x = (xkl) and y = (ykl) are said to be strongly asymptotically
invariant equivalent or strongly asymptotically σ2-equivalent of multiple L if

lim
m,n→∞

1
mn

m,n

∑
k,l=1,1

∣∣∣∣∣
xσ k(s),σ l(t)

yσ k(s),σ l(t)
−L

∣∣∣∣∣= 0,

uniformly in s, t. In this case, we write x
[V σ

2(L)]∼ y and simply strongly asymptotically σ2-equivalent if L = 1.

Definition 2.5 Let 0 < p < ∞. Two nonnegative double sequence x = (xkl) and y = (ykl) are said to be
p-strongly asymptotically invariant equivalent or p-strongly asymptotically σ2-equivalent of multiple L if

lim
m,n→∞

1
mn

m,n

∑
k,l=1,1

∣∣∣∣∣
xσk(s),σ l(t)

yσk(s),σ l(t)
−L

∣∣∣∣∣

p

= 0,

uniformly in s, t. In this case, we write x
[V σ

2(L)]p∼ y and simply p-strongly asymptotically σ2-equivalent if L = 1.
The set of all p-strongly asymptotically σ2-equivalent of multiple L sequences will be denoted by [V σ

2(L)]p.
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Theorem 2.6 Let 0 < p < ∞. Then, x
[V σ

2(L)]p∼ y⇒ x
I σ

2(L)∼ y.

Proof. Let x
[V σ

2(L)]p∼ y and given ε > 0. Then, for every s, t ∈ N we have

m,n
∑

k,l=1,1

∣∣∣∣
xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣

p

≥
m,n
∑

k,l=1,1∣∣∣∣
xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ε

∣∣∣∣
xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣

p

≥ ε p
∣∣∣∣
{

1≤ k ≤ m,1≤ l ≤ n :
∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ ε

}∣∣∣∣

≥ ε p max
s,t

∣∣∣∣
{

1≤ k ≤ m,1≤ l ≤ n :
∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ ε

}∣∣∣∣

and

1
mn

m,n
∑

k,l=1,1

∣∣∣∣
xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣

p

≥ ε p
max

s,t

∣∣∣∣
{

1≤ k ≤ m,1≤ l ≤ n :
∣∣∣∣

xσk(s),σ l (t)
yσk(s),σ l (t)

−L
∣∣∣∣≥ ε

}∣∣∣∣
mn

= ε p Smn

mn

for every s, t = 1,2, ... . This implies lim
m,n→∞

Smn

mn
= 0 and so x

I σ
2(L)∼ y.
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Abstract: We define Ulisse Dini-type helicoidal hypersurfaces with spacelike
axis in Minkowski 4-space E4

1. We compute the Gaussian and the mean curva-
ture of the hypersurface. Moreover, we obtain some special symmetries to the
curvatures when they are flat and maximal.

1. Introduction

After Chen and Piccini [5] the submanifolds theory of finite type in space forms has been studied by many
geometers [1, 2], [4]-[9], [13]-[23], [25], [28]-[30], [33]
General rotational surfaces as a source of examples of surfaces in the four dimensional Euclidean space were
introduced by Moore [26, 27]. Ganchev and Milousheva [14] considered the analogue of these surfaces in
the Minkowski 4-space. They classified completely the minimal general rotational surfaces and the general
rotational surfaces consisting of parabolic points. Verstraelen, Valrave and Yaprak [32] studied the minimal
translation surfaces in En for arbitrary dimension n.
In classical surface geometry in Euclidean space, it is well known that the right helicoid (resp. catenoid) is
the only ruled (resp. rotational surface) which is minimal. If we focus on the ruled (helicoid) and rotational
characters, we have Bour’s theorem in [3].
Do Carmo and Dajczer [11] proved that there exists a two-parameter family of helicoidal surfaces isometric to a
given helicoidal surface using a result of Bour [3] in Euclidean 3-space E3.
There are only a few works in the literature about Italian Matematician Ulisse Dini’s helicoidal surface [10] in
E3.
In this paper, we consider the Ulisse Dini-type helicoidal hypersurface with spacelike axis in Minkowski 4-space
E4

1. We indicate basic notions of 4-dimensional Minkowskian geometry, and define helicoidal hypersurface in
section 2. Moreover, we obtain the Ulisse Dini-type helicoidal hypersurface, and then calculate its curvatures
with some interesting symmetric results in the last section.

2. Helicoidal hypersurface with spacelike axis in Minkowski 4-space

A rotational hypersurface M ⊂ En
1 generated by a curve C around an axis ` that does not meet C is obtained

by taking the orbit of C under those orthogonal transformations of En
1 that leave ` pointwise fixed (See [12,

Remark 2.3]).
Suppose that when a curve C rotates around the axis `, it simultaneously displaces parallel lines orthogonal
to the axis `, so that the speed of displacement is proportional to the speed of rotation. Then the resulting
hypersurface is called the helicoidal hypersurface with axis ` and pitches a,b ∈ R\{0}.
Consider the particular case n = 4 and let C be the curve parametrized by

γ(u) = (ϕ(u), f (u) ,0,0) . (2.1)
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If ` is the spacelike x1-axis, then an orthogonal transformation of En
1 that leaves ` pointwise fixed has the form

Z(v,w) as follows

Z(v,w) =




1 0 0 0
0 coshw 0 sinhw
0 sinhvsinhw coshv coshwsinhv
0 coshvsinhw sinhv coshvcoshw


 , (2.2)

where
ZT εZ = ZεZT = ε, Z`= `, detZ = 1, ε = diag(1,1,1,−1) ,

v,w ∈ R. Therefore, the parametrization of the rotational hypersurface generated by a curve C around an axis `
is

H(u,v,w) = Z(v,w)γ(u)T +(av+bw)(1,0,0,0)T , (2.3)

where u ∈ I, v,w ∈ [0,2π] , a,b ∈ R\{0}.
Clearly, we write an helicoidal hypersurface with spacelike axis as follows:

H(u,v,w) =




ϕ(u)+av+bw
f (u)sinhw

f (u)sinhvcoshw
f (u)coshvcoshw


 . (2.4)

When w = 0, we have an helicoidal surface with spacelike axis in E4
1.

In the rest of this paper, we shall identify a vector (a,b,c,d) with its transpose (a,b,c,d)T . Let M = M(u,v,w)
be an isometric immersion of a hypersurface M3 in E4

1. The Minkowski inner product of −→x = (x1,x2,x3,x4),−→y = (y1,y2,y3,y4) is defined as follows

−→x ·−→y =
3

∑
i=1

xiyi− x4y4,

and triple Minkowski vector product of −→x ×−→y ×−→z is defined as follows

(x2y3z4− x2y4z3− x3y2z4 + x3y4z2 + x4y2z3− x4y3z2,
− x1y3z4 + x1y4z3 + x3y1z4− x3z1y4− y1x4z3 + x4y3z1,
x1y2z4− x1y4z2− x2y1z4 + x2z1y4 + y1x4z2− x4y2z1,
x1y2z3− x1y3z2− x2y1z3 + x2y3z1 + x3y1z2− x3y2z1).

For a hypersurface M in E4
1, the first fundamental form matrix is as follows I =

(
gi j

)
3×3 , and detI =

det
(

gi j
)
,and then, the second fundamental form matrix is II =

(
hi j

)
3×3 , and detII = det

(
hi j

)
,where

1≤ i, j ≤ 3,

g11 = Mu ·Mu, g12 = Mu ·Mv, ..., g33 = Mw ·Mw,

h11 = Muu ·G, h12 = Muv ·G, ..., h33 = Mww ·G,

” ·” means Lorentzian dot product, and some partial differentials that we represent are Mu =
∂M
∂u , Muw = ∂ 2M

∂u∂w ,

G =
Mu×Mv×Mw

‖Mu×Mv×Mw‖

is the Gauss map (i.e. the unit normal vector). The product matrices
(

gi j
)−1

.
(

hi j
)
,gives the matrix of the

shape operator (i.e. Weingarten map) S as follows S = 1
detI
(

si j
)

3×3 , where si j
detI = g−1

i j .hi j. So, we get the
formulas of the Gaussian curvature and the mean curvature, respectively, as follows

K = det(S) =
detII
detI

, (2.5)

and
H =

1
3

tr (S) . (2.6)
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3. Dini-Type Helicoidal Hypersurface with Spacelike Axis

Taking f (u) = sinhu in (2.4) , we get Dini-type helicoidal hypersurface with spacelike axis in E4
1 as follows

D(u,v,w) =




ϕ(u)+av+bw
sinhusinhw

sinhusinhvcoshw
sinhucoshvcoshw


 , (3.1)

where u ∈ R\{0} and 0≤ v,w < 2π.
Using the first differentials of (3.1) with respect to u,v,w, we get the first quantities

I =




ϕ ′2− cosh2 u aϕ ′ bϕ ′
aϕ ′ sinh2 ucosh2 w+a2 ab
bϕ ′ ab sinh2 u+b2


 ,

and have
detI =

{
ϕ ′2 sinh2 ucosh2 w−

[
a2 +

(
b2 + sinh2 u

)
cosh2 w

]
cosh2 u

}
sinh2 u,

where ϕ = ϕ(u), ϕ ′ = dϕ
du . By using the second differentials we have the second quantities

II =




sinh2 ucoshw(−ϕ ′′ coshu+ϕ ′ sinhu)√
‖detI‖

asinhucosh2 ucoshw√
‖detI‖

bsinhucosh2 ucoshw√
‖detI‖

asinhucosh2 ucoshw√
‖detI‖

sinh2 ucosh2 w(ϕ ′ sinhucoshw−bcoshusinhw)√
‖detI‖

asinh2 ucoshusinhw√
‖detI‖

bsinhucosh2 ucoshw√
‖detI‖

asinh2 ucoshusinhw√
‖detI‖

ϕ ′ sinh3 ucoshw√
‖detI‖



,

and we get

detII =




−ϕ ′2ϕ ′′ sinh8 ucoshucosh5 w+bϕ ′ϕ ′′ sinh7 ucosh2 usinhwcosh4 w
+a2ϕ ′′ sinh6 ucosh3 usinh2 wcoshw+ϕ ′3 cosh5 wsinh9 u

−bϕ ′2 sinh8 ucoshucosh4 wsinhw
−
[
a2 sinh2 usinh2 w+

(
a2 +b2 cosh2 w

)
cosh2 ucosh2 w

]
ϕ ′ sinh5 ucosh2 ucoshw

+b
(
2a2 +b2 cosh2 w

)
sinh4 ucosh5 usinhwcosh2 w




(detI)3/2 .

The Gauss map of the hypersurface is given by

eD =
1√
detI




−sinh2 ucoshucoshw
(−ϕ ′ sinhusinhw−bcoshucoshw)sinhucoshw

(−ϕ ′ sinhusinhvcosh2 w+acoshucoshv+bcoshusinhvsinhwcoshw)sinhu
(−ϕ ′ sinhucoshvcosh2 w+acoshusinhv+bcoshucoshvsinhwcoshw)sinhu


 . (3.2)

Finally, we calculate the Gaussian curvature of the helicoidal hypersurface with spacelike axis as follows

K =
α1ϕ ′2ϕ ′′+α2ϕ ′ϕ ′′+α3ϕ ′′+α4ϕ ′3 +α5ϕ ′2 +α6ϕ ′+α7

(detI)5/2 ,

where
α1 =−sinh8 ucoshucosh5 w,
α2 = bsinh7 ucosh2 usinhwcosh4 w,
α3 = a2 sinh6 ucosh3 usinh2 wcoshw,
α4 = sinh9 ucosh5 w,
α5 =−bsinh8 ucoshucosh4 wsinhw,
α6 =−

[
a2 sinh7 usinh2 w+

(
a2 +b2 cosh2 w

)
sinh5 ucosh2 ucosh2 w

]
cosh2 ucoshw,

α7 = b
(
2a2 +b2 cosh2 w

)
sinh4 ucosh5 usinhwcosh2 w.

Then we calculate the mean curvature of the helicoidal hypersurface with spacelike axis as follows

H =
β1ϕ ′′+β2ϕ ′3 +β3ϕ ′2 +β4ϕ ′+β5

3(detI)3/2 ,

where
β1 =−

[
sinh6 ucosh3 w+

(
a2 +b2 cosh2 w

)
sinh4 ucoshw

]
coshu
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β2 =+2sinh5 ucosh3 w,
β3 =−bsinh4 ucoshusinhwcosh2 w,
β4 = sinh7 ucosh3 w+

(
a2 +b2 cosh2 w

)
sinh5 ucoshw−2sinh5 ucosh2 ucosh3 w

−3
(
a2 +b2 cosh2 w

)
sinh3 ucosh2 ucoshw,

β5 =+bsinh4 ucosh3 ucosh2 wsinhw+b
(
2a2 +b2 cosh2 w

)
sinh2 ucosh3 usinhw.

Theorem 1. Let D : M3 −→ E4
1 be an immersion given by (3.1). Then M3 is flat if and only if

α1ϕ ′2ϕ ′′+α2ϕ ′ϕ ′′+α3ϕ ′′+α4ϕ ′3 +α5ϕ ′2 +α6ϕ ′+α7 = 0.

Theorem 2. Let D : M3 −→ E4
1 be an immersion given by (3.1). Then M3 is maximal if and only if

β1ϕ ′′+β2ϕ ′3 +β3ϕ ′2 +β4ϕ ′+β5 = 0.

Finding solutions of these two equations are attracted problems.

Proposition 1. If D is Dini-type maximal helicoidal hypersurface with spacelike axis (i.e. H = 0) in Minkowski
4-space, taking (as in Dini helicoidal surface in Euclidean 3-space)

ϕ(u) = coshu+ log
(

tanh
u
2

)
,

then we get
6

∑
i=0

Ai tanhi
( u

2

)
= 0, (3.3)

where
A6 =−β2,
A5 = 2β1 +6β2 sinhu+2β3,

A4 =
(
3−12sinh2 u

)
β2−8β3 sinhu−4β4,

A3 = 8β1 coshu+
(
8sinh3 u−12sinhu

)
β2 +

(
8sinh2 u−4

)
β3 +8β4 sinhu+8β5,

A2 =
(
−3+12sinh2 u

)
β2 +8β3 sinhu+4β4,

A1 =−2β1 +6β2 sinhu+2β3,
A0 = β2.

(3.4)

Proposition 2. If D is Dini-type flat hypersurface with spacelike axis (i.e. K = 0) in Minkowski 4-space, taking
(as in Dini helicoidal surface in Euclidean 3-space)

ϕ(u) = coshu+ log
(

tanh
u
2

)
,

then we get
8

∑
i=0

Bi tanhi
( u

2

)
= 0, (3.5)

where
B8 = α1,
B7 =−4α1 sinhu−2α2−2α4,

B6 =
(
−2+4sinh2 u+4coshu

)
α1 +4α2 sinhu+4α3 +12α4 sinhu+4α5,

B5 = (4sinhu−16coshusinhu)α1 +(2−8coshu)α2 +
(
6−24sinh2 u

)
α4

−16α5 sinhu−8α6,

B4 =
(
−8coshu+16coshusinh2 u

)
α1 +16α2 coshusinhu+16α3 coshu

+
(
16sinh3 u−24sinhu

)
α4 +

(
16sinh2 u−8

)
α5 +16α6 sinhu+16α7,

B3 = (4sinhu+16coshusinhu)α1 +2α2 +8α2 coshu+
(
−6+24sinh2 u

)
α4

+16α5 sinhu+8α6,

B2 =
(
2−4sinh2 u+4coshu

)
α1−4α2 sinhu−4α3 +12α4 sinhu+4α5,

B1 =−4α1 sinhu−2α2 +2α4,
B0 =−α1.

(3.6)
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Corollary 1. In Proposition 1, and Proposition 2, we see the following special symmetries, respectively:

A6 ∼ A0, A5 ∼ A1, A4 ∼ A2,

and
B8 ∼ B0, B7 ∼ B1, B6 ∼ B2, B5 ∼ B3,

where ” ∼ ” means the αi (i = 1,2, ...,7) and β j ( j = 1,2, ...,5) term coefficients which ignored signs, respec-
tively, are equal.
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Abstract: We consider torus hypersurface in the four dimensional Euclidean
space E4. We give some basic notions of E4, then we define rotational hypersur-
face. Finally, we define torus hypersurface, and calculate its curvatures with some
results.

1. Introduction

General rotational surfaces in the 4-dimensional Euclidean space were introduced by Moore [37, 38]. Then the
topic has been studied by many geometers such as [1]-[36], [39]-[45].
Ganchev and Milousheva [24] considered the analogue of these surfaces in the Minkowski 4-space. Magid,
Scharlach and Vrancken [36] introduced the affine umbilical surfaces in 4-space. considered hypersurfaces
in E4 with harmonic mean curvature vector field. Scharlach [40] studied on affine geometry of surfaces and
hypersurfaces in 4-space. Cheng and Wan [14] considered complete hypersurfaces of 4-space with constant
mean curvature.
Güler, Magid and Yaylı [29] studied Laplace Beltrami operator of a helicoidal hypersurface in E4. Güler,
Hacisalihoglu and Kim [26] worked on the Gauss map and the third Laplace-Beltrami operator of rotational
hypersurface in E4. Güler, Kaimakamis and Magid [27] introduced the helicoidal hypersurfaces in Minkowski
4-space E4

1. Güler and Turgay [30] studied Cheng-Yau operator and Gauss map of rotational hypersurfaces in
E4. Moreover; Güler, Turgay and Kim [31] considered L2 operator and Gauss map of rotational hypersurfaces
in E5. Some relations among the Laplace-Beltrami operator and curvatures of the helicoidal surfaces were
shown by Güler, Yaylı and Hacısalihoğlu [32].
In this paper, we study the Torus hypersurface in Euclidean 4-space E4. We give some basic notions of four
dimensional Euclidean geometry in section 2. In section 3, we define rotational hypersurface. Moreover, we
obtain Torus hypersurface, and calculate its curvatures in the last section.

2. Preliminaries

We introduce the first and second fundamental forms, matrix of the shape operator S, Gaussian curvature K,
and the mean curvature H of hypersurface M = M(u,v,w) in Euclidean 4-space E4. In the rest of this paper,
we shall identify a vector (a,b,c,d) with its transpose (a,b,c,d)t .
Let M be an isometric immersion of a hypersurface M3 in E4. The triple vector product of −→x = (x1,x2,x3,x4),−→y = (y1,y2,y3,y4),

−→z = (z1,z2,z3,z4) on E4 is defined as follows

−→x ×−→y ×−→z = det




e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4


 .
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For a hypersurface M in E4 we have

det I = det




E F A
F G B
A B C




= (EG−F2)C−A2G+2ABF−B2E,

and

det II = det




L M P
M N T
P T V




=
(
LN−M2)V −P2N +2PT M−T 2L,

where
A = Mu ·Mw, B = Mv ·Mw, C = Mw ·Mw,

P = Muw · e, T = Mvw · e, V = Mww · e,
e is the Gauss map (i.e. the unit normal vector field). We compute




E F A
F G B
A B C



−1


L M P
M N T
P T V


 ,

and it gives the matrix of the shape operator S as follows

S =
1

det I




s11 s12 s13
s21 s22 s23
s31 s32 s33


 , (2.1)

where
s11 = ABM−CFM−AGP+BFP+CGL−B2L,
s12 = ABN−CFN−AGT +BFT +CGM−B2M,
s13 = ABT −CFT −AGV +BFV +CGP−B2P,
s21 = ABL−CFL+AFP−BPE +CME−A2M,
s22 = ABM−CFM+AFT −BT E +CNE−A2N,
s23 = ABP−CFP+AFV −BV E +CT E−A2T,
s31 =−AGL+BFL+AFM−BME +GPE−F2P,
s32 =−AGM+BFM+AFN−BNE +GT E−F2T,
s33 =−AGP+BFP+AFT −BT E +GV E−F2V.

So, we get the following formulas of the Gaussian and the mean curvatures

K = det(S) =
det II
det I

=

(
LN−M2

)
V +2MPT −P2N−T 2L

(EG−F2)C+2ABF−A2G−B2E
,

and

H =
1
3

tr (S)

=
1

3det I
[(EN +GL−2FM)C+(EG−F2)V

−A2N−B2L−2(APG+BT E−ABM−AT F−BPF)].

A hypersurface M is minimal if H = 0 identically on M.

3. Rotational Hypersurface

For an open interval I ⊂ R, let γ : I −→Π be a curve in a plane Π in E4, and let ` be a straight line in Π.
A rotational hypersurface in E4 is defined as a hypersurface rotating a curve γ around a line ` (are called the
profile curve and the axis, respectively).
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We may suppose that ` is the line spanned by the vector (0,0,0,1)t . The orthogonal matrix which fixes the
above vector is

Z(v,w) =




cosvcosw −sinv −cosvsinw 0
sinvcosw cosv −sinvsinw 0

sinw 0 cosw 0
0 0 0 1


 , (3.1)

where v,w ∈ R. The matrix Z supplies the following equations

Z`= `, ZtZ = ZZt = I4, detZ = 1,

simultaneously. When the axis of rotation is `, there is an Euclidean transformation by which the axis is `
transformed to the x4-axis of E4. Profile curve is given by

γ(u) = ( f (u) ,0,0,ϕ (u)) ,

where f (u) ,ϕ (u) : I ⊂ R−→ R are C∞ functions for all u ∈ I. So, the rotational hypersurface spanned by the
vector (0,0,0,1) is as follows

R(u,v,w) = Z(v,w)γ(u)t ,

where u ∈ I, v,w ∈ [0,2π). Clearly, we write rotational hypersurface as follows

R(u,v,w) =




f (u)cosvcosw
f (u)sinvcosw

f (u)sinw
g(u)


 . (3.2)

4. Torus Hypersurface

In E4, taking profile curve
γ(u) = (a+ r cosu,0,0,r sinu)

with the orthogonal matrix Z, then we obtain torus hypersurface as follows

T(u,v,w) =




(a+ r cosu)cosvcosw
(a+ r cosu)sinvcosw
(a+ r cosu)sinw

r sinu


 , (4.1)

where a,u ∈ R\{0} and 0≤ v,w≤ 2π.
By using the first differentials of (4.1) with respect to u,v,w, we get the first quantities as follows

I =




r2 0 0
0 β cos2 w 0
0 0 β


 ,

where β = r2 cos2 u+2ar cosu+a2. Taking the second differentials with respect to u,v,w, we have the second
quantities as follows

II =



−r 0 0
0 −λ cos2 w 0
0 0 −λ


 .

where λ = (a+ r cosu)cosu. The Gauss map of the torus hypersurface is

eT =




cosucosvcosw
cosusinvcosw

cosusinw
sinu


 . (4.2)

Finally, the Gaussian curvature of the torus hypersurface is as follows

K =− cos2 u
r(a+ r cosu)2 ,

and the mean curvature is as follows
H =− a+3r cosu

3r(a+ r cosu)
,

21



Corollary 1. Let T : M3 −→ E4 be an immersion given by (4.1). Then M3 is minimal if and only if

a+3r cosu = 0.

Proof. Solutions of the above eq. are as follows




δ1∪δ2 if r 6= 0,
C if a = 0∧ r = 0,
/0 if a 6= 0∧ r = 0.

where δ1 =
{

π− arccos
( a

3r

)
+2πk | k ∈ Z

}
, δ2 =

{
−π + arccos

( a
3r

)
+2πk | k ∈ Z

}
.

Corollary 2. Let T : M3 −→ E4 be an immersion given by (4.1). Then M3 is flat hypersurface (i.e. K = 0) if
and only if

u =

{
1
2

π +πk | k ∈ Z
}

.

Corollary 3. Let T : M3 −→ E4 be an immersion given by (4.1). Then M3 has following relation

3H cos2 u− (a+ r cosu)(a+3r cosu)K = 0.

Proof. Solutions of a for the above eq. are as follows




/0 if 3H cos2 u 6= 0∧K = 0,

±
(√

K2r2+3HK−2Kr
K

)
cosu if K 6= 0.
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Abstract: In this study, we give definitions of Wijsman quasi-lacunary invari-
ant convergence, Wijsman strongly quasi-lacunary invariant convergence and
Wijsman quasi-lacunary invariant statistically convergence for sequences of sets.
We also examine the existence of some relations among these definitions and
some convergence types for sequences of sets given in [7, 14], too.

1. INTRODUCTION AND BACKGROUNDS

The concept of statistical convergence was firstly introduced by Fast [4] and this concept has been studied by
Šalát [18], Fridy [5] and many others, too.
A sequence x = (xk) is statistically convergent to L if for every ε > 0

lim
n→∞

1
n

∣∣∣
{

k ≤ n : |xk−L| ≥ ε
}∣∣∣= 0,

where the vertical bars indicate the number of elements in the enclosed set.
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and
hr = kr − kr−1 → ∞ as r → ∞. Throughout this study the intervals determined by θ will be denoted by
Ir = (kr−1,kr].
Then, Fridy and Orhan [6] defined lacunary statistical convergence of a sequence using the lacunary sequence
concept as follows:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is lacunary statistically convergent to L if for every
ε > 0,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |xk−L| ≥ ε
}∣∣∣= 0.

Several authors have studied on the concepts of invariant mean and invariant convergent (see, [9–11, 17, 19, 22]).
Let σ be a mapping of the positive integers into themselves. A continuous linear functional φ on `∞, the space
of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1, ...) and

3. φ(xσ(n)) = φ(xn) for all x ∈ `∞.

*egulle@aku.edu.tr
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The mappings σ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m, where
σm(n) denotes the m th iterate of the mapping σ at n. Thus, φ extends the limit functional on c, the space
of convergent sequences, in the sense that φ(x) = limx for all x ∈ c. In the case σ is translation mappings
σ(n) = n+1, the σ -mean is often called a Banach limit.
The space of lacunary strong σ -convergent sequences Lθ was defined by Savaş [20] as below:

Lθ =

{
x = (xk) : lim

r→∞

1
hr

∑
k∈Ir

|xσ k(m)−L|= 0, uniformly in m

}
.

Pancaroǧlu and Nuray [15] introduced the concept of lacunary invariant summability as follows:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is said to be lacunary invariant summable to L if

lim
r→∞

1
hr

∑
k∈Ir

xσ k(m) = L,

uniformly in m.
The concept of lacunary σ -statistically convergent sequence was defined by Savaş and Nuray in [21] as below:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is Sσθ -convergent to L if for every ε > 0

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |xσ k(m)−L| ≥ ε
}∣∣∣= 0,

uniformly in m.
Let X be any non-empty set and N be the set of natural numbers. The function

f : N→ P(X)

is defined by f (k) =Ak ∈P(X) for each k∈N, where P(X) is power set of X . The sequence {Ak}= (A1,A2, . . .),
which is the range’s elements of f , is said to be sequences of sets.
Let (X ,ρ) be a metric space. For any point x ∈ X and any non-empty subset A of X , the distance from x to A is
defined by

d(x,A) = inf
a∈A

ρ(x,a).

Throughout the paper we take (X ,ρ) as a metric space and A,Ak as any non-empty closed subsets of X .
There are different convergence notions for sequence of sets. One of them handled in this paper is the concept
of Wijsman convergence (see, [1–3, 12, 16, 25, 26]).
A sequence {Ak} is said to be Wijsman convergent to A if for each x ∈ X ,

lim
k→∞

d(x,Ak) = d(x,A)

and denoted by Ak
W→ A.

A sequence {Ak} is said to be bounded if for each x ∈ X , supk
{

d(x,Ak)
}
< ∞.

The set of all bounded sequences of sets is denoted by L∞.
The concepts of Wijsman lacunary summability, Wijsman strongly lacunary summability and Wijsman lacunary
statistical convergence were introduced by Ulusu and Nuray [23, 24].
Using the invariant mean concept, the concepts of Wijsman lacunary invariant convergence, Wijsman strongly
lacunary invariant convergence and Wijsman lacunary invariant statistical convergence were also defined by
Pancaroǧlu and Nuray [16] as follows:
Let θ = {kr} be a lacunary sequence. A sequence {Ak} is said to be Wijsman lacunary invariant convergent to
A if for each x ∈ X ,

lim
r→∞

1
hr

∑
k∈Ir

d(x,Aσk(m)) = d(x,A)

uniformly in m.
A sequence {Ak} is said to be Wijsman strongly lacunary invariant convergent to A if for each x ∈ X ,

lim
r→∞

1
hr

∑
k∈Ir

∣∣d(x,Aσ k(m))−d(x,A)
∣∣= 0

uniformly in m.
A sequence {Ak} is said to be Wijsman lacunary invariant statistically convergent to A if for every ε > 0 and
each x ∈ X ,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |d(x,Aσ k(m))−d(x,A)| ≥ ε
}∣∣∣= 0
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uniformly in m.
The idea of quasi-almost convergence in a normed space was introduced by Hajduković [8]. Then, Nuray [13]
studied concepts of quasi-invariant convergence and quasi-invariant statistical convergence in a normed space.
Recently, Gülle and Ulusu [7] introduced the concept of Wijsman strongly quasi-invariant convergence for
sequences of sets as below:
A sequence {Ak} is said to be Wijsman strongly quasi-invariant convergent to A if for each x ∈ X ,

lim
p→∞

1
p

p−1

∑
k=0

∣∣dx(Aσ k(np))−dx(A)
∣∣= 0

uniformly in n where dx(Aσ k(np)) = d(x,Aσk(np)) and dx(A) = d(x,A). It is denoted by Ak
[WQVσ ]−→ A.

2. MAIN RESULTS

In this study, we give definitions of Wijsman quasi-lacunary invariant convergence, Wijsman strongly
quasi-lacunary invariant convergence and Wijsman quasi-lacunary invariant statistically convergence for se-
quences of sets. We also examine the existence of some relations among these definitions and some convergence
types for sequences of sets given in [7, 14], too.
Definition 2.1 Let θ = {kr} be a lacunary sequence. A sequence {Ak} is said to be Wijsman quasi-lacunary
invariant convergent to A if for each x ∈ X ,

lim
r→∞

∣∣∣∣
1
hr

∑
k∈Ir

dx(Aσk(nr))−dx(A)
∣∣∣∣= 0

uniformly in n. In this case, we write Ak
WQVσθ−→ A.

Theorem 2.2 If a sequence {Ak} is Wijsman lacunary invariant convergent to A, then {Ak} is Wijsman
quasi-lacunary invariant convergent to A.

Proof. Suppose that the sequence {Ak} is Wijsman lacunary invariant convergent to A. Then, for each x ∈ X
and every ε > 0 there exists an integer r0 > 0 such that for all r > r0

∣∣∣∣∣
1
hr

∑
k∈Ir

dx(Aσk(m))−dx(A)

∣∣∣∣∣< ε,

for all m. If m is taken as m = nr, then we have
∣∣∣∣∣

1
hr

∑
k∈Ir

dx(Aσ k(nr))−dx(A)

∣∣∣∣∣< ε,

for all n. Since ε > 0 is an arbitrary, the limit is taken for r→ ∞ we can write
∣∣∣∣∣

1
hr

∑
k∈Ir

dx(Aσk(nr))−dx(A)

∣∣∣∣∣−→ 0

for all n. That is, the sequence {Ak} is Wijsman quasi-lacunary invariant convergent to A.

Definition 2.3 Let θ = {kr} be a lacunary sequence. A sequence {Ak} is Wijsman quasi-lacunary invariant
statistically convergent to A if for every ε > 0 and each x ∈ X ,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσk(nr))−dx(A)| ≥ ε
}∣∣∣= 0

uniformly in n. In this case, we write Ak
WQSσθ−→ A.

Theorem 2.4 If a sequence {Ak} is Wijsman lacunary invariant statistically convergent to A, then {Ak} is
Wijsman quasi-lacunary invariant statistically convergent to A.

Proof. Suppose that the sequence {Ak} is Wijsman lacunary invariant statistically convergent to A. In this case,
when δ > 0 is given, for each x ∈ X and for every ε > 0 there exists an integer r0 > 0 such that for all r > r0

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσ k(m))−dx(A)| ≥ ε
}∣∣∣< δ ,
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for all m.
If m is taken as m = nr, then we have

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσ k(nr))−dx(A)| ≥ ε
}∣∣∣< δ ,

for all n. Since δ > 0 is an arbitrary, we have

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσ k(nr))−dx(A)| ≥ ε
}∣∣∣= 0,

for all n which means that {Ak} is Wijsman quasi-lacunary invariant statistically convergent to A.

Definition 2.5 Let θ = {kr} be a lacunary sequence. A sequence {Ak} is Wijsman strongly quasi-lacunary
invariant convergent to A if for each x ∈ X ,

lim
r→∞

1
hr

∑
k∈Ir

∣∣∣dx(Aσk(nr))−dx(A)
∣∣∣= 0

uniformly in n. In this case, we write Ak
[WQVσθ ]−→ A.

Theorem 2.6 For any lacunary sequence θ = {kr},

Ak
[WQVσθ ]−→ A⇔ Ak

[WQVσ ]−→ A.

Proof. Let Ak
[WQVσθ ]−→ A and ε > 0 is given. Then, there exists an integer r0 such that for each x ∈ X

1
hr

hr−1

∑
k=0

∣∣dx(Aσk(nr))−dx(A)
∣∣< ε

for r ≥ r0 and nr = kr−1 +1+w, w≥ 0. Let p≥ hr. Thus, p can be written as p = α.hr +θ where 0≤ θ ≤ hr
and α is an integer. Since p≥ hr, α ≥ 1. Then,

1
p

p−1

∑
k=0

∣∣∣dx(Aσk(np))−dx(A)
∣∣∣ ≤ 1

p

(α+1)hr−1

∑
k=0

∣∣∣dx(Aσk(nr))−dx(A)
∣∣∣

=
1
p

α

∑
j=0

( j+1)hr−1

∑
k= jhr

∣∣∣dx(Aσ k(nr))−dx(A)
∣∣∣

≤ 1
p

ε hr (α +1)

≤ 2αhrε
p

(α ≥ 1).

For
hr

p
≤ 1 and since

αhr

p
≤ 1

1
p

p−1

∑
k=0

∣∣∣dx(Aσ k(np))−dx(A)
∣∣∣≤ 2ε,

that is, Ak
[WQVσ ]−→ A.

Let Ak
[WQVσ ]−→ A and ε > 0 is given. Then, there exists P > 0 such that for each x ∈ X

1
p

p−1

∑
k=0

∣∣∣dx(Aσk(np))−dx(A)
∣∣∣< ε

for all p > P. Since θ = {kr} is a lacunary sequence, a number R > 0 can be chosen such that hr > P where
r ≥ R. Thereby

1
hr

∑
k∈Ir

∣∣∣dx(Aσ k(nr))−dx(A)
∣∣∣< ε,

that is, Ak
[WQVσθ ]−→ A. The proof of theorem is completed.
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[19] Savaş, E. Some sequence spaces involving invariant means. Indian J. Math. 31, (1989), 1-8.
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Abstract: In this study, we give necessary and sufficient conditions in order
that |C,−1|k ⇒ |C,α| , k > 1 for the case α > −1, so we also complete some
open problems in this concept.

1. Introduction

Let Σxn be an infinite series with partial sum sn,and by (σα
n ) and (uα

n ) we denote the n-th Cesàro means of
order α with α >−1 of the sequences (sn) and (nxn), respectively, i.e.,

σα
n =

1
Aα

n

n

∑
v=0

Aα−1
n−v sv

and

uα
n =

1
Aα

n

n

∑
v=0

Aα−1
n−v νxν (1.1)

where Aα
0 = 1, Aα

n =
(α+n

n

)
, Aα
−n = 0, n≥ 1.The series Σxn is said to be summable |C,α|k , k ≥ 1, if (see [1])

∞

∑
n=1

nk−1 ∣∣σα
n −σα

n−1
∣∣k < ∞. (1.2)

On the other hand, by the well known identity uα
n = n

(
σα

n −σα
n−1

)
[4], the condition (1.2) can be stated by

∞

∑
n=1

1
n
|uα

n |k < ∞.

Note that Thorpe [12] gave the Cesàro summability for α =−1 as follows. If the series to sequence transforma-
tion

Tn =
n−1

∑
v=0

xv +(n+1)xn (1.3)

tends to s as n tends to infinity, then the series Σxn is summable by Cesàro summability (C,−1) to the number s
[12].
Also, by the definition of Sarıgöl [9] and Thorpe [12], the series Σxn is said to be summable |C,−1|k ( see [2]) if

∞

∑
n=1

nk−1 |Tn−Tn−1|k < ∞.
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In this context the series spaces |Cα |k ,k≥ 1, have been defined as the set of all series summable by the absolute
Cesàro summability method |C,α|k in [7] and [2] for α >−1 and α =−1, respectively.
If A and B are methods of summability, B is said to include A (written A⇒ B) if every series summable by the
method A is also summable by the method B. A and B are said to be equivalent (written A⇔ B) if each methods
includes the other.
Problems on inclusion dealing absolute Cesàro mean summability were investigated in detail by several authors
[3,5,6,8,10,11], and some well known results have recently been extended by Sarıgöl [8] and Sarıgöl & Hazar
[3].
In this study, we give necessary and sufficient conditions in order that |C,−1|k⇒ |C,α| , k > 1 for the case
α >−1, which completes some open problems in literature.
We require the following lemmas for our investigations.
Throughout this paper, k∗ denote the conjugate of k > 1, i.e., 1/k+1/k∗ = 1, and 1/k∗ = 0 for k = 1.
Lemma 1.1. Let 1 < k < ∞. Then, A(x) ∈ ` whenever x ∈ `k if and only if

∞

∑
v=0

(
∞

∑
n=0
|anv|

)k∗

< ∞,

where `k =
{

x = (xν) : Σ |xν |k < ∞
}
[8].

2. Main Results

The aim of this study is to prove the following theorem.
Theorem 2.1. Let k > 1. Then, |C,−1|k⇒ |C,α| if and only if

∞

∑
r=1

(
∞

∑
n=r

∣∣∣∣∣
r1/k

nAα
n

n

∑
v=r

Aα−1
n−v

v+1

∣∣∣∣∣

)k∗

< ∞ (2.1)

Proof. Let define uα
n and Tn by (1.1) and (1.3) respectively. Using the definition uα

n and Tn , we define the
sequences y = (yn) and ỹ = (ỹn) by

yn = n1/k∗ ((n+1)xn− (n−1)xn−1) ,n≥ 1 and y0 = x0 (2.2)

and

ỹn =
uα

n

n
=

1
nAα

n

n

∑
v=1

Aα−1
n−v νxν ,n≥ 1 and y0 = x0

respectively.

Then, |C,−1|k⇒ |C,α| iff ỹ ∈ ` whenever y ∈ `k. By inversion of (2.2), we write for n≥ 1

xn =
1

n(n+1)

n

∑
v=1

v1/kyv (2.3)

Hence, by (2.3) we get for n≥ 1

ỹn =
1

nAα
n

n

∑
v=1

Aα−1
n−v νxν =

1
nAα

n

n

∑
v=1

Aα−1
n−v ν

1
v(v+1)

v

∑
r=1

r1/kyr

=
1

nAα
n

n

∑
r=1

(
n

∑
v=r

Aα−1
n−v

(v+1)

)
r1/kyr

=
n

∑
r=1

cnryr

where

cnr =





r1/k

nAα
n

∑n
v=r

Aα−1
n−v

v+1
, 1≤ r ≤ n

0, r > n.

So ỹ ∈ ` whenever y ∈ `k if and only if

∞

∑
r=1

(
∞

∑
n=r

∣∣∣∣∣
r1/k

nAα
n

n

∑
v=r

Aα−1
n−v

v+1

∣∣∣∣∣

)k∗

< ∞.

by Lemma 1.1 or, equivalently, (2.1) holds. Thus the proof is completed.
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Abstract: We introduce a new concept for set-valued contractions as
Mizoguchi-Takahashi’s type set-valued (α-θ) contractions and present some
fixed point results. Our results extend and generalize many fixed point theorems
in the literature.

1. Introduction and Preliminaries

Let (X ,d) be a metric space. We denote by C (X) the family of all nonempty closed subsets of X , by
K (X) the family of all nonempty compact subsets of X and by C B(X) the family of all nonempty, closed
and bounded subsets of X . It is well known that K (X)⊆ C B(X)⊆ C (X). Let H be the Pompeiu-Hausdorff
metric on C B(X), that is, for A,B ∈ C B(X)

H(A,B) = max

{
sup
x∈A

D(x,B),sup
y∈B

D(y,A)

}

where D(x,B) = inf{d(x,y) : y ∈ B}. H also is called generalized Pompeiu-Hausdorff distance on C (X)
Taking into account the Pompeiu-Hausdorff metric, Nadler [19] in 1969 initiated the idea for multivalued

contraction mapping and extended the Banach contraction principle to multivalued mappings and proved the
following:
Theorem 1.1 (Nadler [19]) Let (X ,d) be a complete metric space and T : X→C B(X) multivalued contraction,
that is, there exists L ∈ [0,1) such that

H(T x,Ty)≤ Ld(x,y)

for all x,y ∈ X . Then T has a fixed point in X.
Later on, several researches were conducted on a variety of generalizations, extensions and applications

of this result of Nadler (see[3, 5, 6, 13, 17]). Furthermore, the following theorem was proved by Mizoguchi and
Takahashi [17] that is, in fact, a partial answer of question of Reich [22]:
Theorem 1.2 ([17]) Let (X ,d) be a complete metric space and T : X → C B(X) is a mapping such that

H(T x,Ty)≤ k(d(x,y))d(x,y),

for all x,y ∈ X, x 6= y, where k : (0,∞)→ [0,1) is a function that satisfies

limsup
t→s+

k(t)< 1 for all s≥ 0.

Then T has a fixed point in X .

*gncmatematik@hotmail.com
†haticeaslanhancer@gmail.com
‡olgun@ankara.edu.tr
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We can find both a simple proof of Theorem 1.2 and an example showing that it is real generalization of
Nadler’s in [24]. We can also find a lot of generalizations of Mizoguchi-Takahashi’s fixed point theorem in the
literature [3, 4, 6].

Moreover, an attracted generalization of the Banach contraction principle given by Jleli and Samet [12],
introduced a new type of contractive condition, which throughout this study, we shall call it as θ -contraction.
Now, we recall basic definitions, relevant notions and some related results concerning θ -contraction. Let
θ : (0,∞)→ (1,∞) be a function. Next we will consider the following properties for θ :
(θ1) θ is nondecreasing;
(θ2) For each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 and limn→∞ tn = 0+ are equivalent;
(θ3) There exist r ∈ (0,1) and l ∈ (0,∞] such that limt→0+

θ(t)−1
tr = l;

(θ4) θ(infA) = infθ(A) for all A⊂ (0,∞) with infA > 0.
We denote by Θ and Ω be the set of all functions θ satisfying (θ1)-(θ3) and (θ1)-(θ4), respectively. It

is clear that Ω ⊂ Θ. Some examples of the functions belonging Ω are θ1(t) = e
√

t and θ2(t) = e
√

tet . If we

define as θ3(t) =
{

e
√

t , t < 1
9 t ≥ 1

, then we can see θ3 ∈Θ\Ω. Note that, if a function θ satisfies (θ1), then

it satisfies (θ4) if and only if it is right continuous.
By considering the conditions (θ1)-(θ3), Jleli and Samet [12] introduced the concept of θ -contraction,

which is more general than Banach contraction. Let (X ,d) be a metric space and θ ∈Θ. A mapping T : X → X
is said to be a θ -contraction if there exists a constant k ∈ [0,1) such that

θ(d(T x,Ty))≤ [θ(d(x,y))]k , (1.1)

for all x,y ∈ X with d(T x,Ty)> 0. As a real generalization of Banach contraction principle, Jleli and Samet
proved that every θ -contraction on a complete metric space has a unique fixed point. In addition, from (θ1) and
(1.1), it is easy to concluded that every θ -contraction T is a contractive mapping, i.e., d(T x,Ty)< d(x,y) for
all x,y ∈ X with T x 6= Ty. Thus, every θ -contraction mapping on a metric space is continuous. Then, Hançer
et al. [10] extended the concept of θ -contraction to set-valued case and Mınak and Altun [16] introduced the
nonlinear case of it as follows: Let (X ,d) be a metric space and T : X → C B(X) be given a mapping. Then,
(i) T is said to be a multivalued θ -contraction with θ ∈Θ if there exists k ∈ (0,1) such that

θ(H(T x,Ty))≤ [θ(d(x,y)]k ,

for all x,y ∈ X with H(T x,Ty)> 0.
(ii) T is said to be a multivalued nonlinear θ -contraction with θ ∈Θ if there exists a function k : (0,∞)→ [0,1)
such that

limsup
t→s+

k(t)< 1, ∀s≥ 0,

satisfying
θ(H(T x,Ty))≤ [θ(d(x,y))]k(d(x,y)),

for all x,y ∈ X with H(T x,Ty)> 0.
Therefore, considering the class Ω, the following theorems are provided.

Theorem 1.3 ([10]) Let (X ,d) be a complete metric space, and T : X→C B(X) be a multivalued θ -contraction
with θ ∈Ω. Then T has a fixed point in X.

Theorem 1.4 ([16]) Let (X ,d) be a complete metric space, and T : X → C B(X) be a multivalued nonlinear
θ -contraction with θ ∈Ω. Then T has a fixed point in X.

Furthermore, the fixed point results for these type mappings are given several researches (see [1, 7, 8]).
On the other hand, Samet et al [23] introduced the concept of α-ψ-contractive and α-admissible mappings

and established various fixed point theorems for such mappings on complete metric spaces. Asl et al [2]
also defined the notion of α-admissibility and α∗-admissibility for multivalued mappings as follows: Let
(X ,d) be a metric space, T : X →P(X) be a mapping and α : X ×X → [0,∞) be a function. We say that
T is an α-admissible mapping whenever for each x ∈ X and y ∈ T x with α(x,y) ≥ 1 implies α(y,z) ≥ 1 for
all z ∈ Ty and T is an α∗-admissible mapping whenever for each x ∈ X and y ∈ T x with α(x,y)≥ 1 implies
α∗(T x,Ty) ≥ 1, where α∗(T x,Ty) = inf{α(a,b) : a ∈ T x,b ∈ Ty}. It is clear that α∗-admissible mapping is
also α-admissible, but the converse may not be true as shown in Example 15 of [14]. We say that α has (B)
property whenever {xn} is a sequence in X such that α(xn,xn+1)≥ 1 for all n ∈N and xn→ x, then α(xn,x)≥ 1
for all n ∈ N.

Consider the collection Ψ of nondecreasing functions ψ : [0,∞)→ [0,∞) such that
∞
∑

n=1
ψn(t)< ∞ for all

t > 0, where ψn is the n th iterate of ψ . It is clear that for each ψ ∈ Ψ, we have ψ(t) < t for all t > 0 and
ψ(0) = 0. Let T : X → C B(X). Then,
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i) T is said to be multivalued α-ψ-contractive whenever

α(x,y)H(T x,Ty)≤ ψ(d((x,y))

for all x,y ∈ X ,
ii) T is said to be multivalued α∗-ψ-contractive whenever

α∗(T x,Ty)H(T x,Ty)≤ ψ(d((x,y))

for all x,y ∈ X .
Asl, Rezapour and Shahzad [2] and Mohammodi, Rezapour and Shahzad [18] presented the following

fixed point theorems for multivalued α-ψ-contractive and multivalued α∗-ψ-contractive mappings.
Theorem 1.5 ([2]) Let (X ,d) be a complete metric space, α : X×X→ [0,∞) be a function, ψ ∈Ψ be a strictly
increasing map and T : X → C B(X) be an α-admissible and α-ψ-contractive multifunction. Suppose that
there exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ 1. If T is continuous or α has (B) property, then T has a
fixed point.

Theorem 1.6 ([18]) Let (X ,d) be a complete metric space, α : X ×X → [0,∞) be a function, ψ ∈ Ψ be a
strictly increasing map and T : X→C B(X) be an α∗-admissible and α∗-ψ-contractive multifunction. Suppose
that there exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ 1. If T is continuous or α has (B) property, then T
has a fixed point.

In this paper, taking into account the above results, we present some new fixed point results for multivalued
θ -contractions, by considering the α-admissibility and α∗-admissibility of a multivalued mappings on complete
metric spaces.

2. Main Results

Before we give our main results, we recall the following: Let X and Y be two topological spaces. Then, a
multivalued mapping T : X →P(Y ) is said to be upper semicontinuous (lower semicontinuous) if the inverse
image of closed sets (open sets) is closed (open). A multivalued mapping is continuous if it is upper as well as
lower semicontinuous.
Lemma 2.1 ([11]) Let (X ,d) be a metric space and T : X →P(X) be an upper semicontinuous mapping such
that T x is closed for all x ∈ X. If xn→ x0, yn→ y0 and yn ∈ T xn, then y0 ∈ T x0.

Let (X ,d) be a metric space, T : X → C B(X) and α : X×X → [0,∞) be two mappings. Define a set

ST,α = {(x,y) : α(x,y)≥ 1 and H(T x,Ty)> 0} ⊂ X×X .

Given θ ∈Θ, we say that T is a MT -type multivalued (α-θ )-contraction if there exists a function k : (0,∞)→
[0,1) satisfying

limsup
t→s+

k(t)< 1, for all s≥ 0

such that
θ(H(T x,Ty))≤ [θ(d(x,y))]k(d(x,y)) (2.1)

for all (x,y) ∈ ST,α .
Now we present our main result.

Theorem 2.2 Let (X ,d) be a complete metric space and T : X →K (X) be an α-admissible and MT -type
multivalued (α-θ )-contraction. Suppose that there exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ 1. If T is
upper semicontinuous or α has (B) property, then T has a fixed point.

Proof. Suppose that T has no fixed point. Then for all x∈ X , D(x,T x)> 0. Let x0 and x1 be as mentioned in the
hypothesis, then H(T x0,T x1)> 0 (otherwise D(x1,T x1) = 0, this is a contradiction). Therefore (x0,x1) ∈ ST,α ,
thus we can use the condition (2.1) for x0 and x1. Then considering (θ1), we have

θ(D(x1,T x1))≤ θ(H(T x0,T x1))≤ [θ(d(x0,x1))]
k(d(x0 ,x1))

. (2.2)

Since T x1 is compact, there exists x2 ∈ T x1 such that d(x1,x2) = D(x1,T x1). From (2.2),

θ(d(x1,x2))≤ θ(H(T x0,T x1))≤ [θ(d(x0,x1))]
kd(x0,x1).

Also, since T is an α-admissible mapping α(x1,x2) ≥ 1. Again, since x2 ∈ T x1, then H(T x1,T x2) > 0.
Therefore (x1,x2) ∈ ST,α , thus we can use (2.1) for x1 and x2. Then

θ(D(x2,T x2))≤ θ(H(T x1,T x2))≤ [θ(d(x1,x2))]
kd(x1,x2).

35



Since T x2 is compact, there exists x3 ∈ T x2 such that d(x2,x3) = D(x2,T x2). Therefore, we have

θ(d(x2,x3))≤ θ(H(T x1,T x2))≤ [θ(d(x1,x2))]
kd(x1,x2).

By induction, we can find a sequence {xn} in X such that xn+1 ∈ T xn, (xn,xn+1) ∈ ST,α and

θ(d(xn,xn+1))≤ [θ(d(xn,xn−1))]
k(d(xn−1,xn)) (2.3)

for all n ∈N. Thus, from (θ1) the sequence {d(xn,xn+1)} is decreasing and hence convergent. From (2.3), there
exists b ∈ (0,1) and n0 ∈ N such that k(d(xn,xn+1))< b for all n≥ n0. Thus, we obtain for all n≥ n0,

1 < θ(d(xn,xn+1))

≤ [θ(d(xn−1,xn))]
k(d(xn−1,xn))

≤ [θ(d(xn−2,xn−1))]
k(d(xn−1,xn))k(d(xn−1,xn))

...
≤ [θ(d(x0,x1))]

k(d(x0,x1))···k(d(xn−1,xn))k(d(xn−1,xn))

= [θ(d(x0,x1))]
k(d(x0,x1))···k(d(xn0−1,xn0 ))k(d(xn0 ,xn0+1))···k(d(xn−1,xn))k(d(xn−1,xn))

≤ [θ(d(x0,x1))]
k(d(xn0 ,xn0+1))···k(d(xn−1,xn))k(d(xn−1,xn))

≤ [θ(d(x0,x1))]
b(n−n0)

.

Hence, we obtain
1 < θ(d(xn,xn+1))≤ [θ(d(x0,x1))]

b(n−n0) (2.4)

for all n≥ n0. Letting n→ ∞ in (2.4), we have

lim
n→∞

θ(d(xn,xn+1)) = 1. (2.5)

From (θ2), limn→∞ d(xn,xn+1) = 0+ and so from (θ3) there exist r ∈ (0,1) and l ∈ (0,∞] such that

lim
n→∞

θ(d(xn,xn+1))−1
[d(xn,xn+1)]

r = l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there exists n0 ∈ N such that,

for all n≥ n0, ∣∣∣∣
θ(d(xn,xn+1))−1

[d(xn,xn+1)]
r − l

∣∣∣∣≤ B.

This implies that, for all n≥ n0,
θ(d(xn,xn+1))−1

[d(xn,xn+1)]
r ≥ l−B = B.

Then, for all n≥ n0,
n [d(xn,xn+1)]

r ≤ An [θ(d(xn,xn+1))−1] ,

where A = 1/B.
Suppose now that l = ∞. Let B > 0 be an arbitrary positive number. From the definition of the limit, there exists
n0 ∈ N such that, for all n≥ n0,

θ(d(xn,xn+1))−1
[d(xn,xn+1)]

r ≥ B.

This implies that, for all n≥ n0,

n [d(xn,xn+1)]
r ≤ An [θ(d(xn,xn+1))−1] ,

where A = 1/B.
Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all n≥ n0,

n [d(xn,xn+1)]
r ≤ An [θ(d(xn,xn+1))−1] .

Using (2.4), we obtain, for all n≥ n0,

n [d(xn,xn+1)]
r ≤ An

[
[θ(d(x0,x1))]

b(n−n0) −1
]
.
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Letting n→ ∞ in the above inequality, we obtain

lim
n→∞

n [d(xn,xn+1)]
r = 0.

Thus, there exits n1 ∈ N such that n [d(xn,xn+1)]
r ≤ 1 for all n≥ n1. So, we have, for all n≥ n1

d(xn,xn+1)≤
1

n1/r . (2.6)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that m > n≥ n1. Using the triangular
inequality for the metric and from (2.6), we have

d(xn,xm) ≤ d(xn,xn+1)+d(xn+1,xn+2)+ · · ·+d(xm−1,xm)

=
m−1

∑
i=n

d(xi,xi+1)≤
m−1

∑
i=n

1
i1/r ≤

∞

∑
i=n

1
i1/r .

By the convergence of the series
∞
∑

i=1

1
i1/r , letting to limit n→∞, we get d(xn,xm) → 0. This yields that {xn} is a

Cauchy sequence in (X ,d). Since (X ,d) is a complete metric space, there exists z ∈ X such that limn→∞ xn = z.
If T is upper semicontinuous, then by Lemma (2.1) we have z ∈ T z, which is a contradiction.
Now assume that α has (B) property. Since limn→∞ xn = z and D(z,T z)> 0, then there exists n0 ∈ N such that
D(xn+1,T z)> 0 for all n≥ n0. Therefore for all n≥ n0

H(T xn,T z)> 0,

thus (xn,z) ∈ ST,α for all n≥ n0. From (2.1) and (θ1), we have

θ(D(xn+1,T z)) ≤ θ(H(T xn,T z))

≤ [θ(d(xn,z))]k(d(xn,z))

and so
D(xn+1,T z)≤ d(xn,z)

for all n≥ n0. Passing to limit n→ ∞, we obtain D(z,T z) = 0, which is a contradiction.
Therefore T has a fixed point in X .

We cannot extend the range of T to C B(X) in Theorem 2.2 with the same conditions. Example 1 in [10]
shows this fact. However, we can take C B(X) instead of K (X) by adding condition (θ4) on θ .
Theorem 2.3 Let (X ,d) be a complete metric space and T : X → C B(X) be an α-admissible and MT -type
multivalued (α-θ )-contraction with θ ∈Ω. Suppose there exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ 1. If
T is upper semicontinuous or α has (B) property, then T has a fixed point.

Proof. We begin as in the proof of Theorem 2.2. Considering the condition (θ4), we can write

θ(D(x1,T x1)) = inf
y∈T x1

θ(d(x1,y)).

Thus from
θ(D(x1,T x1))≤ θ(H(T x0,T x1))

we have

inf
y∈T x1

θ(d(x1,y)) ≤ [θ(d(x0,x1))]
k(d(x0,x1))

< [θ(d(x0,x1))]
k(d(x0 ,x1))+1

2

Therefore there exists x2 ∈ T x1 such that

θ(d(x1,x2))≤ [θ(d(x0,x1))]
k(d(x0,x1)).

The rest of the proof can be completed as in the proof of Theorem 2.2.

Remark 2.4 If we take α(x,y) = 1 in Theorem 2.3, we obtain Theorem 1.3.

Remark 2.5 By taking α(x,y) = 1 and θ(t) = e
√

t in Theorem 2.3, we obtain the famous Mizoguchi-
Takahashi’s fixed point theorem.

Since α∗-admissible mapping is also α-admissible, we can obtain following corollary.
Corollary 2.6 Let (X ,d) be a complete metric space and T : X →K (X) be an α∗-admissible and MT -
multivalued (α-θ )-contraction. Suppose that there exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ 1. If T is
upper semicontinuous or α has (B) property, then T has a fixed point.
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3. Application in partially ordered metric spaces

Recently, there have been so many interesting developments in fixed point theory in metric spaces endowed
with a partial order. The first result in this direction was given by Ran and Reurings [21] where they extended
the Banach contraction principle in partially ordered sets with some application to a matrix equation. Later,
many important results have been obtained in this direction (see [15, 20]). In this section, we will present some
results about this direction. In 2004, Feng and Liu [9] defined relations between two sets. Let X be a nonempty
set and � be a partial order on X . Let A,B be two nonempty subsets of X , the relations between A and B are
defined as follows:
(a) A≺1 B⇔ for every a ∈ A, there exists b ∈ B such that a� b,
(b) A≺2 B⇔ for every b ∈ B, there exists a ∈ A such that a� b,
(c) A≺ B⇔ A≺1 B and A≺2 B.

≺1 and ≺2 are different relations between A and B. For example, let X = R, A = [ 1
2 ,1], B = [0,1], � be

usual order on X , then A≺1 B but A⊀2 B; if A = [0,1], B = [0, 1
2 ], then A≺2 B while A⊀1 B. ≺1, ≺2and ≺

are reflexive and transitive, but are not antisymmetric. For instance, let X = R, A = [0,3], B = [0,1]∪ [2,3], �
be usual order on X , then A≺ B and B≺ A, but A 6= B. Hence, they are not partial orders. Note that if A is a
nonempty subset of X with A≺1 A, then A is singleton. (see [9]).
Theorem 3.1 Let (X ,�) be a partially ordered set and suppose that there exist a metric d in X such that (X ,d)
is complete metric space. Let T : X → C B(X)(resp. K (X)) be an upper semicontinuous multivalued mapping
such that

θ(H(T x,Ty))≤ [θ(d(x,y))]k(d(x,y))

for all (x,y) ∈ S�, where θ ∈Ω (resp. θ ∈Θ) and k : (0,∞)→ [0,1) be a function satisfying

limsup
t→s+

k(t)< 1, for all s≥ 0

and S� = {(x,y) ∈ X×X : x� y and H(T x,Ty)> 0}. Assume that for each x ∈ X and y ∈ T x with x� y, we
have y� z for all z ∈ Ty and there exist x0 ∈ X, x1 ∈ T x0 such that {x0} ≺1 T x0, then T has a fixed point.

Proof. Define a mapping α : X×X → [0,∞) by

α(x,y) =





1 , x� y

0 , otherwise
.

Then S� = ST,α . Therefore T is MT -multivalued (α-θ )-contraction. Also, since {x0} ≺1 T x0, then there
exists x1 ∈ T x0 such that x0 � x1 and so α(x0,x1)≥ 1. Now let x ∈ X and y ∈ T x with α(x,y)≥ 1, then x� y
and so by the hypotheses we have y� z for all z ∈ Ty. Therefore, α(y,z)≥ 1 for all z ∈ Ty. This shows that T
is α-admissible. Therefore, from Theorem 2.3 (resp. Theorem 2.2), T has a fixed point in X .

Remark 3.2 We can give similar result using ≺2 instead of ≺1.
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[11] V. I. Istrăţescu, Fixed Point Theory: An Introduction, D. Reidel, Dordrecht, The Netherlands, 1981.

[12] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities
and Applications, 2014, 2014:38 8 pp.

[13] Q. Kiran and T. Kamran, Fixed point theorems for generalized contractive multi-valued maps, Comput.
Math. Appl. 59 (12) (2010), 3813-3823.

[14] G. Mınak, Ö. Acar and I. Altun, Multivalued pseudo-Picard operators and fixed point results, Journal of
Function Spaces and Applications, 2013 (2013), Article ID 827458, 7 pages.

[15] G. Mınak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem,
Journal of Inequalities and Applications, 2013, 2013:493.

[16] G. Mınak and I. Altun, Overall approach to Mizoguchi-Takahashi type fixed point results, Turkish Journal
of Mathematics, 40 (4), (2016), 895-904.

[17] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric
spaces, J. Math. Anal. Appl.,141 (1989), 177-188.

[18] B. Mohammadi, S. Rezapour and N. Shahzad, Some results on fixed points of α-ψ-Ćirić generalized
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Abstract: In this manuscript, improved Bernoulli sub-equation function
method based on the Bernoulli differential method is considered. This method
is based on the converting the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa
equation into ordinary differential equation. Some new solutions such as complex
and exponential are obtained. To better understanding of physical meanings of
model are introduced by plotting two- and three-dimensional surfaces along with
contour simulations. Finally, a conclusion is presented by mentioning important
acquisitions founded in this study.

1. Introduction

Developing of the computational programs and tools, the works on the nonlinear media and applications have
been taken attentions of scientists and experts. Some important models have been submitted to the literature.
Moreover, many methods have been revised or improved for solving these special models. For example, the
generalized Bernoulli sub-ODE method has been studied by B. Zheng [1]. Newly modified Riccati-Bernoulli
equation method has been firstly submitted by X.F. Yang and at al [2]. Hirota method and auxiliary variable,
and so on have been used to find new results [3].
This paper is constructed by the following sections. In Section 2, we give a brief introduction to the powerful
newly improved Bernoulli sub-equation function method (IBSEFM). The complex travelling wave solutions of
the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation (DJKME), which it is defined as

uxxxxy +4uxxyux +2uxxxuy +6uxyuxx +uyyy−2uxxt = 0, (1)

are been obtained in section 3 [4]. Finally, a comprehensively conclusion are given in section 4.

2. Description of IBSEFM

IBSEFM formed by extending the Bernoulli sub-equation function method [5-16] will be given in this sub-
section. Therefore, we consider the follows.
Step 1. We consider the following partial differential equation;

P(u,ux,uy,ut , ...) = 0. (2)

and take the wave transformation;

u(x,y, t) =U(η),η = µ(x+αy− kt). (3)

where µ,al pha,k are constants and can be determined later. By substituting Eq.(3), Eq.(2) converts a nonlinear
ordinary differential equation (NODE) as following;

N(U,U ′,U ′′,U ′′′, ...) = 0. (4)

*hmbaskonus@gmail.com
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Step 2. Considering trial equation of solution in Eq.(4), it can be written as following;

U(η) =
∑n

i=0 aiF i(η)

∑m
j=0 biF j(η)

=
a0 +a1F(η)+a2F2(η)+ ...+anFn(η)

b0 +b1F(η)+b2F2(η)+ ...+bmFm(η)
. (5)

According to the Bernoulli theory, we can consider the general form of Bernoulli differential equation for F ′ as
following;

F ′ = wF +λFM,w 6= 0,λ 6= 0,M ∈ R−{0,1,2}. (6)

where F = F(η) is Bernoulli differential polynomial. Substituting above relations in Eq.(4), it yields us an
equation of polynomial Ω(F) ofF as following;

Ω(F) = ρsFs + ...+ρ1F +ρ0 = 0. (7)

According to the balance principle, we can determine the relationship between n, m and M.
Step 3.The coefficients of Ω(F) all be zero will yield us an algebraic system of equations;

ρi = 0, i = 0, ...,s. (8)

Solving this system, we will specify the values of a0,a1, ...,an and b0,b1, ...,bn.
Step 4.When we solve nonlinear Bernoulli differential equation Eq.(2.6), we obtain the following two situations
according to b and d,

F(η) =

[−λ
w

+
E

ew(M−1)η

] 1
1−M

,w 6= λ . (9)

F(η) =

[
(E−1)+(E +1)tanh(w(1−M) η

2 )

1− tanh(w(1−M) η
2 )

]
,w = λ ,E ∈ R. (10)

Using a complete discrimination system for polynomial of F , we solve this system with the help of computer
programming and classify the exact solutions to Eq.(4).

3. Implementations of the Method

In this subsection of manuscript, we apply the method to the DJKME.

Example-1 First of all, if we perform travelling wave transformation into the Eq.(1) in the following manner;

u(x,y, t) =U(ξ ),ξ = µx+aµy−µkt, (11)

where µ,α,k are real constants, we get the following nonlinear equation;

aµ5U (5)+6aµ4 d3U
dξ 3

dU
dξ

+(a3 +2k)µ3 d3U
dξ 3 +6aµ4(

d2U
dξ 2 )

2 = 0. (12)

After some simplifications and calculations along with integrations, we can reach the following model

aµ5 d3U
dξ 3 +3aµ4(

dU
dξ

)2 +(a3 +2k)µ3 dU
dξ

= 0. (13)

For simplicity, if we reconsider in Eq.(13)

V =
dU
dξ

, (14)

we can rewrite Eq.(13) along with some easily calculation as following;

aµ2 d2V
dξ 2 +3aµV 2 +(a3 +2k)V = 0. (15)

With balance principle, we obtain following relationship for m,n and M ;

2M+m = n+2. (16)

This resolution procedure is applied and we obtain results as follows;
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Case 1.
If we take M = 3,m = 2 and n = 6 in Eq.(16), then, we can write following trial solutions form as;

V =
a0 +a1F +a2F2 +a3F3 +a4F4 +a5F5 +a6F6

b0 +b1F +b2F2 =
ϒ
Ψ
, (17)

dV
dξ

=

dϒ
dξ Ψ−ϒ dΨ

dξ

Ψ2 ,

and
d2V
dξ 2 =

d2ϒ
dξ 2 Ψ−ϒ dΨ

dξ

Ψ2 −·· · , (18)

...
where dF

dξ = wF +λF3,a6 6= 0,b2 6= 0. When we use Eqs.(17,19) in the Eq.(15), we get a system of alge-
braic equations from the coefficients of polynomial of F . By solving this system of equations with the help
of some computational programs such as Mathematica, Matlap and Maple, it yields us the following coefficients;

Case.1.1. For w 6= λ we can consider the coefficients as following;

a0 =
−(a3 +2k)b0

3aµ
,a1 =

−(a3 +2k)b1

3aµ
,a2 =

−4
√

(a3 +2k)λb0√
a

− (a3 +2k)b2

3aµ
,

a3 =
−4
√
(a3 +2k)λb1√

a
,a4 =−8λ 2µb0−

4
√
(a3 +2k)λb2√

a
(19)

a5 =−8λ 2µb1,a6 =−8λ 2µb2,w =

√
(a3 +2k)
2µ
√

a
.

Substituting Eq.(19) into Eq.(17) along with Eq.(14), we obtain the following exponential function solution to
Eq.(1) in the following form;

V1(ξ ) =
a3 +2k

3aµ
+8λ 2µ(ce

−
√

a3+2k√
aµ ξ − 2µλ

√
a√

a3 +2k
)−2 +

4λ
√

a
√

a3 +2k
3a

− (ce
−
√

a3+2k√
aµ ξ − 2µλ

√
a√

a3 +2k
)−1. (20)

Fig. 1. The 2D and 3D surfaces of Eq.(20) for a= 0.1,c= 3,d = 4,µ = 0.1,λ = k = 0.2,y= 2,, −15< x< 15,
−15 < t < 15 and t = 0.85 for the 2D graphic.
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Fig. 2. Contour surfaces of Eq.(20) for a = 0.1,c = 3,d = 4,µ = 0.1,λ = k = 0.2,y = 2, −280 < x < 280,
−280 < t < 280.

Case.1.2. For w 6= λ we can consider the coefficients as following;

a0 = a1 = 0,a2 =
4i
√
(a3 +2k)λb0√

a
,a3 =

4i
√

a3 +2kλb1√
a

,w =
−i
√

a3 +2k
2µ
√

a

a4 = 4λ (−2λ µb0 +
i
√

a3 +2kλb2√
a

),a5 =−8λ 2µb1,a6 =−8λ 2µb2, (21)

Taking Eq.(21) into Eq.(17) along with Eq.(14), we find the following complex exponential function solution to
Eq.(1);

V2(ξ ) =−8λ 2µ(ce
i
√

a3+2k√
aµ ξ − 2iµλ

√
a√

a3 +2k
)−2 +

4iλ
√

a
√

a3 +2k√
a

(ce
i
√

a3+2k√
aµ ξ − 2iµλ

√
a√

a3 +2k
)−1, (22)

where λ ,µ,c,a,k are real constant and non-zero.

Fig. 3. The 3D surfaces of Eq.(22) for a = 1,c = 2,µ = 3,λ = 0.4,k = 5,y = 0.6, −1 < x < 1, 0 < t < 1
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Fig. 4. 2D graphs of Eq.(22) for a = 1,c = 2,µ = 3,λ = 0.4,k = 5,y = 0.6, t = 0.85, −15 < x < 15.

Fig. 5. Contour surfaces of imaginary part of Eq.(22) for a = 1,c = 2,µ = 3,λ = 0.4,k = 5,y = 0.6, −280 <
x < 280, −280 < t < 280.

Fig. 6. Contour surfaces of real part of Eq.(22) for a= 1,c= 2,µ = 3,λ = 0.4,k = 5,y= 0.6, −280< x < 280,
−280 < t < 280.

44



4. Conclusions

In this paper, we take use of the IBSEFM to obtain several results of DJKME with the help of some computational
programs such as Maple and Mathematica. These travelling wave solutions such as exponential and complex
function solutions have been obtained. Two- and three-dimensional surfaces along with the contour simulations
for both results have been also plotted by the same program. It can be seen that the IBSEFM is a simple,
powerful and original mathematical tool to find the exact solutions of the nonlinear system, and it can be
also extended to solve other nonlinear models, especially higher dimension nonlinear models and the coupled
nonlinear partial differential equations.
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Abstract: In this paper, we apply Bernoulli sub-equation function method to the
model which reads as ’S-Integrable’ evolution equation. Complex and exponential
functional roots are obtained. Plotting two- and three-dimensional surfaces
along with contour simulations give rise to more sophisticated information about
the model. At the end of the paper, we present a conclusion by giving vital
informations about the surfaces of roots.

1. Introduction

With the more sophisticated and deeper investigated tools, the studies conducted on the nonlinear evolution
equations (NLEEs) often leads to new findings in applied science. In recent decade, many sophisticated NLEEs
have been submitted literature. In particular, Kundu A. has proposed a higher-order nonlinear system [1]. G.
Zhang and his team have established a new mathematical structure of acoustic wake effect in aerosol acoustic
agglomeration [2]. Another novel model arising in natural gas science and engineering is belong to the R.
Ming and et al [3]. They have newly developed a model for developing the prediction of liquid loading in
horizontal gas wells. Moreover, they have conducted deeper investigation along with case study. Recently, Jun
Bi and his team have presented a new model to determine the thermal conductivity of fine-grained soils [4].
They have studied on a three-parameter model to calculate the thermal conductivity. Thermal conductivity
problems, one of the most important real world problems arising in environment, earth science, and engineering
applications, include vital parameters for mankind. The world has witnessed a giant natural disease being
Tsunami generated by earthquakes in 2011 in Japan. In this sense, Chunga K and Toulkeridis T have presented
a scientific work for the first evidence of tsunami as a major historic event [5]. When such real world problems
are modelled, mankind takes advantage of these diseases by converting it useful one. This is only possible by
investigating more and deeper in real bases. In this sense, all natural problems can be symbolized by using
various NLEEs. Moreover, many tools different studies to obtain the roots and to the better understanding
physical properties such mathematical models have been developed [6-22]. This paper includes the following
sections. We give general properties of Bernoulli sub-equation function method (BSEFM) in section 2. The
complex and exponential travelling wave solutions to the ’S-Integrable’ evolution equation (SIEE), which it is
defined as [23]

ut −a1uxxx +a2uxxxxx =−6a1εuux +10a2(εuuxxx +2εuxuxx−3ε2u2ux), (1)

are obtained in section 3. Finally, a comprehensively conclusion are given in section 4.

2. Description of BSEFM

BSEFM will be given in this sub-section [24, 25]. Therefore, we consider the following steps.
Step 1. We consider the following partial differential equation;

P(u,ux,uxx,ut , ...) = 0. (2)

*hmbaskonus@gmail.com
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and take the wave transformation;
u(x, t) =U(η),η = kx− ct. (3)

where c,k are constants and can be determined later. By substituting Eq.(3), Eq.(2) converts a nonlinear ordinary
differential equation (NODE) as following;

N(U,U ′,U ′′,U ′′′, ...) = 0. (4)

Step 2. Considering trial equation of solution in Eq.(4), it can be written as following;

U(η) =
m

∑
i=0

biF i(η) = b0 +b1F(η)+b2F2(η)+ ...+bmFm(η). (5)

According to the Bernoulli theory, we can consider the general form of Bernoulli differential equation for F ′ as
following;

F ′ = wF +λFM,w 6= 0,λ 6= 0,M ∈ R−{0,1,2}. (6)

where F = F(η). Substituting above relations in Eq.(4), yields an equation of polynomia Ω(F) ofF as
following;

Ω(F) = ρsFs + ...+ρ1F +ρ0 = 0. (7)

According to the balance principle, we can determine the relationship between m and M.
Step 3.Let the coefficients of Ω(F) all be zero will yield us an algebraic system of equations;

ρi = 0, i = 0, ...,s. (8)

Solving this system, we will specify the values of b0,b1, ...,bm.
Step 4. When we solve nonlinear Bernoulli differential equation Eq.(6), we obtain the following two situations
according to w and λ ,

F(η) =

[−λ
w

+
E

ew(M−1)η

] 1
1−M

,w 6= λ . (9)

F(η) =

[
(E−1)+(E +1)tanh(w(1−M) η

2 )

1− tanh(w(1−M) η
2 )

] 1
1−M

,w = λ ,E ∈ R. (10)

Using a complete discrimination system for polynomial of F , we solve this system with the help of computer
programming and classify the exact solutions to Eq.(4).

3. Application of BSEFM

In this subsection of manuscript, we apply the method to the SIEE.

Example-1 Conducting the travelling wave transformation into the Eq.(1) in the following manner;

u(x, t) =U(ξ ),ξ = kx− ct, (11)

where c,k are real constants, it can be obtained the following nonlinear equation;

a2k5U (5)−a1k3 d3U
dξ 3 +6a1εkU

dU
dξ
−10a2εk3U

d3U
dξ 3

−20a2εk3 dU
dξ

d2U
dξ 2 +30a2kε2U2 dU

dξ
− c

dU
dξ

= 0. (12)

When we integrate Eq.(12) along with ξ and getting to the zero of integration constant, we can find the following
model

a2k5U (4)−a1k3 d2U
dξ 2 −10a2εk3U

d2U
dξ 2 −5a2εk3(

dU
dξ

)2 +10a2kε2U3 +3a1kεU2− cU = 0. (13)

With the help of balance, it can be written the following relationship for m and M ;

2M = m+2. (14)
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Case 1.
If we take M = 3 and m = 4 then, we can write the following trial solution form as;

U = b0 +b1F +b2F2 +b3F3 +b4F4

dU
ξ

= · · ·

... (15)

d4U
dξ 4 = · · · .

where dF
dξ = wF +λF3,b4 6= 0. When we use Eqs.(15) in the Eq.(13), we get a system of algebraic equations

from the coefficients of polynomial of F . By solving this system of equations with the help of some computa-
tional programs such as Mathematica, Matlap and Maple, it yields us the following coefficients;

Case.1.1. For w 6= λ we can consider the coefficients as following;

b0 =
−(15+

√
30)a1

100εa2
,b1 = 0,b2 =

−80i
√

10cλ
√

b2

13
√

3εa
3
2
1

,b3 = 0,k =
−200ca2

39a2
1

,

b4 =
320000c2λ 2a2

1

1521εa4
1

,w =
−39i

√
3a

5
2
1

400
√

10ca
3
2
2

, (16)

Substituting Eq.(16) into Eq.(15), we obtain the following new complex exponential function solution to Eq.(1);

u1(x, t) =
a1(−15−

√
30)

100εa2
+

a1

εa2

2400cλ

4000cλ +
39i
√

30Ea
5
2

1

a
3
2

2

e
(kx−ct)

39i
√

3a
5
2

1

200c
√

10a
3
2

2

− 280000c2λ 2a2
2a1

ε
(400
√

30cλa
3
2
2 +117iEa

5
2
1 e

(kx−ct)
39i
√

3a
5
2

1

200c
√

10a
3
2

2 )−2. (17)

Fig. 1. The 3D surfaces of Eq.(17) for a1 = 2,ε = −0.2,a2 = 0.3,c = 0.4,λ = 0.01,E = 2, −2 < x < 2,
0 < t < 1.
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Fig. 2. The 2D surfaces of Eq.(17) for a1 = 2,ε = −0.2,a2 = 0.3,c = 0.4,λ = 0.01,E = 2, t = 0.85, −8 <
x < 8.

Fig. 3. Contour surfaces of Eq.(17) for a1 = 2,ε = −0.2,a2 = 0.3,c = 0.4,λ = 0.01,E = 2, −80 < x < 80,
−80 < t < 80.

Fig. 4. Contour surfaces of combination of both sides of Eq.(17) for a1 = 2,ε =−0.2,a2 = 0.3,c = 0.4,λ =
0.01,E = 2, −80 < x < 80, −80 < t < 80.
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Case.1.2. For w 6= λ we can consider another coefficients as following;

b0 =
−(15+

√
30)a1

100εa2
,b1 = 0,b2 =

80i
√

10cλ√a2

13
√

3εa
3
2
1

,b3 = 0,k =
−200ca2

39a2
1

,

b4 =
320000c2λ 2a2

2

1521εa4
1

,w =
39i
√

3a
5
2
1

400
√

10ca
3
2
2

, (18)

Substituting Eq.(18) into Eq.(15), we obtain the following another new complex exponential function solution
to Eq.(1);

u2(x, t) =
a1

100εa2
(−15−

√
30+

2808000i
√

30cEλa
5
2
1 a

3
2
2 e

(kx−ct)
39i
√

3a
5
2

1

200c
√

10a
3
2

2

(117iEa
5
2
1 +400i

√
30cλa

3
2
2 e

(kx−ct)
39i
√

3a
5
2

1

200c
√

10a
3
2

2 )2

). (19)

Fig. 5. The 3D graphs of Eq.(19) for a1 = 2,ε = 1,a2 = 0.2,c= 0.4,λ = 0.1,E =−2, −2< x< 2, −2< t < 2.

Fig. 6. The 2D graphs of Eq.(19) for a1 = 2,ε = 1,a2 = 0.2,c = 0.4,λ = 0.1,E =−2, t = 0.85, −12 < x < 12.

50



Fig. 7. The Contour graphs of Eq.(19) for a1 = 2,ε = 1,a2 = 0.2,c = 0.4,λ = 0.1,E = −2, −18 < x < 18,
−18 < t < 18.

Fig. 8. Contour surfaces of combination of both sides of Eq.(19) for a1 = 2,ε = 1,a2 = 0.2,c = 0.4,λ =
0.1,E =−2, −18 < x < 18, −18 < t < 18.

4. Conclusions

In this paper, we have applied the BSEFM into the SIEE. Several complex travelling wave solutions have
been obtained. Two- and three-dimensional surfaces along with the contour simulations for both results have
been also plotted by using computational programs such as Maple and Mathematica. Contour surfaces of
combination of both sides of results have been also drawn. These solutions have been newly presented to
the literature. To the best of our knowledge, the application of BSEFM to the SIEE has been not submitted
beforehand.
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Abstract: In this study, the definition of suborbital graphs of the type(
a bM

cL d

)
, its transitive and invariant state on the set of generalized rational

numbers, basic congruence groups, number of basic congruence groups and some
of its other features have been tried to be examined with the help of definitions

and theories of basic graph theories. Γ0(n) = {
(

a b
c d

)
∈ Γ : c ≡ 0(modn)}

is connected to the congruential basis n and Γ0(L,M) = {
(

a bM
cL d

)
∈ Γ :

a,b,c,d ∈Z,ad−bc(LM) = 1} is connected to L. Furthermore, it has been shown
that Γ0(L,M) moves on Q in an imprimitive way, thus, by defining the G-invariant
equivalence relation, a different equation relation on Γ0(L,M) is defined which is
different from universal and identity equivalence relations.

1. Introduction and Preliminaries

In graph theory,Γ = {F : z→ az+b
cz+d : a,b,c,d ∈ Z,ad− bc = 1} is defined as a subgroup of modular group.

More specifically, this subgroup can be written as Γ = {
(

a b
c d

)
: a,b,c,d ∈ Z,ad− bc = 1} . And this

subgroup moves on transitively on generalized rational numbers (Q̂=Q∪∞). For example, If a
c and b

d ∈Q
are taken as σ( a

c ) =
b
d , you get σ ∈ Γ. Because, for γ,ϕ ∈ Γ,

from the equation of γ(∞)= a
c ⇒ ∞=γ−1( a

c ) and ϕ(∞)= b
d ⇒ ϕγ−1( a

c )=
b
d

, you get (ϕγ−1) a
c = b

d ⇒ σ( a
c )=

b
d .

Then a
c ∈ Q̂ in reduced form, it is (a,c) = 1 and for ∃x,y ∈ Z, ax− cy = 1.

So, it is g =

(
a x
c y

)
∈ Γ and g(∞) =

(
a x
c y

)(
1
0

)
=

(
a
c

)
. In other words, a

c orbits on ∞ and Γ

moves transitively on Q.

Any point on Γ has infinite periods. Suppose that, Ω =

(
a b
c d

)
∈ Γ equals to Ω for Ω(∞) = ∞.

∞ = 1
0 ⇒Ω(∞) =

(
a x
c y

)(
1
0

)
=

(
a
c

)
=

(
1
0

)

⇒ a = 1, c = 0. From this definition, we get detΩ = 1, ad−bc = 1⇒ d = 1, ∀b ∈ Z.

So, it is Ω =

(
a b
c d

)
=

(
1 b
0 1

)
∈ Γ∞ ⊂ Γ, ∀b ∈ Z. Thus, Γ∞ is a group with infinite periods produced

by
(

1 1
0 1

)
.
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Basic congruence subgroup for Γ is defined by Γ(n) = {
(

a b
c d

)
: a≡ d ≡ 1,b≡ c≡ 0}. In addition to this,

some the other subgroups containing the basic congruence subgroup is defined in the following way.

Γ1(n) = {
(

a b
c d

)
∈ Γ : a≡ d ≡ 1,c≡ 0(modn)}

Γ0(n) = {
(

a b
c d

)
∈ Γ : c≡ 0(modn)}

Γ0(n) = {
(

a b
c d

)
∈ Γ : b≡ 0(modn)}

Γ0
0(n) = {

(
a b
c d

)
∈ Γ : b≡ c≡ 0(modn)}

Among these equivalence groups, there is an order as Γ(n) ≤ Γ1(n) ≤ Γ0
0 ≤ Γ0(n)(Γ0(n)).The number of

basic congruence groups is defined by Ψ(n) = ∏ p
n
(1+ 1

p ). For ∀α ∈Q and g,g′ ; "≈" equivalence relation is

well-defined by g(α)≈ g
′
(α)⇔ g

′ ∈ gH.

Assume that Γ0(n) = {
(

a b
c d

)
∈ Γ : c ≡ 0(modn)} is an equivalence subgroup and it is v,w ∈ Q, g =

(
a ∗
c ∗

)
,g
′
=

(
x ∗
y ∗

)
∈ Γ⇒ v = g(∞) = g

(
a ∗
c ∗

)
(∞) and w = g(∞) = g

′
(

x ∗
y ∗

)
(∞).

v≈ w⇔ g−1g
′ ∈ H = Γ0(n)

g−1 =

(
∗ ∗
−c a

)
⇒ g−1g

′
=

(
∗ ∗
−c a

)(
x ∗
y ∗

)
=

(
∗ ∗

ay− cx ∗

)
∈ H = Γ0(n)

ay− cx≡ 0(modn).

2. Main Results

We have given some features of Γ = {
(

a b
c d

)
: a,b,c,d ∈ Z,ad−bc = 1} in the introduction section. In

this section, the same features will investigated for suborbital graphs of the type Γ0(L,M) =

(
a bM

cL d

)

2.1. Preposition

Let Γ0(L,M) =

(
a bM

cL d

)
be a suborbital graph.

1. Γ0(L,M) moves transitively on Q̂,

2. Any point has infinite periods in Γ0(L,M).

Proof:(1.) If it is a
cL and bM

d ∈Q as σ( a
cL ) =

bM
d , it equals to σ ∈ Γ0(L,M).

As for γ,ϕ ∈ Γ,it is γ(∞)= a
cL ⇒ ∞=γ−1( a

cL ) and ϕ(∞)= bM
d ⇒ ϕγ−1( a

cL )=
bM
d

(ϕγ−1) a
cL = bM

d ⇒ σ( a
cL )=

bM
d .

Then we get a
cL ∈ Q̂ in redeuced form, (a,cL) = 1 and for ∃x,y ∈ Z, ax− cLy = 1.

So g =

(
a x

cL y

)
∈ Γ0(L,M) and g(∞) =

(
a x

cL y

)(
1
0

)
=

(
a

cL

)
. a

cl orbit on ∞ and Γ0(L,M) moves

on transitively on Q̂.

(2.) Assume that Ω =

(
a bM

cL d

)
∈ Γ0(L,M) and Ω for Ω(∞) = ∞ and similarly, ∞ = 1

0 ⇒ Ω(∞) =
(

a x
cL y

)(
1
0

)
=

(
a

cL

)
=

(
1
0

)

⇒ a = 1, cL = 0. From this definition, we get detΩ = 1, ad−bc(LM) = 1⇒ d = 1 and ∀b ∈ Z.

So it is Ω =

(
a bM

cL d

)
=

(
1 bM
0 1

)
∈ Γ∞(L,M)⊂ Γ0(L,M), ∀b ∈ Z. Thus, Γ∞(L,M) is a group with

infinite periods produced by
(

1 1
0 1

)
.
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2.2. Definition

Γ0(L,M) = {
(

a bM
cL d

)
∈ Γ : a,b,c,d,L,M ∈ Z,ad−bc(LM) = 1} equivalence obtained from Γ(L,M) =

{
(

a bM
cL d

)
∈ Γ : a,b,c,d,L,M ∈ Z,ad− bc(LM) = 1}.In addition to, we can write equivalences in the

following:

Γ0(L,M) = {
(

a bM
cL d

)
∈ Γ(L,M) : a,b,c,d,L,M ∈ Z,ad−bc(LM) = 1,bM ≡ 0(modM)}

Γ0
0(L,M) = {

(
a bM

cL d

)
∈ Γ(L,M) : a,b,c,d,L,M ∈Z,ad−bc(LM) = 1,bM≡ 0(modM),cL≡ 0(modL)}

Among these equivalence groups have Γ(n) ≤ Γ(L,M) ≤ Γ0
0(L,M) ≤ Γ0(L,M) ≤ Γ or Γ(n) ≤ Γ(L,M) ≤

Γ0
0(L,M)≤ Γ0(L,M)≤ Γ.

2.3. Preposition

Let number of basic congruence groups of Γ0(L,M) be Ψ(L,M).

Ψ(L,M)=|Γ : Γ0(L,M)|= L∏ p
L
(1+ 1

p ).

2.4. Example

Γ0(3,7) = {
(

11 1.7
1.3 2

)
∈ Γ0(L,M) : 11,1,2,3,7 ∈ Z,11.2−1.1(7.3) = 1,1.3≡ 0(mod3)}.Ψ(3,7) = 8.

Solution: Ψ(3,7)=|Γ : Γ0(3,7)|= 3∏ p
3
(1+ 1

p )

= 3∏{1,3}/3(1+
1
p )

= 3
(
1+ 1

1

)(
1+ 1

3

)
= 3.2. 4

3 = 8.

2.5. Preposition

Let Γ0(L,M) be an suborbital graph and L,M are prime numbers.
|Γ : Γ0(L,M)|=|Γ0(L,M) : Γ0

0(L,M)|⇒ L =1+ 1
1+ 1

...

and M = 1+ 1
1+ 1

...

.

Proof. Let Γ0(L,M) = {
(

a bM
cL d

)
∈ Γ : a,b,c,d,L,M ∈ Z,ad−bc(LM) = 1} and

Γ0
0(L,M) = {

(
a bM

cL d

)
∈ Γ(L,M) : a,b,c,d,L,M ∈Z,ad−bc(LM) = 1,bM≡ 0(modM),cL≡ 0(modL)}.

In the Ψ(L,M)=|Γ : Γ0(L,M)|, the equality depend on L but we let in the Ψ(L,M)=|ΓL,M : Γ0
0(L,M)| depend

only M, because cL is fixed on both sides of the equation.
|Γ : Γ0(L,M)|=|Γ0(L,M) : Γ0

0(L,M)|
L∏ p

L
(1+ 1

p )=M ∏ k
M
(1+ 1

k )

Then K and M and prime p∈ {1,L}, k∈ {1,M}.
L
(
1+ 1

1

)(
1+ 1

L

)
=M

(
1+ 1

1

)(
1+ 1

M

)

L.2.
(
1+ 1

L

)
=M.2.

(
1+ 1

M

)

L
(
1+ 1

L

)
= M

(
1+ 1

M

)

L
M = 1+ 1

M
1+ 1

L

L = 1+ 1
M and M = 1+ 1

L
L = 1+ 1

M = 1+ 1
1+ 1

L
= 1+ 1

1+ 1
1+ 1

M

= 1+ 1
1+ 1

1+ 1
1+ 1

L

= 1+ 1
1+ 1

1+ 1
1+ 1

...
M = 1+ 1

L = 1+ 1
1+ 1

M
= 1+ 1

1+ 1
1+ 1

L

= 1+ 1
1+ 1

1+ 1
1+ 1

M

= 1+ 1
1+ 1

1+ 1
1+ 1

...
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2.6. Preposition

For ∀n ∈ N, Γ∞(L,M)≤ Γ0(L,M)≤ Γ and n > 1, Γ∞(L,M)< Γ0(L,M)< Γ. So Γ(L,M) moves as impritive
on Q̂.
Proof. We have to define a equivalence relation which is different from universal and identity relations to show

that you move as impritive. Let Γ0(L,M) = {
(

a bM
cL d

)
∈ Γ : a,b,c,d,L,M ∈ Z,ad−bc(LM) = 1,cL ≡

0(modL)} is an congruence subgroup and v,w ∈ Q equals to v = g(∞) =

(
a ∗

cL ∗

)
(∞) and w = g

′
(∞) =

(
x ∗
y ∗

)
, for g,g

′ ∈ Γ0(L,M).

Then v≈ w⇔ g−1g
′ ∈ H = Γ0(L,M) and g−1=

(
∗ ∗
−cL a

)
,

g−1g
′
=

(
∗ ∗
−cL a

)(
x ∗
y ∗

)
=

(
∗ ∗

ay− cLx ∗

)
∈ H = Γ0(L,M), ay− cLx≡ 0(modL).

ay− cLx≡ 0(modL)⇒ ay = cLx⇒ a
cL = x

y
a

cL ≈L
x
y

v≈ w⇔ a
cL ≈L

x
y .

3. Conclution

Transitive and invariant state, basic congruence groups, number of basic congruence groups and some of its
other features of Γ are investigated for Γ0(L,M) and are obtained the same conclutions. The conclutions of
Γ0(L,M) can be examined for Γ0(L,M) and Γ0

0(L,M). In addition to this, continuous fractions are obtained in
the 4.5 Preposition.From the definition of continuous fraction, we get Fibonacci quadtaric equation.
L = 1+ 1

M = 1+ 1
1+ 1

L
= 1+ L

L+1 = 2L+1
L+1

L = 2L+1
L+1 ⇒ L2 +L = 2L+1⇒ L2−L−1 = 0
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Abstract: In this paper, we introduced the concept of lacunary statistical
summable and lacunary statistical convergence in fuzzy n-normed linear spaces.
It also has studied the some properties these concepts.

1. Introduction and Background

The concept of convergence of real sequences has been extended to statistical convergence independently by
Fast [10] and Schoenberg [31]. The concept of ordinary convergence of a sequence of fuzzy numbers was
firstly introduced by Matloka [14] and proved some basic theorems for sequences of fuzzy numbers. Nanda
[18] studied the sequences of fuzzy numbers and showed that the set of all convergent sequences of fuzzy
numbers form a complete metric space. S. enc. imen and Pehlivan [32] introduced the notions of statistically
convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. Reddy and Srinivas [25]
studied statistical convergence in fuzzy n-normed linear spaces. Türkmen and C. ınar [34] presented analogues in
fuzz normed linear spaces of the results given by Fridy and Orhan [13] and Türkmen and Dündar [37] studied
lacunary statistical convergence of double sequences in fuzzy normed linear spaces. Recently, Savaş [29, 30]
studied on I -lacunary statistical convergence of weight g of fuzzy numbers and on lacunary p-summable
convergence of weight g for fuzzy numbers via ideal.
Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that
each element x ∈ X is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to
nonmembership, 0 < u(x)< 1 to partial membership, and u(x) = 1 to full membership. According to Zadeh
[38], a fuzzy subset of X is a nonempty subset {(x,u(x)) : x ∈ X} of X× [0,1] for some function u : X → [0,1].
The function u itself is often used for the fuzzy set.
A fuzzy set u on R is called a fuzzy number if it has the following properties:
1. u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;
2. u is fuzzy convex, that is, for x,y ∈ R and 0≤ λ ≤ 1, u(λx+(1−λ )y)≥min[u(x),u(y)];
3. u is upper semicontinuous;
4. suppu = cl{x ∈ R : u(x)> 0}, or denoted by [u]0, is compact.
Now, we recall the basic definitions and concepts [1, 2, 4, 6–13, 15–17, 20–24, 26–28, 32–36].
Let L(R) be set of all fuzzy numbers. If u ∈ L(R) and u(t) = 0 for t < 0, then u is called a non-negative fuzzy
number. We write L∗(R) by the set of all non-negative fuzzy numbers. We can say that u ∈ L∗(R) iff u−α ≥ 0
for each α ∈ [0,1] . Clearly we have 0̃ ∈ L(R). For u ∈ L(R), the α level set of u is defined by

[u]α =

{
{x ∈ R : u(x)≥ α}, if α ∈ (0,1]

suppu, if α = 0.

A partial order � on L(R) is defined by u� v if u−α ≤ v−α and u+α ≤ v+α for all α ∈ [0,1] .

*Presented by Muhammed Recai Türkmen, mrtmath@gmail.com
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Arithmetic operation for t ∈ R, ⊕,	,� and � on L(R)×L(R) are defined by
(u⊕ v)(t) = sups∈R {u(s)∧ v(t− s)}, (u	 v)(t) = sups∈R {u(s)∧ v(s− t)},
(u� v)(t) = sups∈R,s6=0 {u(s)∧ v(t/s)} and (u� v)(t) = sups∈R {u(st)∧ v(s)}.
For k ∈ R+, ku is defined as ku(t) = u(t/k) and 0u(t) = 0̃, t ∈ R.
Some arithmetic operations for α−level sets are defined as follows:
u,v ∈ L(R) and [u]α = [u−α ,u

+
α ] and [v]α = [v−α ,v

+
α ] , α ∈ (0,1] . Then,

[u⊕ v]α = [u−α + v−α ,u
+
α + v+α ],

[u	 v]α = [u−α − v+α ,u
+
α − v−α ],

[u� v]α = [u−α .v
−
α ,u

+
α .v

+
α ] and[

1̃�u
]

α =
[

1
u+α

, 1
u−α

]
, u−α > 0.

For u,v ∈ L(R), the supremum metric on L(R) defined as

D(u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ ,
∣∣u+α − v+α

∣∣} .

It is known that D is a metric on L(R) and (L(R),D) is a complete metric space.
A sequence x = (xk) of fuzzy numbers is said to be convergent to the fuzzy number x0, if for every ε > 0
there exists a positive integer k0 such that D(xk,x0)< ε for k > k0 and a sequence x = (xk) of fuzzy numbers
convergens to levelwise to x0 iff lim

k→∞
[xk]α = [x0]

−
α and lim

k→∞
[xk]α = [x0]

+
α , where [xk]α =

[
(xk)

−
α ,(xk)

+
α
]

and

[x0]α =
[
(x0)

−
α ,(x0)

+
α
]
, for every α ∈ (0,1).

Let X be a vector space over R, ‖.‖ : X → L∗ (R) and the mappings L;R (respectively, left norm and right norm)
: [0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both arguments and satisfy L(0,0) = 0 and R(1,1) = 1.
The quadruple (X ,‖.‖ ,L,R) is called fuzzy normed linear space (briefly (X ,‖.‖) FNS) and ‖.‖ a fuzzy norm
if the following axioms are satisfied

1. ‖x‖= 0̃ iff x = 0,

2. ‖rx‖= |r|�‖x‖ for x ∈ X , r ∈ R,

3. For all x,y ∈ X
(a) ‖x+ y‖(s+ t)≥ L(‖x‖(s) ,‖y‖(t)) , whenever s≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+ y‖−1 ,
(b) ‖x+ y‖(s+ t)≤ R(‖x‖(s) ,‖y‖(t)) , whenever s≥ ‖x‖−1 , t ≥ ‖y‖−1 and s+ t ≥ ‖x+ y‖−1 .

Let (X ,‖.‖C) be an ordinary normed linear space. Then, a fuzzy norm ‖.‖ on X can be obtained by

‖x‖(t)=





0 if 0≤t≤a‖x‖C or t≥b‖x‖C
t

(1−a)‖x‖C
− a

1−a a‖x‖C≤t≤‖x‖C
−t

(b−1)‖x‖C
+ b

b−1 ‖x‖C≤t≤b‖x‖C

where ‖x‖C is the ordinary norm of x (6= 0) , 0 < a < 1 and 1 < b < ∞. For x = θ , define ‖x‖ = 0̃. Hence,
(X ,‖.‖) is a fuzzy normed linear space.
Let us consider the topological structure of an FNS (X ,‖.‖). For any ε > 0,α ∈ [0,1] and x ∈ X , the (ε,α)−
neighborhood of x is the set Nx (ε,α) = {y ∈ X : ‖x− y‖+α < ε}.
Let (X ,‖.‖) be an FNS. A sequence (xn)

∞
n=1 in X is convergent to x ∈ X with respect to the fuzzy norm on X

and we denote by xn
FN→ x, provided that (D)− limn→∞ ‖xn− x‖= 0̃; i.e., for every ε > 0 there is an N (ε) ∈ N

such that D
(
‖xn− x‖ , 0̃

)
< ε for all n≥ N (ε) . This means that for every ε > 0 there is an N (ε) ∈N such that

for all n≥ N (ε) , supα∈[0,1] ‖xn− x‖+α = ‖xn− x‖+0 < ε.
Let (X ,‖.‖) be an FNS. A sequence (xk) in X is statistically convergent to L ∈ X with respect to the fuzzy norm

on X and we denote by xn
FS→ x, provided that for each ε > 0, we have δ

({
k ∈ N : D

(
‖xk−L‖ , 0̃

)
≥ ε
})

= 0.
This implies that for each ε > 0, the set

K (ε) =
{

k ∈ N : ‖xk−L‖+0 ≥ ε
}

has natural density zero; namely, for each ε > 0, ‖xk−L‖+0 < ε for almost all k.
Let n ∈ N and let X be a real linear space of dimension d ≥ n. A real valued function ‖·, ·, ..., ·‖ on
X×X×·· ·×X︸ ︷︷ ︸

n

satisfying the following conditions:

nN1 : ‖x1,x2, ...,xn‖= 0 if and only if x1,x2, ...,xn are linearly dependent,
nN2 : ‖x1,x2, ...,xn‖ is invariant under any permutation of x1,x2, ...,xn,
nN3 : ‖αx1,x2, ...,xn‖= |α|‖x1,x2, ...,xn‖ for all α ∈ R,

58



nN4 : ‖y+ z,x2, ...,xn‖ ≤ ‖y,x2, ...,xn‖+‖z,x2, ...,xn‖ for all y,z,x2, ...,xn ∈ X , then the function ‖·, ·, ..., ·‖ is
called an n−norm on X and pair (X ,‖·, ·, ..., ·‖) is called n−normed space.
Let X be a real linear space of dimension d, where 2≤ d < ∞. Let ‖·, ·, ..., ·‖ : Xn −→ L∗ (R) and the mappings
L;R (respectively, left norm and right norm) : [0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both arguments
and satisfy L(0,0) = 0 and R(1,1) = 1 then the quadruple (X ,‖·, ·, ..., ·‖ ,L,R) is called fuzzy n−normed linear
space (briefly (X ,‖·, ·, ..., ·‖) FnNS) and ‖·, ·, ..., ·‖ a fuzzy n−norm if the following axioms are satisfied for
every y,x1,x2, ...,xn ∈ X and s, t ∈ R
f nN1 : ‖x1,x2, ...,xn‖= 0̃ if and only if x1,x2, ...,xn are linearly dependent vectors,
f nN2 : ‖x1,x2, ...,xn‖ is invariant under any permutation of x1,x2, ...,xn,
f nN3 : ‖αx1,x2, ...,xn‖= |α|‖x1,x2, ...,xn‖ for all α ∈ R,
f nN4 : ‖x1 + y,x2, ...,xn‖(s+ t) ≥ L(‖x1,x2, ...,xn‖(s) ,‖y,x2, ...,xn‖(t)) whenever s ≤ ‖x1,x2, ...,xn‖−1 , t ≤
‖y,x2, ...,xn‖−1 and s+ t ≤ ‖x1 + y,x2, ...,xn‖−1 ,

f nN5 : ‖x1 + y,x2, ...,xn‖(s+ t) ≤ R(‖x1,x2, ...,xn‖(s) ,‖y,x2, ...,xn‖(t)) whenever s ≥ ‖x1,x2, ...,xn‖−1 , t ≥
‖y,x2, ...,xn‖−1 and s+ t ≥ ‖x1 + y,x2, ...,xn‖−1 , where [‖x1,x2, ...,xn‖]α =

[
‖x1,x2, ...,xn‖−α ,‖x1,x2, ...,xn‖+α

]

for x1,x2, ...,xn ∈ X ,0 ≤ α ≤ 1 and inf
α∈[0,1]

‖x1,x2, ...,xn‖−α > 0. Hence the norm ‖·, ·, ..., ·‖ is called fuzzy

n−norm on X and pair (X ,‖·, ·, ..., ·‖) is called fuzzy n−normed space.
Let (X ,‖·, ·, ..., ·‖) be fuzzy n−normed space. A sequence {xk} in X is said to be convergent to an element
x ∈ X with respect to the fuzzy n−norm on X if for every ε > 0 and for every z2,z3, ...,zn 6= 0, z2,z3, ...,zn ∈ X ,
∃ a number N = N(ε,z2,z3, ...,zn) such that D

(
‖xk− x,z2,z3, ...,zn‖ , 0̃

)
< ε ,∀k ≥ N or equivalently (D)−

lim
k→∞
‖xk− x,z2,z3, ...,zn‖= 0̃.

Let (X ,‖·, ·, ..., ·‖) be fuzzy n−normed space. A sequence {xk} in X is said to be statistically convergent to
an element x ∈ X with respect to the fuzzy n−norm on X if for every ε > 0 and for every z2,z3, ...,zn 6= 0,
z2,z3, ...,zn ∈ X , we have δ

({
k ∈ N : D

(
‖xk− x,z2,z3, ...,zn‖ , 0̃

)
≥ ε
})

= 0.
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr−kr−1→
∞ as r→ ∞. The intervals determined by θ will be denoted by Ir = (kr−1,kr].
Let (X ,‖.‖) be an FNS and θ = {kr} be lacunary sequence. A sequence x = (xk)k∈N in X is said to be lacunary
summable with respect to fuzzy norm on X if there is an L ∈ X such that

lim
r→∞

1
hr

(
∑
k∈Ir

D
(
‖xk−L‖, 0̃

)
)

= 0.

In this case, we can write xk→ L((Nθ )FN) or xk
(Nθ )FN−→ L and

(Nθ )FN=

{
x=(xk): lim

r→∞
1
hr

(
∑

k∈Ir
D(‖xk−L‖,0̃)

)
=0,for someL

}
.

A sequence x = (xk) in X is said to be lacunary statistically convergent or FSθ−convergent to L ∈ X with
respect to fuzzy norm on X if for each ε > 0

lim
r→∞

1
hr

∣∣{k ∈ Ir : D
(
‖xk−L‖ , 0̃

)
≥ ε
}∣∣= 0

where |A| denotes the number of elements of the set A⊆ N. In this case, we write xk
FSθ−→ L or xk→ L(FSθ ) or

FSθ − limk→∞ xk = L . This implies that for each ε > 0, the set K (ε) =
{

k ∈ Ir : ‖xk−L‖+0 ≥ ε
}

has natural
density zero, namely, for each ε > 0, ‖xk−L‖+0 < ε , for almost all k.

2. Main Results

In this section, we introduce the concepts of lacunary summable and lacunary statistically convergence fuzzy
n−normed spaces. Also, we investigate some properties and relationships between these concepts.
Throughout the paper, we consider (X ,‖·, ..., ·‖) be an FnNS and θ = (kr) be a lacunary sequence.
Definition 2.1 A sequence x = (xm)m∈N in X is said to be lacunary summable with respect to fuzzy n−norm
on X if there is an L ∈ X such that

lim
r→∞

1
hr

(
∑

m∈Ir

D
(
‖xm−L,z1,z2, ...,zn−1‖, 0̃

)
)

= 0.

In this case, we write xm→ L((Nθ )FnN) or xm
(Nθ )FnN−→ L and

(Nθ )FnN = { (xm) : lim
r→∞

1
hr
( ∑

m∈Ir
D(‖xm−L,z1,z2, ...,zn−1‖ , 0̃)) = 0, for some L}
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Definition 2.2 A sequence x = (xm) in X is said to be lacunary statistically convergent or FnSθ−convergent to
L ∈ X with respect to fuzzy n−norm on X if for each ε > 0

lim
r→∞

1
hr

∣∣{m ∈ Ir : D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)
≥ ε
}∣∣= 0. (2.1)

In this case, we write xm
FnSθ−→ L or xmn → L(FnSθ ) or FnSθ − limm→∞ xm = L . This implies that, for each

ε > 0, the set K (ε) =
{

m ∈ Ir : ‖xm−L ,z1,z2, ...,zn−1‖+0 ≥ ε
}

has natural density zero, namely, for each ε > 0,
‖xm−L,z1,z2, ...,zn−1‖+0 < ε , for almost all m.
A useful interpretation of the above definition is the following;

xm
FnSθ−→ L⇔ FnSθ − lim‖xm−L,z1,z2, ...,zn−1‖+0 = 0.

Note that FSθ2 − lim‖xm−L,z1,z2, ...,zn−1‖+0 = 0 implies that

FnSθ − lim‖xm−L,z1,z2, ...,zn−1‖−α = FnSθ − lim‖xm−L,z1,z2, ...,zn−1‖+α = 0,

for each α ∈ [0,1], since

0≤ ‖xm−L,z1,z2, ...,zn−1‖−α ≤ ‖xm−L,z1,z2, ...,zn−1‖+α ≤ ‖xm−L,z1,z2, ...,zn−1‖+0
holds for every m ∈ N and for each α ∈ [0,1] .
The set of all lacunary statistically convergent sequence with respect to fuzzy norm on X will be denoted by
FnSθ = {x : for some L, FnSθ − limx = L} .
Theorem 2.3 We have the following:
(i) xm→ L((Nθ )FnN)⇒ xm→ L(FnSθ ).
(ii) (Nθ )FnN is a proper subset of FnSθ .

Proof. (i) If xm→ L((Nθ )FnN), then for given ε > 0

∑
m∈Ir

D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)

≥ ∑
m∈Ir

D(‖xm−L,z1,z2,...,zn−1‖,0̃)>ε

D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)

≥ ε.
∣∣{m ∈ Ir : D

(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)
≥ ε
}∣∣ .

Therefore, we have

lim
r→∞

1
hr

∣∣{m ∈ Ir : D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)
≥ ε
}∣∣= 0.

This implies that xm→ L(FnSθ ) .
(ii) In order to indicate that the inclusion (Nθ )FnN ⊆ FnSθ in (i) is proper, let a lacunary sequence θ be given
and define a sequence x = (xm) as follows:

xm =





m
if kr−1 < m < kr−1 +

[√
hr
]

r = 1,2, ...
0 otherwise.

Note that, x is not bounded. We have, for every ε > 0 and for each x ∈ X ,

1
hr

∣∣{m ∈ Ir : D
(
‖xm−0,z1,z2, ...,zn−1‖ , 0̃

)
≥ ε
}∣∣

=

[√
hr
]

hr
→ 0, as r→ ∞.

That is, xm→ 0(FnSθ ). On the other hand

1
hr

∑
m∈Ir

D
(
‖xm−0,z1,z2, ...,zn−1‖ , 0̃

)
=

1
hr

∑
m∈Ir

‖xm,z1,z2, ...,zn−1‖+0

=
1
hr
·
[√

hr
]
.
([√

hr
]
+1
)

2

→ 1
2
6= 0.

Hence, xm 9 0((Nθ )FnN).
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Theorem 2.4 Let θ be a lacunary sequence. Then, x = (xm) ∈ L∞ and xm→ L(FnSθ )⇒ xm→ L((Nθ )FnN).

Proof. Suppose that x ∈ L∞ and xm→ L(FnSθ ).
Then, we say that D

(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)
< M,for all m. Given ε > 0, we get

1
hr

∑
m∈Ir

D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)

=
1
hr

∑
m∈Ir

D(‖xm−L,z1,z2,...,zn−1‖,0̃)≥ε

D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)

+
1
hr

∑
m∈Ir

D(‖xm−L,z1,z2,...,zn−1‖,0̃)<ε

D
(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)

≤ M
hr
·
∣∣{m ∈ Ir : D

(
‖xm−L,z1,z2, ...,zn−1‖ , 0̃

)
≥ ε
}∣∣+ ε.

Hence, xm→ L((Nθ )FnN).
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[22] F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45(3) (1995),
269–273.

[23] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.

[24] D. Rath, B. C. Tripaty, On statistically convergence and statistically Cauchy sequences, Indian J. Pure
Appl. Math. 25(4) (1994), 381–386.

[25] B. S. Reddy, M. Srinivas, statistically convergent in fuzzy n-normed spaces, Int. J. of Pure and App. Math.,
104 (2015), 29–42.

[26] T. S̆alát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150.
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Abstract: In this paper, we have introduced lacunary ideal convergence and
condition of being lacunary ideal Cauchy in fuzzy normed linear spaces and study
some properties and relations of these concepts.

1. Introduction and Background

The concept of convergence of a sequence of real numbers has been extended to statistical convergence
independently by Fast [9] and Schoenberg [32]. A lot of developments have been made in this area after the
works of Śalát [28] and Fridy [11]. In general, statistically convergent sequences satisfy many of the properties
of ordinary convergent sequences in metric spaces [9, 11, 26]. The idea of I -convergence was introduced
by Kostyrko et al. [15] as a generalization of statistical convergence which is based on the structure of the
ideal I of subset of the set of natural numbers N. Nuray and Ruckle [22] indepedently introduced the same
with another name generalized statistical convergence. Kostyrko et al. [16] gave some of basic properties of
I -convergence and dealt with extremal I -limit points. A lot of developments have been made in this area
after the works of [17, 27, 34].
The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka
[19] and proved some basic theorems for sequences of fuzzy numbers. Nanda [21] studied the sequences of
fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers form a complete metric
space. S. enc. imen and Pehlivan [33] introduced the notions of statistically convergent sequence and statistically
Cauchy sequence in a fuzzy normed linear space. Hazarika [13] studied the concepts of I -convergence, I ∗-
convergence and I -Cauchy sequence in a fuzzy normed linear space. Türkmen and C. ınar [35] studied lacunary
statistical convergence in fuzzy normed linear spaces. Recently, Türkmen and Dündar [37] studied lacunary
statistical convergence of double sequences and Savaş [30, 31] studied on I-lacunary statistical convergence of
weight g of fuzzy numbers and on lacunary p-summable convergence of weight g for fuzzy numbers via ideal.
In this paper, we introduce and study the concepts of lacunary I−convergence, lacunary I ∗− convergence
with respect to fuzzy norm where I denotes the ideal of subsets of N. Also, we study some properties and
relations of them.
Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence, lacunary conver-
gence, fuzzy normed and some basic definitions (see [1–12, 14, 18, 20, 22–26, 28–30, 33, 35–38])
Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that
each element x ∈ X is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to
nonmembership, 0 < u(x)< 1 to partial membership, and u(x) = 1 to full membership.
According to Zadeh a fuzzy subset of X is a nonempty subset {(x,u(x)) : x ∈ X} of X× [0,1] for some function
u : X → [0,1]. The function u itself is often used for the fuzzy set.
A fuzzy set u on R is called a fuzzy number if it has the following properties:
i) u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;

*Presented by Muhammed Recai Türkmen, mrtmath@gmail.com
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ii) u is fuzzy convex, that is, for x,y ∈ R and 0≤ λ ≤ 1,

u(λx+(1−λ )y)≥min[u(x),u(y)];

iii) u is upper semicontinuous;
iv) suppu = cl{x ∈ R : u(x)> 0}, or denoted by [u]0, is compact.
Let L(R) be set of all fuzzy numbers. If u ∈ L(R) and u(t) = 0 for t < 0, then u is called a non-negative fuzzy
number. We have written L∗(R) by the set of all non-negative fuzzy numbers. We can say that u ∈ L∗(R) if and
only if u−α ≥ 0 for each α ∈ [0,1] . Clearly we have 0̃ ∈ L(R). For u ∈ L(R), the α level set of u is defined by

[u]α =

{
{x ∈ R : u(x)≥ α}, ifα ∈ (0,1]

suppu, ifα = 0.

Some arithmetic operations for α−level sets are defined as follows: u,v ∈ L(R) and [u]α = [u−α ,u
+
α ] and

[v]α = [v−α ,v
+
α ] , α ∈ (0,1] . Then

[u⊕ v]α = [u−α + v−α ,u
+
α + v+α ], [u	 v]α = [u−α − v+α ,u

+
α − v−α ]

[u� v]α = [u−α .v
−
α ,u

+
α .v

+
α ] ,

[
1̃�u

]
α =

[
1

u+α
, 1

u−α

]
,u−α > 0.

For u,v ∈ L(R), the supremum metric on L(R) is defined as

D(u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ ,
∣∣u+α − v+α

∣∣} .

It is known that D is a metric on L(R), and (L(R),D) is a complete metric space. A sequence x = (xk) of fuzzy
numbers is said to be convergent to the fuzzy number x0 if for every ε > 0, there exists a positive integer k0
such that D(xk,x0)< ε for k > k0. And a sequence x = (xk) of fuzzy numbers convergens to levelwise to x0, if
and only if lim

k→∞
[xk]α = [x0]

−
α and lim

k→∞
[xk]α = [x0]

+
α where [xk]α =

[
(xk)

−
α ,(xk)

+
α
]

and [x0]α =
[
(x0)

−
α ,(x0)

+
α
]

for every α ∈ (0,1) .
The statistical converge of fuzzy number defined as follows;
A sequence X = (Xk) of fuzzy numbers is said to be statistically convergent to fuzzy numbers X0 if every ε > 0,

lim
n

1
n

∣∣{k ≤ n : d (Xk,X0)≥ ε
}∣∣= 0.

Later, many mathematicians studied statistical convergence of fuzzy numbers and extended to fuzzy normed
spaces.
Let X be a vector space over R, let ‖.‖ : X → L∗ (R) and the mappings L;R (respectively, left norm and
right norm ) : [0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both arguments and satisfy L(0,0) = 0 and
R(1,1) = 1.
The quadruple (X ,‖.‖ ,L,R) is called fuzzy normed linear space (briefly (X ,‖.‖) FNS) and ‖.‖ a fuzzy norm if
the following axioms are satisfied
1) ‖x‖= 0̃ iff x = θ ,
2) ‖rx‖= |r|�‖x‖ for x ∈ X , r ∈ R,
3) For all x,y ∈ X
a) ‖x+ y‖(s+ t)≥ L(‖x‖(s) ,‖y‖(t)) , whenever s≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+ y‖−1 ,
b) ‖x+ y‖(s+ t)≤ R(‖x‖(s) ,‖y‖(t)) , whenever s≥ ‖x‖−1 , t ≥ ‖y‖−1 and s+ t ≥ ‖x+ y‖−1 .
Let (X ,‖.‖C) be an ordinary normed linear space. Then a fuzzy norm ‖.‖ on X can be obtained

‖x‖(t)=





0 if 0≤t≤a‖x‖C or t≥b‖x‖C
t

(1−a)‖x‖C
− a

1−a a‖x‖C≤t≤‖x‖C
−t

(b−1)‖x‖C
+ b

b−1 ‖x‖C≤t≤b‖x‖C

(1.1)

where ‖x‖C is the ordinary norm of x(6= θ),
0 < a < 1 and 1 < b < ∞. For x = θ , define ‖x‖= 0̃.
Hence, (X ,‖.‖) is a fuzzy normed linear space. Şençimen has defined convergence in fuzzy normed spaces as
follows;
Let (X ,‖.‖) be an fuzzy normed linear space. A sequence (xn)

∞
n=1 in X is convergent to x ∈ X with respect to

the fuzzy norm on X and we denote by xn
FN→ x, provided that (D)− lim

n→∞
‖xn− x‖= 0̃; i.e. for every ε > 0 there

is an N (ε) ∈ N such that D
(
‖xn− x‖ , 0̃

)
< ε for all n > N (ε) . This means that for every ε > 0 there is an

N (ε) ∈ N such that
sup

α∈[0,1]
‖xn− x‖+α = ‖xn− x‖+0 < ε
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for all n≥ N (ε) .
Let (X ,‖.‖) be an FNS. A sequence (xk) in X is statistically convergent to L ∈ X with respect to the fuzzy norm

on X and we denote by xn
FS→ x, provided that for each ε > 0, we have δ

({
k ∈ N : D

(
‖xk−L‖ , 0̃

)
≥ ε
})

= 0.
This implies that for each ε > 0, the set K (ε) =

{
k ∈ N : ‖xk−L‖+0 ≥ ε

}
has natural density zero; namely, for

each ε > 0, ‖xk−L‖+0 < ε for almost all k.
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr−kr−1→
∞ as r→ ∞. The intervals determined by θ will be denoted by Ir = (kr−1,kr].
Let (X ,‖.‖) be an FNS and θ = {kr} be lacunary sequence. A sequence x = (xk)k∈N in X is said to be lacunary
summable with respect to fuzzy norm on X if there is an L ∈ X such that

lim
r→∞

1
hr

(
∑
k∈Ir

D
(
‖xk−L‖, 0̃

)
)

= 0.

In this case, we can write xk→ L((Nθ )FN) or xk
(Nθ )FN−→ L and

(Nθ )FN =

{
x = (xk) : lim

r→∞

1
hr

(
∑
k∈Ir

D
(
‖xk−L‖ , 0̃

)
)

= 0, for someL

}
.

A sequence x = (xk) in X is said to be lacunary statistically convergent or FSθ−convergent to L ∈ X with
respect to fuzzy norm on X if for each ε > 0

lim
r→∞

1
hr

∣∣{k ∈ Ir : D
(
‖xk−L‖ , 0̃

)
≥ ε
}∣∣= 0

where |A| denotes the number of elements of the set A⊆ N. In this case, we write xk
FSθ−→ L or xk→ L(FSθ ) or

FSθ − limk→∞ xk = L . This implies that for each ε > 0, the set K (ε) =
{

k ∈ Ir : ‖xk−L‖+0 ≥ ε
}

has natural
density zero, namely, for each ε > 0, ‖xk−L‖+0 < ε , for almost all k.
Let X 6= /0. A class I of subsets of X is said to be an ideal in X provided:
(i) /0 ∈I , (ii) A,B ∈I implies A∪B ∈I ,(iii) A ∈I , B⊂ A implies B ∈I .
I is called a nontrivial ideal if X 6∈I . A nontrivial ideal I in X is called admissible if {x} ∈I for each
x ∈ X .
Let X 6= /0. A non empty class F of subsets of X is said to be a filter in X provided:
(i) /0 6∈F , (ii) A,B ∈F implies A∩B ∈F , (ii) A ∈F , A⊂ B implies B ∈F .
Let I is a nontrivial ideal in X , X 6= /0, then the class F (I ) = {M ⊂ X : (∃A ∈I )(M = X\A)} is a filter on
X , called the filter associated with I .
Let (X ,‖.‖) be fuzzy normed space. A sequence x = (xm)m∈N in X is said to be I− convergent to L ∈ X with
respect to fuzzy norm on X if for each ε > 0, the set A(ε) =

{
m ∈ N : ‖xm−L‖+0 ≥ ε

}
belongs to I . In this

case, we write xm
FI−→ L . The element L is called the I−limit of (xm) in X .

A sequence (xm) in X is said to be I ∗ convergent to L in X with respect to the fuzzy norm on X if there exists a
set M ∈ F (I ), M = {tk : t1 < t2 < · · ·} ⊂ N such that lim

k→∞

∥∥xtk −L
∥∥= 0.

2. Main Result

In this section, we gave the definition of lacunary I−convergence and definition of lacunary I−Cauchy in
fuzzy normed spaces. Also, we investigate some properties these concepts.
Throughout the paper, we let (X ,‖.‖) be an FNS and I ⊂ 2N be an admissible ideal.
Definition 2.1 A sequence x = (xm)m∈N in X is said to be lacunary I−convergent to L1 ∈ X with respect to

fuzzy norm on X if for each ε > 0, the set
{

r ∈ N : 1
hr

∑
m∈Jr

D
(
‖xm−L1‖, 0̃

)
≥ ε
}

belongs to I . In this case,

we write xm
FIθ−→ L1 or xm→ L1 (FIθ ) or FIθ − lim

m→∞
xm = L1 . The element L1 is called the FIθ−limit of

(xm) in X .

Lemma 2.2 Let (X ,‖.‖) be a fuzzy normed space, and x = (xm) be a sequence in X . Then, for every ε > 0, the
following statements are equivalent.
a) FIθ − lim

m→∞
xm = L1,

b)
{

r ∈ N : 1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥ ε
}
∈I ,
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c)
{

r ∈ N : 1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε
}
∈ F (I )

d) FIθ − lim
m→∞
‖xm−L1‖+0 = 0

Theorem 2.3 Let (X ,‖.‖) be a fuzzy normed space. If a sequence x = (xm) in X is lacunary I−convergent
with respect to fuzzy norm on X, then FIθ − limx is unique.

Proof. Suppose that FIθ − limx = L1 and FIθ − limx = L2. Then for any ε > 0, define the following sets;

A1 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥
ε
2

}

A2 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L2‖+0 ≥
ε
2

}
.

Since FIθ − limx = L1 and FIθ − limx = L2, using Lemma 2.2, we have A1 ∈I and A2 ∈I for all ε > 0.
Now, let A3 = A1 ∪A2. Then A3 ∈I . This implies that its complement (A3)

c is a non-empty set in F (I ).
Now, if r ∈ (A3)

c, then we have

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε
2

and
1
hr

∑
m∈Jr

‖xm−L2‖+0 <
ε
2
.

Now, clearly, we will get a p ∈ N such that

∥∥xp−L1
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε
2

and
∥∥xp−L2

∥∥+
0 <

1
hr

∑
m∈Jr

‖xm−L2‖+0 <
ε
2
.

Then, we have ‖L1−L2‖+0 ≤
∥∥xp−L1

∥∥+
0 +

∥∥xp−L2
∥∥+

0 < ε
Since ε > 0 is arbitrary, we have ‖L1−L2‖+0 = 0 which implies that L1 = L2. Therefore, we conclude that
FIθ − limx is unique.

Theorem 2.4 Let (X ,‖.‖) be a fuzzy normed space and (xm) , (ym) be two sequences in X . Then,
i) If FIθ − limxm = L1 and FIθ − limym = L2, then FIθ − lim(xm∓ ym) = L1∓L2;
ii) If FIθ − limxm = L1 then FIθ − limcxm = cL1 for c ∈ R−{0} .

Proof. i) We shall prove, if FIθ − limxm = L1 and FIθ − limym = L2, then FIθ − lim(xm + ym) = L1 +L2,
only. The proof of the other part follows similarly. For any ε > 0, define the following sets;

A1 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥
ε
2

}
,

A2 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖ym−L2‖+0 ≥
ε
2

}
,

Since FIθ − limxm = L1 and FIθ − limym = L2, using Lemma 2.2, we have A1 ∈ I and A2 ∈ I for all
ε > 0.
Now, let A3 = A1∪A2. Then A3 ∈I . This implies that its complement (A3)

c is a non-empty set in F (I ). We
claim that

(A3)
c ⊂

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1 + ym−L2‖+0 < ε

}
.

Let r ∈ (A3)
c, then we have

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε
2

and
1
hr

∑
m∈Jr

‖ym−L2‖+0 <
ε
2
.

Now, we will get a p ∈ N such that

∥∥xp−L1
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε
2

and
∥∥yp−L2

∥∥+
0 <

1
hr

∑
m∈Jr

‖ym−L2‖+0 <
ε
2
.

Then, we have
∥∥xp−L1 + yp−L2

∥∥+
0 ≤

∥∥xp−L1
∥∥+

0 +
∥∥xp−L2

∥∥+
0 < ε
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Hence,

(A3)
c ⊂

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1 + ym−L2‖+0 < ε

}
.

Since (A3)
c ∈ F (I ) , so

{
r ∈ N : 1

hr
∑

m∈Jr

‖(xm + ym)− (L1 +L2)‖+0 ≥ ε
}
∈I .

Therefore FIθ − lim(xm + ym) = L1 +L2.
ii) Let FIθ − limxm = L1. Then, for each ε > 0 and c ∈ R−{0} , we define the following set

A1 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε
|c|

}
.

So A1 ∈ F (I ) .Let r ∈ A1,then we have

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε
|c|

|c|
hr

∑
m∈Jr

‖xm−L1‖+0 < |c| . ε
|c|

1
hr

∑
m∈Jr

|c|‖xm−L1‖+0 < ε

1
hr

∑
m∈Jr

‖c.xm− c.L1‖+0 < ε

Hence,

A1 ⊂
{

r ∈ N :
1
hr

∑
m∈Jr

‖cxm− cL1‖+0 < ε

}

and {
r ∈ N :

1
hr

∑
m∈Jr

‖cxm− cL1‖+0 < ε

}
∈ F (I ) .

Hence FIθ − limcxm = cL1.

Definition 2.5 Let (X ,‖.‖) be a fuzzy normed space. A sequence x = (xm) in X is said to be FIθ−Cauchy
sequence with respect to the fuzzy norm if, for every ε > 0 , there exists n ∈ N satisfying

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm− xn‖+0 < ε

}
∈ F (I ) .
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Abstract: In this study, we have investigated the concepts of I2-Cauchy and
I2-convergence of double sequences in fuzzy normed spaces. Also, we have
investigated some properties and relationships between these concepts.

1. Introduction and Preliminaries

Throughout the paper N and R denote the set of all positive integers and the set of all real numbers, respectively.
The concept of convergence of a sequence of real numbers has been extended to statistical convergence
independently by Fast [14] and Schoenberg [41]. A lot of developments have been made in this area after the
various studies of researchers [14, 16, 26, 33].
The idea of I-convergence was introduced by Kostyrko et al. [19] as a generalization of statistical convergence
which is based on the structure of the ideal I of subset of the set of natural numbers N. Das et al. [5] introduced
the concept of I-convergence of double sequences in a metric space and studied some properties of this
convergence. A lot of developments have been made in this area after the works of [6, 20, 21, 29, 35, 43].
The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [23]
and proved some basic theorems for sequences of fuzzy numbers. Nanda [28] studied the sequences of fuzzy
numbers and showed that the set of all convergent sequences of fuzzy numbers form a complete metric space.
S. enc. imen and Pehlivan [40] introduced the notions of statistically convergent sequence and statistically Cauchy
sequence in a fuzzy normed linear space. Hazarika [17] studied the concepts of I-convergence, I∗-convergence
and I-Cauchy sequence in a fuzzy normed linear space. Dündar and Talo [11, 12] introduced the concepts of
I2-convergence, I∗2 -convergence, I2-Cauchy sequence for double sequences of fuzzy numbers and studied some
properties and relations of them. Hazarika and Kumar introduced the notion of I2-convergent and I2-Cauchy
double sequences in a fuzzy normed linear space. A lot of developments have been made in this area after the
various studies of researchers [25, 38, 39, 44, 45, 47].
Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double
sequence and fuzzy normed and some basic definitions (see [1–3, 7–11, 13–16, 24–27, 29–33, 36, 37, 40, 44–
46])
Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that
each element x ∈ X is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to
nonmembership, 0 < u(x)< 1 to partial membership, and u(x) = 1 to full membership. According to Zadeh
[48], a fuzzy subset of X is a nonempty subset {(x,u(x)) : x ∈ X} of X× [0,1] for some function u : X → [0,1].
The function u itself is often used for the fuzzy set.
A fuzzy set u on R is called a fuzzy number if it has the following properties:
1. u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;

*Presented by Muhammed Recai Türkmen, mrtmath@gmail.com
†edundar@aku.edu.tr
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2. u is fuzzy convex, that is, for x,y ∈ R and 0≤ λ ≤ 1, u(λx+(1−λ )y)≥min[u(x),u(y)];
3. u is upper semicontinuous;
4. suppu = cl{x ∈ R : u(x)> 0}, or denoted by [u]0, is compact.
Let L(R) be set of all fuzzy numbers. If u ∈ L(R) and u(t) = 0 for t < 0, then u is called a non-negative fuzzy
number. We write L∗(R) by the set of all non-negative fuzzy numbers. We can say that u ∈ L∗(R) iff u−α ≥ 0
for each α ∈ [0,1] . Clearly we have 0̃ ∈ L(R). For u ∈ L(R), the α level set of u is defined by

[u]α =

{
{x ∈ R : u(x)≥ α}, if α ∈ (0,1]

suppu, if α = 0.

A partial order � on L(R) is defined by u� v if u−α ≤ v−α and u+α ≤ v+α for all α ∈ [0,1] .
Arithmetic operation for t ∈ R, ⊕,	,� and � on L(R)×L(R) are defined by
(u⊕ v)(t) = sups∈R {u(s)∧ v(t− s)}, (u	 v)(t) = sups∈R {u(s)∧ v(s− t)},
(u� v)(t) = sups∈R,s6=0 {u(s)∧ v(t/s)} and (u� v)(t) = sups∈R {u(st)∧ v(s)}.
For k ∈ R+, ku is defined as ku(t) = u(t/k) and 0u(t) = 0̃, t ∈ R.
Some arithmetic operations for α−level sets are defined as follows:
u,v ∈ L(R) and [u]α = [u−α ,u

+
α ] and [v]α = [v−α ,v

+
α ] , α ∈ (0,1] . Then,

[u⊕ v]α = [u−α + v−α ,u
+
α + v+α ], [u	 v]α = [u−α − v+α ,u

+
α − v−α ],

[u� v]α = [u−α .v
−
α ,u

+
α .v

+
α ] and

[
1̃�u

]
α =

[
1

u+α
, 1

u−α

]
, u−α > 0.

For u,v ∈ L(R), the supremum metric on L(R) defined as

D(u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ ,
∣∣u+α − v+α

∣∣} .

It is known that D is a metric on L(R) and (L(R),D) is a complete metric space.
A sequence x = (xk) of fuzzy numbers is said to be convergent to the fuzzy number x0, if for every ε > 0
there exists a positive integer k0 such that D(xk,x0)< ε for k > k0 and a sequence x = (xk) of fuzzy numbers
convergens to levelwise to x0 iff lim

k→∞
[xk]α = [x0]

−
α and lim

k→∞
[xk]α = [x0]

+
α , where [xk]α =

[
(xk)

−
α ,(xk)

+
α
]

and

[x0]α =
[
(x0)

−
α ,(x0)

+
α
]
, for every α ∈ (0,1).

Let X be a vector space over R, ‖.‖ : X → L∗ (R) and the mappings L;R (respectively, left norm and right norm)
: [0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both arguments and satisfy L(0,0) = 0 and R(1,1) = 1.
The quadruple (X ,‖.‖ ,L,R) is called fuzzy normed linear space
(briefly (X ,‖.‖) FNS) and ‖.‖ a fuzzy norm if the following axioms are satisfied:

1. ‖x‖= 0̃ iff x = 0,

2. ‖rx‖= |r|�‖x‖ for x ∈ X , r ∈ R,

3. For all x,y ∈ X
(a) ‖x+ y‖(s+ t)≥ L(‖x‖(s) ,‖y‖(t)) , whenever s≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+ y‖−1 ,
(b) ‖x+ y‖(s+ t)≤ R(‖x‖(s) ,‖y‖(t)) , whenever s≥ ‖x‖−1 , t ≥ ‖y‖−1 and s+ t ≥ ‖x+ y‖−1 .

Let (X ,‖.‖C) be an ordinary normed linear space. Then, a fuzzy norm ‖.‖ on X can be obtained by

‖x‖(t) =





0, if 0≤ t ≤ a‖x‖C or t ≥ b‖x‖C
t

(1−a)‖x‖C
− a

1−a , a‖x‖C ≤ t ≤ ‖x‖C
−t

(b−1)‖x‖C
+ b

b−1 , ‖x‖C ≤ t ≤ b‖x‖C

where ‖x‖C is the ordinary norm of x (6= 0) , 0 < a < 1 and 1 < b < ∞. For x = θ , define ‖x‖ = 0̃. Hence,
(X ,‖.‖) is a fuzzy normed linear space.
Let us consider the topological structure of an FNS (X ,‖.‖). For any ε > 0,α ∈ [0,1] and x ∈ X , the (ε,α)−
neighborhood of x is the set Nx (ε,α) = {y ∈ X : ‖x− y‖+α < ε}.
Let (X ,‖.‖) be an FNS. A sequence (xn)

∞
n=1 in X is convergent to x ∈ X with respect to the fuzzy norm on X

and we denote by xn
FN→ x, provided that (D)− limn→∞ ‖xn− x‖= 0̃; i.e., for every ε > 0 there is an N (ε) ∈ N

such that D
(
‖xn− x‖ , 0̃

)
< ε for all n≥ N (ε) . This means that for every ε > 0 there is an N (ε) ∈N such that

for all n≥ N (ε) , sup
α∈[0,1]

‖xn− x‖+α = ‖xn− x‖+0 < ε.

Let (X ,‖.‖) be an FNS. A sequence (xk) in X is statistically convergent to L ∈ X with respect to the fuzzy norm

on X and we denote by xn
FS→ x, provided that for each ε > 0, we have δ

({
k ∈ N : D

(
‖xk−L‖ , 0̃

)
≥ ε
})

= 0.
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This implies that for each ε > 0, the set K (ε) =
{

k ∈ N : ‖xk−L‖+0 ≥ ε
}

has natural density zero; namely, for
each ε > 0, ‖xk−L‖+0 < ε for almost all k.
Let (X ,‖.‖) be an FNS. Then a double sequence

(
x jk
)

is said to be convergent to x∈ X with respect to the fuzzy

norm on X if for every ε > 0 there exist a number N = N (ε) such that D
(∥∥x jk− x

∥∥ , 0̃
)
< ε, for all j,k ≥ N.

In this case, we write x jk
FN−→ x. This means that, for every ε > 0 there exist a number N = N (ε) such that

sup
α∈[0,1]

∥∥x jk− x
∥∥+

α =
∥∥x jk− x

∥∥+
0 < ε, for all j,k ≥ N. In terms of neighnorhoods, we have x jk

FN−→ x provided

that for any ε > 0, there exists a number N = N (ε) such that x jk ∈Nx (ε,0) , whenever j,k ≥ N.
Let X 6= /0. A class I of subsets of X is said to be an ideal in X provided:
(i) /0 ∈ I, (ii) A,B ∈ I implies A∪B ∈ I,(iii) A ∈ I, B⊂ A implies B ∈ I.
I is called a nontrivial ideal if X 6∈ I. A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X .
A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i} belong to I2 for each i ∈N. It
is evident that a strongly admissible ideal is also admissible. Throughout the paper we take I2 as a strongly
admissible ideal in N×N.
Let I0

2 = {A⊂ N×N : (∃m(A),(i, j)≥ m(A)⇒ (i, j) 6∈ A)}. Then I0
2 is a nontrivial strongly admissible ideal

and clearly an ideal I2 is strongly admissible if and only if I0
2 ⊂ I2.

Let X 6= /0. A non empty class F of subsets of X is said to be a filter in X provided:
(i) /0 6∈F , (ii) A,B ∈F implies A∩B ∈F , (ii) A ∈F , A⊂ B implies B ∈F .
Let I is a nontrivial ideal in X , X 6= /0, then the class F (I) = {M ⊂ X : (∃A ∈ I)(M = X\A)} is a filter on X ,
called the filter associated with I.
Let (X ,ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)
in X is said to be I2-convergent to L ∈ X , if for any ε > 0 we have A(ε) = {(m,n) ∈N×N : ρ(xmn,L)≥ ε} ∈ I2
and we write I2− lim

m,n→∞
xmn = L.

If I2 is a strongly admissible ideal on N×N, then usual convergence implies I2-convergence.
Let (X ,‖.‖) be fuzzy normed space. A sequence x = (xm)m∈N in X is said to be I− convergent to L ∈ X with
respect to fuzzy norm on X if for each ε > 0, the set A(ε) =

{
m ∈ N : ‖xm−L‖+0 ≥ ε

}
belongs to I. In this

case, we write xm
I−→ L . The element L is called the I−limit of (xm) in X .

Let (X ,‖.‖) be fuzzy normed space. A double sequence x = (xmn)(m,n)∈N×N in X is said to be I2− convergent to
L1 ∈ X with respect to fuzzy norm on X if for each ε > 0, the set A(ε) =

{
(m,n) ∈ N×N : ‖xmn−L1‖+0 ≥ ε

}

belongs to I2. In this case, we write xmn
FI2−→ L1 or xmn→ L1 (FI2) or FI2− lim

m,n→∞
xmn = L1 . The element L1 is

called the FI2−limit of (xmn) in X .In terms of neighborhoods, we have xmn
FI2−→ L1 provided that for each ε > 0,

{(m,n) ∈ N×N : xmn /∈NL1 (ε,0)} ∈ I2.

A useful interpretation of the above definition is the following;

xmn
FI2−→ L1⇔ FI2− lim

m,n→∞
‖xmn−L1‖+0 = 0.

Note that FI2− lim
m,n→∞

‖xmn−L1‖+0 = 0 implies that

FI2− lim‖xmn−L1‖−α = FSθ2 − lim‖xmn−L1‖+α = 0,

for each α ∈ [0,1], since
0≤ ‖xmn−L1‖−α ≤ ‖xmn−L1‖+α ≤ ‖xmn−L1‖+0

holds for every m,n ∈ N and for each α ∈ [0,1] .
Let I2 be an admissible ideal of N×N and (X ,‖.‖) be a fuzzy normed space. A double sequence x = (xmn) in
X is said to be I2− Cauchy with respect to the fuzzy norm on X if for each ε > 0, there exists integers p = p(ε)
and q = q(ε) such that the set {

(m,n) ∈ N×N :
∥∥xmn− xpq

∥∥+
0 ≥ ε

}

belongs to I2.
We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2), if for every countable family of
mutually disjoint sets {A1,A2, ...} belonging to I2, there exists a countable family of sets {B1,B2, ...} such that
A j ∩B j ∈ I0

2 , i.e., A j ∩B j is included in the finite union of rows and columns in N×N for each j ∈ N and
B =

⋃∞
j=1 B j ∈ I2 (hence B j ∈ I2 for each j ∈ N).

Lemma 1.1 Let {Pi}∞
i=1 be a countable collection of subsets of N×N such that Pi ∈ F (I2) for each i, where

F (I2) is a filter associated with a strongly admissible ideal I2 with the property (AP2). Then there exists a set
P⊂ N×N such that P ∈ F (I2) and the set P\Pi is finite for all i.
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2. Main Results

In this section, we give some theorem for I2-convergence and I2-Cauchy for double sequences in fuzzy normed
spaces and study some properties.
Theorem 2.1 Let I2 be a admissible ideal. If a double sequence (xmn) in X is I2−convergent to L1, then L1
determined uniquely.

Proof. Let (xmn) be any double sequence and suppose that FI2− lim
m,n→∞

xmn = L1 and FI2− lim
m,n→∞

xmn = L2,

where L1 6= L2. Since L1 6= L2, we may suppose that L1 > L2. Select ε = L1−L2
4 , so that the neighborhoods

(L1− ε,L1 + ε) and (L2− ε,L2 + ε) of L1 and L2 respectively are disjoints. Since L1 and L2 both are I2−limit
of the sequence (xmn), therefore, both the sets

A(ε) =
{
(m,n) ∈ N×N : ‖xmn−L1‖+0 ≥ ε

}

and
B(ε) =

{
(m,n) ∈ N×N : ‖xmn−L2‖+0 ≥ ε

}

belongs to I2.
This implies that the sets

Ac (ε) =
{
(m,n) ∈ N×N : ‖xmn−L1‖+0 < ε

}

and

Bc (ε) =
{
(m,n) ∈ N×N : ‖xmn−L2‖+0 < ε

}

belongs to F (I2). Since F (I2) is a filter on N×N therefore Ac (ε)∩Bc (ε) is a non empty set in F (I2). In this
way we obtain a contradiction to the fact that the neighborhoods (L1− ε,L1 + ε) and (L2− ε,L2 + ε) of L1 and
L2 respectively are disjoints. Hence we have L1 = L2.

Theorem 2.2 Let I2 be a admissible ideal, (xmn) be a double sequence on X and L1 ∈X. Then FP− lim
m,n→∞

xmn =

L1⇒ FI2− lim
m,n→∞

xmn = L1.

Proof. Let FP− lim
m,n→∞

xmn = L1. For ε > 0 there exists a positive integer k0 = k0 (ε) such that ‖xmn−L1‖+0 < ε

whenever m,n≥ k0. This implies that the set

A(ε) =
{
(m,n) ∈ N×N : ‖xmn−L1‖+0 ≥ ε

}

⊂ (N×{1,2,3, ...,k0−1})∪ ({1,2,3, ...,k0−1}×N) .

SinceI2 is a admissible ideal, then

(N×{1,2,3, ...,k0−1})∪ ({1,2,3, ...,k0−1}×N) ∈ I2

and so A(ε) ∈ I2. Hence, we have FI2− lim
m,n→∞

xmn = L1

Theorem 2.3 Let I2 be an admissible ideal and (X ,‖.‖) be a fuzzy normed space. Then a double sequence
(xmn) is I2-convergent if and only if it is I2-Cauchy double sequence.

Proof. Let xmn→ L1 (FI2) . Then for each ε > 0, we have

A(ε) =
{
(m,n) ∈ N×N : ‖xmn−L1‖+0 ≥ ε

}
belongs to I2.

Since I2 is an admissible ideal, there exist an (m0,n0) ∈ N×N such that (m0,n0) /∈ A(ε) .
Let A1(ε) =

{
(m,n) ∈ N×N : ‖xmn−L1‖+0 ≥ 2ε

}
. Since ‖.‖+0 being a norm in usual sense, we get

‖xmn−L1‖+0 +
∥∥xm0n0 −L1

∥∥+
0 ≥

∥∥xmn− xm0n0

∥∥+
0 .

We observe that if (m,n) ∈ A1(ε) , then ‖xmn−L1‖+0 +
∥∥xm0n0 −L1

∥∥+
0 ≥ 2ε.

On the other hand since (m0,n0) /∈ A(ε) , we have
∥∥xm0n0 −L1

∥∥+
0 < ε.

So we can conclude that ‖xmn−L1‖+0 ≥ ε, hence (m,n) ∈ A(ε) . This implies that A1 (ε) ⊂ A(ε) , for each
ε > 0. This gives A1 (ε) ∈ I2. This show that (xmn) is an I2−Cauchy sequence.
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Assume that (xmn) is I2−Cauchy double sequence. We prove that (xmn) is I2−convergent. To this effect, let (εd)
be a strictly decreasing sequence of numbers converging to zero. Since (xmn) is I2−Cauchy double sequence,
there exist two strictly increasing sequences (id) and ( jd) of positive integers such that

A(εd) =
{
(m,n) ∈ N×N :

∥∥xmn− xid jd

∥∥+
0 ≥ εd

}
∈ I

2
,(d ∈ N) .

This implies that
/0 6=

{
(m,n) ∈ N×N :

∥∥xmn− xid jd

∥∥+
0 < εd

}
∈ F (I2) ,(d ∈ N) . (2.1)

Let d and c be two positive integers such that d 6= c. By (2.1), both the sets
D(εd) =

{
(m,n) ∈ N×N :

∥∥xmn− xid jd

∥∥+
0 < εd

}
and

C (εc) =
{
(m,n) ∈ N×N :

∥∥xmn− xic jc

∥∥+
0 < εc

}
are non empty sets in F (I2). Since F (I2) is a filter on N×N,

therefore
/0 6= D(εd)∩C (εc) ∈ F (I2) .

Thus for each pair d and c of positive integers with d 6= c, we can select a pair (mdc,ndc) ∈ N×N such that
∥∥xmdcndc − xid jd

∥∥+
0 < εd and

∥∥xmdcndc − xic jc

∥∥+
0 < εc.

It follows that
∥∥xid jd − xic jc

∥∥+
0 ≤

∥∥xmdcndc − xid jd

∥∥+
0 +

∥∥xmdcndc − xic jc

∥∥+
0 < εd + εc→ 0

as d,c→ ∞.This implies that
(
xid jd

)
, d ∈ N is a Cauchy double sequence. Thus the sequence

(
xid jd

)
converges

to a finite limit L1 (say).i.e.,
lim

d,c→∞
xid jc = L1.

Also, we have εd → 0 as d→ ∞, so for each ε > 0 we can choose the positive integers d0 such that

εd0 <
ε
2

and
∥∥xid jd −L1

∥∥+
0 <

ε
2

for d ≥ d0. (2.2)

Next we prove that the set A(ε)=
{
(m,n) ∈ N×N : ‖xmn−L1‖+0 ≥ ε

}
is contained in A

(
εd0

)
. Let (m,n) ∈

A(ε), then we have

ε ≤ ‖xmn−L1‖+0 ≤
∥∥∥xmn− xid0 jd0

∥∥∥
+

0
+
∥∥∥xid0 jd0

−L1

∥∥∥
+

0

≤
∥∥∥xmn− xid0 jd0

∥∥∥
+

0
+

ε
2

by (2.2). This implies that ε
2 ≤

∥∥∥xmn− xid0 jd0

∥∥∥
+

0
and therefore by first half of (2.2) we have εd0 ≤

∥∥∥xmn− xid0 jd0

∥∥∥
+

0
.

This implies that (m,n)∈A
(
εd0

)
and therefore A(ε) is contained in A

(
εd0

)
. Since A

(
εd0

)
belongs to I2 therefore

A(ε) belongs to I2. This proves that (xmn) is I2−convergent to L1.
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[38] E. Savaş, On I -lacunary statistical convergence of weight g of fuzzy numbers, Journal of Intelligent and
Fuzzy Systems, 32 (2017), 1111–1117.

75
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Abstract: In this paper, we have introduced λ−statistical convergence and
condition of being λ−statistical Cauchy for double sequences in fuzzy normed
linear spaces and we have studied some results these concepts.

1. Introduction and Preliminaries

The concept of convergence of real sequences has been extended to statistical convergence independently
by Fast [7] and Schoenberg [24]. This concept was extended to the double sequences by Mursaleen and
Edely [14]. The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by
Matloka [11] and proved some basic theorems for sequences of fuzzy numbers. Mohiuddine et al. [13] studied
Statistical convergence of double sequences in fuzzy normed spaces. Recently, Türkmen and C. ınar [27] studied
λ−statistical convergence in fuzzy normed linear spaces.
The concept of λ− statistical convergence was defined by Mursaleen[15] as follows.
Let λ = (λn) be a non-decreasing sequence of positive real numbers tending to ∞ such that λn+1 ≤ λn + 1,
λ1 = 1. The set of all such sequences will be denoted by Λ. A sequence x = (xk) is said to be λ− statistically
convergent or Sλ− convergent to L if for every ε > 0

lim
n→∞

1
λn
|{k ∈ In : |xk−L| ≥ ε}|= 0,

where In = [n−λn +1,n]. In this case, we have written Sλ − limx = L or xk→ L(Sλ ) and

Sλ = {x : ∃L ∈ R, Sλ − limx = L} .

Now, we recall the concept of statistical convergence, double sequence, fuzzy normed spaces and some basic
definitions (see [1, 5, 7–9, 12–14, 17–19, 21–23, 25–29])
Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that
each element x ∈ X is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to
nonmembership, 0 < u(x)< 1 to partial membership, and u(x) = 1 to full membership.
According to Zadeh a fuzzy subset of X is a nonempty subset {(x,u(x)) : x ∈ X} of X× [0,1] for some function
u : X → [0,1]. The function u itself is often used for the fuzzy set.
A fuzzy set u on R is called a fuzzy number if it has the following properties:
i) u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;
ii) u is fuzzy convex, that is, for x,y ∈ R and 0≤ λ ≤ 1,

u(λx+(1−λ )y)≥min[u(x),u(y)];

iii) u is upper semicontinuous;

*Presented by Muhammed Recai Türkmen, mrtmath@gmail.com
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iv) suppu = cl{x ∈ R : u(x)> 0}, or denoted by [u]0, is compact.
Let L(R) be set of all fuzzy numbers. If u ∈ L(R) and u(t) = 0 for t < 0, then u is called a non-negative fuzzy
number. We have written L∗(R) by the set of all non-negative fuzzy numbers. We can say that u ∈ L∗(R) if and
only if u−α ≥ 0 for each α ∈ [0,1] . Clearly we have 0̃ ∈ L(R). For u ∈ L(R), the α level set of u is defined by

[u]α =

{
{x ∈ R : u(x)≥ α}, ifα ∈ (0,1]

suppu, ifα = 0.

Some arithmetic operations for α−level sets are defined as follows: u,v ∈ L(R) and [u]α = [u−α ,u
+
α ] and

[v]α = [v−α ,v
+
α ] , α ∈ (0,1] . Then

[u⊕ v]α = [u−α + v−α ,u
+
α + v+α ] [u	 v]α = [u−α − v+α ,u

+
α − v−α ]

[u� v]α = [u−α .v
−
α ,u

+
α .v

+
α ]
[
1̃�u

]
α =

[
1

u+α
, 1

u−α

]
u−α > 0

For u,v ∈ L(R), the supremum metric on L(R) is defined as

D(u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ ,
∣∣u+α − v+α

∣∣} .

It is known that D is a metric on L(R), and (L(R),D) is a complete metric space. A sequence x = (xk) of fuzzy
numbers is said to be convergent to the fuzzy number x0 if for every ε > 0, there exists a positive integer k0
such that D(xk,x0)< ε for k > k0. And a sequence x = (xk) of fuzzy numbers convergens to levelwise to x0, if
and only if lim

k→∞
[xk]α = [x0]

−
α and lim

k→∞
[xk]α = [x0]

+
α where [xk]α =

[
(xk)

−
α ,(xk)

+
α
]

and [x0]α =
[
(x0)

−
α ,(x0)

+
α
]

for every α ∈ (0,1) .
The statistical converge of fuzzy number defined Savas is as follows;
A sequence X = (Xk) of fuzzy numbers is said to be λ− statistically convergent to fuzzy numbers X0 if every
ε > 0

lim
n

1
λn
|{k ∈ In : d (Xk,X0)≥ ε}|= 0.

Later, many mathematicians studied statistical convergence of fuzzy numbers.
Let X be a vector space over R, let ‖.‖ : X → L∗ (R) and the mappings L;R (respectively, left norm and
right norm ) : [0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both arguments and satisfy L(0,0) = 0 and
R(1,1) = 1.
The quadruple (X ,‖.‖ ,L,R) is called fuzzy normed linear space (briefly (X ,‖.‖) FNS) and ‖.‖ a fuzzy norm if
the following axioms are satisfied
1) ‖x‖= 0̃ iff x = θ ,
2) ‖rx‖= |r|�‖x‖ for x ∈ X , r ∈ R,
3) For all x,y ∈ X
a) ‖x+ y‖(s+ t)≥ L(‖x‖(s) ,‖y‖(t)) , whenever s≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+ y‖−1 ,
b) ‖x+ y‖(s+ t)≤ R(‖x‖(s) ,‖y‖(t)) , whenever s≥ ‖x‖−1 , t ≥ ‖y‖−1 and s+ t ≥ ‖x+ y‖−1 .
Let (X ,‖.‖C) be an ordinary normed linear space. Then a fuzzy norm ‖.‖ on X can be obtained

‖x‖(t)=





0 if 0≤t≤a‖x‖C or t≥b‖x‖C
t

(1−a)‖x‖C
− a

1−a a‖x‖C≤t≤‖x‖C
−t

(b−1)‖x‖C
+ b

b−1 ‖x‖C≤t≤b‖x‖C

(1.1)

where ‖x‖C is the ordinary norm of x(6= θ),
0 < a < 1 and 1 < b < ∞. For x = θ , define ‖x‖= 0̃.
Hence, (X ,‖.‖) is a fuzzy normed linear space. Şençimen has defined convergence in fuzzy normed spaces as
follows;
Let (X ,‖.‖) be an fuzzy normed linear space. A sequence (xn)

∞
n=1 in X is convergent to x ∈ X with respect to

the fuzzy norm on X and we denote by xn
FN→ x, provided that (D)− lim

n→∞
‖xn− x‖= 0̃; i.e. for every ε > 0 there

is an N (ε) ∈ N such that D
(
‖xn− x‖ , 0̃

)
< ε for all n > N (ε) . This means that for every ε > 0 there is an

N (ε) ∈ N such that
sup

α∈[0,1]
‖xn− x‖+α = ‖xn− x‖+0 < ε

for all n≥ N (ε) .
Let (X ,‖·‖) be an fuzzy normed space and λ ∈ Λ. A sequence x = (xk) in X is said to be λ−statistically
convergent to L ∈ X with respect to fuzzy norm on X or FSλ−convergent if for each ε > 0

lim
n→∞

1
λn

∣∣{k ∈ In : D
(
‖xk−L‖ , 0̃

)
≥ ε
}∣∣= 0.
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A double sequence x =
(
x jk
)

is said to be statistically convergent to the number l if for each ε > 0,

δ2
({

( j,k) : j ≤ m and k ≤ n,
∣∣x jk− l

∣∣≥ ε
})

= 0.

In this case, we write S2− lim
j,k

x jk = l.

Let (X ,‖.‖) be a fuzzy normed space. Then a double sequence
(
x jk
)

is said to be convergent to x ∈ X with

respect to the fuzzy norm on X and we write x jk
FN−→ x if for every ε > 0 there exist a number N = N (ε) such

that
D
(∥∥x jk− x

∥∥ , 0̃
)
< ε, for all j,k ≥ N.

Let (X ,‖.‖) be an fuzzy normed space. A double sequence
(
x jk
)

is said to be statistically convergent to x ∈ X
with respect to the fuzzy norm on X if for every ε > 0,

δ2

({
( j,k) ∈ N×N : D(

∥∥x jk− x
∥∥ , 0̃)≥ ε

})
= 0.

This implies that, for each ε > 0 the set K (ε) =
{
( j,k) ∈ N×N :

∥∥x jk− x
∥∥+

0 ≥ ε
}

has naturaly density zero;

namely, for each ε > 0
∥∥x jk− x

∥∥+
0 < ε for almost all j,k. In this case, we write FS2− limx jk = x or x jk

FS2−→ x.
Let γ = (γm) and µ = (µr) be two non-decreasing sequences of positive real numbers each tending to ∞ and
such that

γm+1 ≤ γm +1, γ1 = 1 and
µr+1 ≤ µr +1, µ1 = 1.

Let Im = [m− γm +1,m] and Jr = [r−µr +1,r] .
For any set K ⊆ N×N, the number

δ 2
λ (K) = lim

m,r→∞

1
λmr
|{(k, l) : (k, l) ∈ K∩ Im× Jr}|

is said to be the λ−double density of K, provided the limit exists, where λmr = γmµr.
We now ready to define the λ−statistical convergence for double sequneces.
A double sequence x = (xkl) in X is said to be λ−statistically convergent to L ∈ X or S2

λ−convergent if for each
ε > 0

P− lim
m,r→∞

1
λmr
|{(k, l) ∈ Im× Jr : |xkl−L| ≥ ε}|= 0.

In this case, we write xkl
S2

λ→ L or xkl → L
(
S2

λ
)

or S2
λ − limxkl = L. Throughout the paper, we will denote

λmr = γmµr and the collection of such sequences will be denoted by Λ2. Also we will get Im = [m− γm +1,m]
and Jr = [r−µr +1,r]

2. Main Result

In this section, we define λ−statistically convergent for double sequence and λ−statistically Cauchy for double
sequences in fuzzy normed linear spaces. We also obtained some basic properties of this notion in fuzzy normed
spaces.
Definition 2.1 Let (X ,‖·‖) be a fuzzy normed space. A double sequence x = (xkl) in X is said to be
λ−statistically convergent to L ∈ X with respect to fuzzy norm on X or FS2

λ−convergent if for each ε > 0

lim
m,r→∞

1
λmr

∣∣{(k, l) ∈ Im× Jr : D
(
‖xkl−L‖ , 0̃

)
≥ ε
}∣∣= 0,

So, we have written xkl
FS2

λ→ L or xkl → L
(
FS2

λ
)

or FS2
λ − limxkl = L. This implies that for each ε > 0, the set

K (ε) =
{
(k, l) ∈ Im× Jr : ‖xkl−L‖+0 ≥ ε

}

has a natural density zero, namely, for each ε > 0, ‖xkl−L‖+0 < ε for almost all k and l.
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In this case, we have written FS2
λ − limx = L . The set of all λ−statistically convergent sequence with respect

to fuzzy norm on X will be denoted by FS2
λ and FS2

λ =
{

x = (xkl) : ∃L,FS2
λ − limx = L

}
. In this case, we have

written throughout the paper (xkl) is FS2
λ−convergent to L ∈ X means that (xkl) is λ−statistically convergent

to L ∈ X with respect to the fuzzy norm on X .
If γm =m and µr = r for all m,r then the space FS2

λ (X) is reduced to the space FS2 (X) and since δ2 (K)≤ δ 2
λ (K)

we have FS2
λ (X)⊂ FS2 (X) .

Lemma 2.2 Let (X ,‖·‖) be a fuzzy normed space and x = (xkl) be a double sequence in X . Then for each
ε > 0, the following statements are equivalent:
(i) FS2

λ − lim
k,l→∞

xkl = L.

(ii) δ 2
λ
({

(k, l) : (k, l) ∈ Im× Jr,‖xkl−L‖+0 ≥ ε
})

= 0
(iii) δ 2

λ
({

(k, l) : (k, l) ∈ Im× Jr,‖xkl−L‖+0 < ε
})

= 1
(iii)FS2

λ− lim
k,l→∞

‖xkl−L‖+0 = 0

Theorem 2.3 Let (X ,‖·‖) be a fuzzy normed space and λ ∈ Λ2. If a sequence (xkl) is a FS2
λ−convergent, then

FS2
λ−limit is unique.

Proof. Suppose that FS2
λ − limxkl = L1 and FS2

λ − limxkl = L2 and L2−L1 = 2ε > 0. We define the following
sets as A(ε) =

{
(k, l) ∈ Im× Jr : ‖xkl−L1‖+0 ≥ ε

2

}
and B(ε) =

{
(k, l) ∈ Im× Jr : ‖xkl−L2‖+0 ≥ ε

2

}
. So that

δ 2
λ (A(ε)) = 0 and δ 2

λ (B(ε)) = 0. It follows that, there are k ∈ Im, l ∈ Jr such that ‖xkl−L1‖+0 < ε
2 and

‖xkl−L2‖+0 < ε
2 . Further, for these k and l we have

2ε = ‖L2−L1‖+0 ≤ ‖xkl−L2‖+0 +‖xkl−L1‖+0 < ε

which is a contradiction. This completes the proof.

The next theorem gives the algebraic characterization of λ−statistical convergence on fuzzy normed spaces.

Theorem 2.4 Let (xkl) and (ykl) be sequences in fuzzy normed space (X ,‖·‖) such that xkl
FS2

λ→ L1 and ykl
FS2

λ→ L2
and λ ∈ Λ2 where L1,L2 ∈ X. Then we have

i) (xkl + ykl)
FS2

λ→ L1 +L2,

ii) txkl
FS2

λ→ tL1 (t ∈ R),
Theorem 2.5 Let (X ,‖·‖) be a fuzzy normed space. If a double sequence x = (xkl) is convergent to L with
respect to fuzzy norm on X then it is FS2

λ− convergent to L .

Proof. Let xkl
FN→ L. Then for every ε > 0, there is a couple (k0, l0) ∈ N×N such that D

(
‖xkl−L‖ , 0̃

)
≥ ε for

all k ≥ k0, l ≥ l0. Hence the set
{
(k, l) : k ∈ Im, l ∈ Jr, D

(
‖xkl−L‖ , 0̃

)
≥ ε
}

has natural density zero that is FS2
λ − limxkl = L.

Definition 2.6 Let (X ,‖·‖) be a fuzzy normed space. A sequence (xkl) in X is λ−statistically Cauchy with
respect to the fuzzy norm on X provided that for every ε > 0, there exist a positive integers t and v such that for
all k, p≥ t and l,q≥ v, such that

δ 2
λ

{
(k, l) ∈ Im× Jr :

∥∥xkl− xpq
∥∥+

0 ≥ ε
}
= 0.

In the sequel, (xkl) is FS2
λ−Cauchy means that (xkl) is λ−statistically Cauchy with respect to the fuzzy norm

on X .

Theorem 2.7 Let (X ,‖·‖) be a fuzzy normed space and (xkl) be a double sequence in X . In (X ,‖·‖) , Every
FS2

λ−convergent sequence is also an FS2
λ−Cauchy with respect to the fuzzy norm on X.

Proof. Let xkl
FS2

λ→ L and ε > 0. Then we have ‖xkl−L‖+0 < ε/2 for a.a.k and l. Choose a positive integers
t ≤ p and v≤ q such that

∥∥xpq−L
∥∥+

0 < ε/2. Now, ‖·‖+0 being a norm in the usual sense, we get
∥∥xkl− xpq

∥∥+
0 =

∥∥(xkl−L)+(x− xpq)
∥∥+

0

≤ ‖xkl−L‖+0 +
∥∥xpq−L

∥∥+
0

< ε/2+ ε/2 < ε

for all k, p≥ t and l,q≥ v. This shows that (xkl) is FS2
λ− Cauchy.
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Abstract: In this presentation we prove a fixed point theorem for almost
contraction mappings in cone b-metric spaces with vector coefficient over Banach
algebras

1. Introduction and Preliminaries

Throughout this presentation, we suppose that A is a real Banach algebra where the multiplicative unit and the
null vector will be denoted by e and θ , respectively.
Definition 1.1 (The Spectral Radius) The spectral radius of a ∈ A is given by

ρ(a) := lim
n→∞
‖an‖ 1

n .

Note that if ρ(a)< 1, then e−a is invertible (see [6]) and the inverse of e−a is given by

(e−a)−1 =
∞

∑
i=0

ai. (1.1)

Definition 1.2 (Cone) Let P be a subset of A such that {θ ,e} ⊂ P. P is called a cone of A if the following
conditions hold:

(c1) P is closed;

(c2) λP+µP⊂ P for all non-negative real numbers λ and µ;

(c3) PP⊂ P and P∩ (−P) = θ .

A cone P with intP 6= /0 is called a solid cone where intP indicates the interior of P.

Definition 1.3 (Normal Cone) To each cone P of A there corresponds a partial ordering � on A defined by
x� y iff y− x ∈ P. By x≺ y we understand that x� y but x 6= y, while x� y stands for y− x ∈ intP. If there
exists a positive real number K such that for all x,y ∈A

θ � x� y implies ‖x‖ ≤ K ‖y‖ , (1.2)

then a cone P is called normal. The least of K’s with the above condition is called the normal constant of P.

Definition 1.4 (Xu and Radenovic-2014, see [3])) A sequence {un} in P is said to be a c-sequence if for each
c� θ there exists n0 ∈ N such that un� c for n≥ n0.
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Lemma 1.5 (Xu and Radenovic-2014, see [3]) If {un} and {vn} are two c-sequences in P, then {αun +βvn}
is also a c-sequence for positive real numbers α and β .

Lemma 1.6 (Xu and Radenovic-2014, see [3]) Let k ∈ P. If {un} is a c-sequence in P, then {kun} is also a
c-sequence in P.

Lemma 1.7 (Xu and Radenovic-2014, see [3]) Let u ∈A . For each c� θ if θ � u� c , then u = θ .

Lemma 1.8 (Xu and Radenovic-2014, see [3]) Let {un} be a sequence in P. Then the following items are
equivalent:

(i) {un} is a c-sequence.

(ii) For each c� θ there is n0 ∈ N such that un ≺ c whenever n≥ n0.

(iii) For each c� θ there is n1 ∈ N such that un � c whenever n≥ n1.

Lemma 1.9 (Huang and Radenovic-2015, see [4]) Let h ∈ P with ρ(h) < 1. Then {un} with un = hn is a
c-sequence.

Lemma 1.10 (Ozavsar-2018 (see[5]) Let k ∈ P such that r(k)< 1. Then

n

∑
i=p

ki � kp(e− k)−1 (1.3)

for all p ∈ N.

Definition 1.11 (Huang and Zhang-2007, Liu and Xu-2013, see [1, 2]) Let A be an ordered Banach algebra
and X 6= /0. A cone metric space over A is given by a pair (X ,d) where d is a mapping d : X ×X → A
satisfying

(1) θ � d(x,y) and d(x,y) = θ if and only if x = y

(2) d(x,y) = d(y,x)

(3) d(x,y)� d(x,z)+d(z,y)

for all x,y,z ∈ X and for null vector θ ∈A .
Notice that the class of metric spaces is contained by one of cone metric spaces over ordered Banach algebras.
Example 1.12 Let A be the usual algebra of all real valued continious functions on X = [0,1] which also have
continious derivatives on X . If A is equipped with the norm ‖ f‖= ‖ f‖∞ +‖ f ′‖∞, then A becomes a Banach
algebra with unit e = 1. Morever, P = { f ∈A | f (t)≥ 0 for all t ∈ X} is a nonnormal cone (see [3]). Consider
a mapping d : X ×X →A defined by d(x,y)(t) = |x− y|et for all x,y ∈ X . It is obvious that (X ,d) is a cone
metric space on the Banach algebra A .

Definition 1.13 (Huang and Zhang-2007, see [1]) Let {xn} be a sequence in a cone metric space (X ,d) on A .
Then

(i) We say that {xn} is convergent to x ∈ X if to each c� θ there corresponds a natural number n0 such that
d(xn,x)� c for all n≥ n0. This is denoted by limn→∞ xn = x or xn→ x as n→ ∞.

(ii) {xn} is called Cauchy if for each c� θ there is a natural number n0 such that d(xm,xn)� c for all
m,n≥ n0.

(iii) A cone metric space (X ,d) is called complete if every Cauchy sequence in X converges to an element x
of X .

Lemma 1.14 (Xu and Radenovic-2014, see [3]) If (X ,d) is a complete cone metric space over A and {xn}⊂ X
is a sequence that converges to x ∈ X, then the following assertions are true:

(i) {d(xn,x)} is a c-sequence.

(ii) {d(xn,xn+m)} is a c-sequence for all m ∈ N.

Definition 1.15 (Huang and Radenovic-2015, see [4]) Let A be a Banach algebra, X 6= /0, s ∈ R with s≥ 1. If
a mapping d : X×X →A holds the following

(i) θ � d(x,y) and d(x,y) = θ if and only if x = y;

(ii) d(x,y) = d(y,x) ;
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(iii) d(x,y)� s[d(x,z)+d(z,y)]

for all x,y,z ∈ X and for null vector θ ∈A . Then d is said to be a cone b-metric and the pair (X ,d) is said to
be a cone b-metric space on A .

Definition 1.16 (Reny and Nabwey, et al. 2017, see [7]) Let A be a Banach algebra, X 6= /0, s ∈ P with s� e.
If a mapping d : X×X →A holds the following conditions:

(i) θ � d(x,y) and d(x,y) = θ if and only if x = y;

(ii) d(x,y) = d(y,x);

(iii) d(x,y)� s[d(x,z)+d(z,y)]

for all x,y,z ∈ X and for the null vector θ ∈A . Then d is said to be a cone b-metric with vector coefficient
and the pair (X ,d) is said to be a cone b-metric space with vector coefficient over A .
Note that all definitions and properties in cone metric spaces over Banach algebras can be extended to cone
b-metric spaces with vector coefficient over Banach algebras.
Definition 1.17 (Banach, 1922) For a usual metric space (X ,d), let T : X 7→ X be a self mapping. T is said to
a contraction if there exists a constant k ∈ (0,1) such that

d(T x,Ty)� kd(x,y) for all x,y ∈ X (1.4)

Banach proved that a contraction mapping T has a unique fixed point x to which the sequence {T nx0} converges
for any x0 in a complete metric space X .

Definition 1.18 (Berinde-2004, see [8] ) Let (X ,d) be a metric space and let T : X → X a mapping. If there is
k ∈ R with 0 < k < 1 and some l � 0 such that for all x,y ∈ X

d(T x,Ty)� kd(x,y)+ ld(y,T x), (1.5)

then T is said to be a (k, l)-almost contraction in the usual metric spaces.
By the symmetry property of d, the condition (1.8) implies the following dual one:

d(T x,Ty)� kd(x,y)+ ld(x,Ty), for all x,y ∈ X . (1.6)

Definition 1.19 (Liu and Xu-2013, [2]) Suppose that (X ,d) is a cone metric space over a Banach algebra A ,
and T : X 7→ X is a self mapping. T is said to a generalized contraction if there exists a constant vector k ∈A
with ρ(k) ∈ (0,1) such that

d(T x,Ty)� kd(x,y) for all x,y ∈ X (1.7)

where ρ(k) stands for the spectral radius of k.
Note that Liu and Xu also proved that a generalized contraction in a complete cone metric space with a solid
normal cone has a unique fixed point, and the corresponding sequence obtained by Picard iteration converges to
this unique fixed point. Later, in 2014, Xu and Radenovic obtained their result by removing the condition of
normality for cone.
Definition 1.20 (Özavşar-2018, see [5]) Let (X ,d) be a cone metric space over A and let T : X → X be a
mapping. If there is k ∈ P with 0 < ρ(k)< 1 and some l ∈ P such that for all x,y ∈ X

d(T x,Ty)� kd(x,y)+ ld(y,T x), (1.8)

then we call T a generalized (k, l)-almost contraction in the setting of cone metric spaces with Banach algebras.
Note that the class of (k,l)-almost mappings given above contains those of many mappings in cone metric spaces
and the usual metric spaces.
Theorem 1.21 (Özavşar-2018, see [5]) Let (X ,d) be a complete cone metric space over A . If T : X → X is a
(k, l)-almost contraction, then T has at least one fixed point in X.
The following theorem introduces the condition for uniquiness of fixed point:
Theorem 1.22 (Özavşar-2018, see [5]) Let T be a (k, l)-almost contraction in a complete cone metric space. If
T satisfies

d(T x,Ty)� kd(x,y)+ ld(x,T x) for all x,y ∈ X , (1.9)

then it has unique fixed point, and for any x ∈ X, the iterative sequence {T nx} converges to the fixed point.
Now we are ready to introduce the following theorem by following the results mentioned above:
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Theorem 1.23 Let (X ,d) be a complete cone b- metric space with an invertible vector coefficient s ∈ P over
A and T : X → X be a self mapping such that for some k, l ∈ P,

d(T x,Ty)� kd(x,y)+ ld(y,T x) for all x,y ∈ X . (1.10)

If k commutes with s and 0 < ρ(sk)< 1, then T has at least one fixed point in X.

Proof. For arbitray x0 ∈ X , let xn = T xn−1 for all n ∈ N with n≥ 1. By (1.10), we obtain

d(xn+1,xn) = d(T xn,T xn−1)� kd(xn,xn−1), (1.11)

which implies that
d(xn,xn+1)� knd(x0,x1). (1.12)

Let m,n ∈ N with m > n. We have from (cbm3) that

d(xm,xn)� sm−n−1d(xm−1,xm)+
m−2

∑
j=n

s j−n+1d(x j+1,x j). (1.13)

Using the fact s� e together with the properties of P, we have

sm−n−1d(xm−1,xm)� sm−nd(xm−1,xm), (1.14)

implying that

d(xm,xn)�
m−1

∑
j=n

s j−n+1d(x j+1,x j). (1.15)

Then, by substituting (1.12) into (1.15), we have

d(xm,xn)�
m−1

∑
j=n

s j−n+1k jd(x0,x1) (1.16)

The fact sk = ks transforms (1.16) into

d(xm,xn)� s−n+1

(
m−1

∑
j=n

(sk) j

)
d(x0,x1). (1.17)

Since r(sk)< 1 and by Lemma 1.10, we have from (1.17) that

d(xm,xn)� s−n+1(sk)n(e− sk)−1d(x0,x1). (1.18)

Since we have that s� e implies sn−1 � ·· · � s� e and s is invertible, we get from (1.18) that

d(xm,xn)� (sk)n(e− sk)−1d(x0,x1). (1.19)

Let un = (sk)n(e−sk)−1d(x0,x1). Then, using the advantage of r(sk)< 1 together with Lemma 1.5 and Lemma
1.9 , we see that {un} is a c-sequence, that is, for each c ∈ intP, there is n0 ∈ N such that

d(xn,xm)� un� c

whenever n≥ n0. Thus, {xn} is a Cauchy sequence. Since X is complete cone b-metric space, {xn} converges
to x ∈ X .
Morever we have

d(x,T x)� sd(x,xn+1)+ sd(xn+1,T x)

= sd(x,xn+1)+ sd(T xn,T x)

� sd(x,xn+1)+ skd(xn,x)+ sld(x,xn+1)

� s(e+ l)d(x,xn+1)+ skd(xn,x).

Let hn = s(e+ l)d(x,xn+1)+ skd(xn,x). Using Lemma 1.6 and Lemma 1.14 together with Lemma 1.5, we see
that {hn} is a c-sequence, implying that for each c� θ , there is n0 ∈ N such that d(x,T x)� hn� c for n≥ n0.
Considering Lemma 1.7 we obtain x = T x
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Abstract: In this presentation we first mention about the notion of cone metric
spaces over Banach algebras. Next, we present some fixed point theorems in
such spaces, which provide proper generalizations for the well known fixed point
theorems

1. Introduction and Preliminaries

Throughout this presentation, we suppose that A is a real Banach algebra where the multiplicative unit and the
null vector will be denoted by e and θ , respectively.
Definition 1.1 (The Spectral Radius) The spectral radius of a ∈ A is given by

ρ(a) := lim
n→∞
‖an‖ 1

n .

Note that if ρ(a)< 1, then e−a is invertible (see [6]) and the inverse of e−a is given by

(e−a)−1 =
∞

∑
i=0

ai. (1.1)

Definition 1.2 (Cone) Let P be a subset of A such that {θ ,e} ⊂ P. P is called a cone of A if the following
conditions hold:

(c1) P is closed;

(c2) λP+µP⊂ P for all non-negative real numbers λ and µ;

(c3) PP⊂ P and P∩ (−P) = θ .

A cone P with intP 6= /0 is called a solid cone where intP indicates the interior of P.

Definition 1.3 (Normal Cone) To each cone P of A there corresponds a partial ordering � on A defined by
x� y iff y− x ∈ P. By x≺ y we understand that x� y but x 6= y, while x� y stands for y− x ∈ intP. If there
exists a positive real number K such that for all x,y ∈A

θ � x� y implies ‖x‖ ≤ K ‖y‖ , (1.2)

then a cone P is called normal. The least of K’s with the above condition is called the normal constant of P.

Definition 1.4 (Xu and Radenovic-2014, see [3])) A sequence {un} in P is said to be a c-sequence if for each
c� θ there exists n0 ∈ N such that un� c for n≥ n0.
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Lemma 1.5 (Xu and Radenovic-2014, see [3]) If {un} and {vn} are two c-sequences in P, then {αun +βvn}
is also a c-sequence for positive real numbers α and β .

Lemma 1.6 (Xu and Radenovic-2014, see [3]) Let k ∈ P. If {un} is a c-sequence in P, then {kun} is also a
c-sequence in P.

Lemma 1.7 (Xu and Radenovic-2014, see [3]) Let u ∈A . For each c� θ if θ � u� c , then u = θ .

Lemma 1.8 (Xu and Radenovic-2014, see [3]) Let {un} be a sequence in P. Then the following items are
equivalent:

(i) {un} is a c-sequence.

(ii) For each c� θ there is n0 ∈ N such that un ≺ c whenever n≥ n0.

(iii) For each c� θ there is n1 ∈ N such that un � c whenever n≥ n1.

Lemma 1.9 (Huang and Radenovic-2015, see [4]) Let h ∈ P with ρ(h) < 1. Then {un} with un = hn is a
c-sequence.

Lemma 1.10 (Özavşar-2018 (see[5]) Let k ∈ P such that r(k)< 1. Then

n

∑
i=p

ki � kp(e− k)−1 (1.3)

for all p ∈ N.

Definition 1.11 (Huang and Zhang-2007, Liu and Xu-2013, see [1, 2]) Let A be an ordered Banach algebra
and X 6= /0. A cone metric space over A is given by a pair (X ,d) where d is a mapping d : X ×X → A
satisfying

(1) θ � d(x,y) and d(x,y) = θ if and only if x = y

(2) d(x,y) = d(y,x)

(3) d(x,y)� d(x,z)+d(z,y)

for all x,y,z ∈ X and for null vector θ ∈A .
Notice that the class of metric spaces is contained by one of cone metric spaces over ordered Banach algebras.
Example 1.12 Let A be the usual algebra of all real valued continious functions on X = [0,1] which also have
continious derivatives on X . If A is equipped with the norm ‖ f‖= ‖ f‖∞ +‖ f ′‖∞, then A becomes a Banach
algebra with unit e = 1. Morever, P = { f ∈A | f (t)≥ 0 for all t ∈ X} is a nonnormal cone (see [3]). Consider
a mapping d : X ×X →A defined by d(x,y)(t) = |x− y|et for all x,y ∈ X . It is obvious that (X ,d) is a cone
metric space on the Banach algebra A .

Definition 1.13 (Huang and Zhang-2007, see [1]) Let {xn} be a sequence in a cone metric space (X ,d) on A .
Then

(i) We say that {xn} is convergent to x ∈ X if to each c� θ there corresponds a natural number n0 such that
d(xn,x)� c for all n≥ n0. This is denoted by limn→∞ xn = x or xn→ x as n→ ∞.

(ii) {xn} is called Cauchy if for each c� θ there is a natural number n0 such that d(xm,xn)� c for all
m,n≥ n0.

(iii) A cone metric space (X ,d) is called complete if every Cauchy sequence in X converges to an element x
of X .

Lemma 1.14 (Xu and Radenovic-2014, see [3]) If (X ,d) is a complete cone metric space over A and {xn}⊂ X
is a sequence that converges to x ∈ X, then the following assertions are true:

(i) {d(xn,x)} is a c-sequence.

(ii) {d(xn,xn+m)} is a c-sequence for all m ∈ N.
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2. Almost Contraction Mappings in the Usual Metric Spaces

Definition 2.1 (Banach, 1922) For a usual metric space (X ,d), let T : X 7→ X be a self mapping. T is said to a
contraction if there exists a constant k ∈ (0,1) such that

d(T x,Ty)� kd(x,y) for all x,y ∈ X (2.1)

Banach proved that a contraction mapping T has a unique fixed point x to which the sequence {T nx0} converges
for any x0 in a complete metric space X .

Definition 2.2 (Berinde-2004, see [7] ) Let (X ,d) be a metric space and let T : X → X a mapping. If there is
k ∈ R with 0 < k < 1 and some l � 0 such that for all x,y ∈ X

d(T x,Ty)� kd(x,y)+ ld(y,T x), (2.2)

then T is said to be a (k, l)-almost contraction in the usual metric spaces.
By the symmetry property of d, the condition (3.2) implies the following dual one:

d(T x,Ty)� kd(x,y)+ ld(x,Ty), for all x,y ∈ X . (2.3)

Berinde showed that the class of almost contractions contains those of many well known mappings in the usual
metric spaces. He also proved a fixed point theorem for (k, l)-almost contractions in the usual metric spaces
(X ,d).

3. Almost Contraction Mappings in Cone Metric Spaces over Banach Algebras

Definition 3.1 (Liu and Xu-2013, [2]) Suppose that (X ,d) is a cone metric space over a Banach algebra A ,
and T : X 7→ X is a self mapping. T is said to a generalized contraction if there exists a constant vector k ∈A
with ρ(k) ∈ (0,1) such that

d(T x,Ty)� kd(x,y) for all x,y ∈ X (3.1)

where ρ(k) stands for the spectral radius of k.
Note that Liu and Xu also proved that a generalized contraction in a complete cone metric space with a solid
normal cone has a unique fixed point, and the corresponding sequence obtained by Picard iteration converges to
this unique fixed point. Later, in 2014, Xu and Radenovic obtained their result by removing the condition of
normality for cone.
Definition 3.2 (Özavşar-2018, see [5]) Let (X ,d) be a cone metric space over A and let T : X → X be a
mapping. If there is k ∈ P with 0 < ρ(k)< 1 and some l ∈ P such that for all x,y ∈ X

d(T x,Ty)� kd(x,y)+ ld(y,T x), (3.2)

then we call T a generalized (k, l)-almost contraction in the setting of cone metric spaces with Banach algebras.
Note that the class of (k,l)-almost mappings given above contains those of many mappings in cone metric spaces
and the usual metric spaces.
Theorem 3.3 (Özavşar-2018, see [5]) Let (X ,d) be a complete cone metric space over A . If T : X → X is a
(k, l)-almost contraction, then T has at least one fixed point in X.
The following theorem introduces the condition for uniquiness of fixed point:
Theorem 3.4 (Özavşar-2018, see [5]) Let T be a (k, l)-almost contraction in a complete cone metric space. If
T satisfies

d(T x,Ty)� kd(x,y)+ ld(x,T x) for all x,y ∈ X , (3.3)

then it has unique fixed point, and for any x ∈ X, the iterative sequence {T nx} converges to the fixed point.

Example 3.5 Let X = [0,1]× [0,1] and consider the usual Banach algebra A = R2 endowed with the stan-
dart norm and pointswise multiplication. For a mapping d : X ×X → A defined by d((x1,y1),(x2,y2)) =
(|x2− x1| , |y2− y1|), it is obvious that (X ,d) is a complete cone metric space over A with solid cone
P = {(a,b)|a≥ 0 and b≥ 0}.
Example 3.6 Then a mapping T : X → X defined by

f (x,y) =





(
x
3 ,

2y
3

)
if 0≤ x≤ 1 and 0≤ y≤ 1

2(
x
3 ,

2y
3 + 1

3

)
if 0≤ x≤ 1 and 1

2 < y≤ 1

is a (k, l)-almost contraction where k =
( 1

3 ,
2
3

)
∈ P with ρ(k)< 1 and l = (0,6)� θ . The set of fixed points of

T is {(0,0),(0,1)}.
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Definition 3.7 [see [8]] Let (X ,d) be a cone metric space over a Banach space E with solid cone P and let
N (X) be a family of all nonempty subsets of X . A mapping H : N (X)×N (X)→ E is called an H-cone
metric over a Banach space E with respect to (X ,d), if for all A,B ∈N (X) the following conditions hold:

(H1) H(A,B) = 0⇒ A = B;

(H2) H(A,B) = H(B,A);

(H3) For all ε ∈ E with ε� θ and for all x ∈ A, there exists at least one y ∈ B such that d(x,y)�H(A,B)+ ε ;

(H4) One of the following holds:

(i) For all ε ∈ E with ε � θ there is at least one x ∈ A such that H(A,B)� d(x,y)+ ε for all y ∈ B.

(ii) For all ε ∈ E with ε � θ there is at least one x ∈ B such that H(A,B)� d(x,y)+ ε for all y ∈ A.

4. Multivalued Contraction Mappings in Cone b-Metric Spaces over Banach Algebras

Definition 4.1 (Huang, Radenovic-2015, see [4]) Let A be a Banach algebra, X 6= /0, s ∈ R with s≥ 1. If a
mapping d : X×X →A holds the following

(i) θ � d(x,y) and d(x,y) = θ if and only if x = y;

(ii) d(x,y) = d(y,x) ;

(iii) d(x,y)� s[d(x,z)+d(z,y)]

for all x,y,z ∈ X and for null vector θ ∈A . Then d is said to be a cone b-metric and the pair (X ,d) is said to
be a cone b-metric space on A .
In [9], Özavşar introduced the Banach contraction principle for Nadler type contractions in the sense of
Wardowski [8] by using the setting of cone b-metric spaces over Banach algebras as follows:
Theorem 4.2 (Özavşar-2018, see [9]) Suppose that (X ,d) is a cone b-metric space with s ∈ R such that s≥ 1,
and T : X →N (X) is a set-valued mapping. If there is k ∈ P with r(sk) ∈ [0,1) such that

H(T x,Ty)� kd(x,y) for all x,y ∈ X , (4.1)

then there is at least one x ∈ X such that x ∈ T x.
Note that this theorem extends the result of Nadler.
Example 4.3 Consider the Banach algebra A = R2 endowed with the pointwise multiplication and the
usual norm. Let P =

{
(x,y) ∈ R2|x,y≥ 0

}
and X = R2 and p ∈ R with p > 1. Then, using advantage of

the inequality (a+ b)p ≤ 2p(ap + bp) for all a,b ≥ 0 and the properties of the cone P, one can show that
a mapping d : X ×X → A defined by d((x1,y1),(x2,y2)) = (|x1− x2|p , |y1− y2|p) is a cone b-metric with
s = 2p over A . Let a⊗ b be a closed subset of X defined by a⊗ b := {(x,y) ∈ X |0≤ x≤ a,0≤ y≤ b} for
a,b≥ 0. Now consider N (X) = {a⊗b|a,b≥ 0}. Then it is clear that a mapping H : N (X)×N (X)→A
defined by H(a1⊗b1,a2⊗b2) = (|a1−a2|p , |b1−b2|p) is H-cone b-metric with respect to (X ,d) over A . Let
T : X →N (X) given by T (x,y) =

∣∣ cosx
4

∣∣⊗
∣∣ cosy

16

∣∣. Then, by using the basic properties of |·|, one can show that

H(T (x1,y1),T (x2,y2)� kd ((x1,y1),(x2,y2)) , (4.2)

where k =
(

1
s2 ,

1
s4

)
∈ P. Since T holds the conditions of Theorem 3.6, it has a fixed point.
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Abstract: In this paper, we introduce the concepts of strongly asymptotically
ideal invariant equivalence, f -asymptotically ideal invariant equivalence, strongly
f -asymptotically ideal invariant equivalence and asymptotically ideal invariant
statistical equivalence for sequences. Also, we investigate some relationships
among them.

1. Introduction

Throughout the paper N denotes the set of all natural numbers and R the set of all real numbers. The concept
of convergence of a real sequence has been extended to statistical convergence independently by Fast [1],
Schoenberg [24] and studied by many authors. The idea of I -convergence was introduced by Kostyrko et al.
[2] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of N.
Several authors including Raimi [17], Schaefer [23], Mursaleen and Edely [7], Mursaleen [9], Savaş [18, 19],
Nuray and Savaş [11], Pancaroǧlu and Nuray [13] and some authors have studied invariant convergent sequences.
The concept of strongly σ -convergence was defined by Mursaleen [8]. Savaş and Nuray [20] introduced the
concepts of σ -statistical convergence and lacunary σ -statistical convergence and gave some inclusion relations.
Nuray et al. [12] defined the concepts of σ -uniform density of a subset A of the set N, Iσ -convergence and
investigated relationships between Iσ -convergence and invariant convergence also Iσ -convergence and [Vσ ]p-
convergence. Pancaroḡlu and Nuray [13] studied Statistical lacunary invariant summability. Recently, Nuray
and Ulusu [25] investigated lacunary I -invariant convergence and lacunary I -invariant Cauchy sequence of
real numbers.
Marouf [6] peresented definitions for asymptotically equivalent and asymptotic regular matrices. Patterson [14]
presented asymptotically statistical equivalent sequences for nonnegative summability matrices. Patterson and
Savaş [15, 22] introduced asymptotically lacunary statistically equivalent sequences and also asymptotically
σθ -statistical equivalent sequences. Ulusu [26, 27] studied asymptotically ideal invariant equivalence and
asymptotically lacunary Iσ -equivalence.
Modulus function was introduced by Nakano [10]. Maddox [5], Pehlivan [16] and many authors used a modulus
function f to define some new concepts and inclusion theorems. Kumar and Sharma [3] studied lacunary
equivalent sequences by ideals and modulus function.

Now, we recall the basic concepts and some definitions and notations (See [2, 4–6, 12, 14, 16]).
Let σ be a mapping of the positive integers into itself. A continuous linear functional ϕ on `∞, the space of real
bounded sequences, is said to be an invariant mean or a σ mean, if and only if,

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1...),

*npancaroglu@aku.edu.tr
†edundar@aku.edu.tr

93



3. φ(xσ(n)) = φ(x) for all x ∈ `∞.

The mappings φ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m,
where σm(n) denotes the mth iterate of the mapping σ at n. Thus φ extends the limit functional on c, the
space of convergent sequences, in the sense that φ(x) = limx for all x ∈ c. In case σ is translation mappings
σ(n) = n+1, the σ mean is often called a Banach limit and Vσ , the set of bounded sequences all of whose
invariant means are equal, is the set of almost convergent sequences.

A sequence x = (xk) is said to be statistically convergent to the number L if for every ε > 0,

lim
n→∞

1
n

∣∣∣
{

k ≤ n : |xk−L| ≥ ε
}∣∣∣= 0,

where the vertical bars indicate the number of elements in the enclosed set.

A family of sets I ⊆ 2N is called an ideal if and only if
(i) /0 ∈I , (ii) For each A,B ∈I we have A∪B ∈I , (iii) For each A ∈I and each B⊆ A we have B ∈I .
An ideal is called nontrivial if N /∈ I and nontrivial ideal is called admissible if {n} ∈ I for each n ∈ N.
Throughout the paper we let I be an admissible ideal.

Let A⊆ N and

sm = min
n

∣∣∣A∩
{

σ(n),σ2(n), ...,σm(n)
}∣∣∣ and Sm = max

n

∣∣∣A∩
{

σ(n),σ2(n), ...,σm(n)
}∣∣∣.

If the limits V (A) = lim
m→∞

sm
m and V (A) = lim

m→∞
Sm
m exist then, they are called a lower σ -uniform density and an

upper σ -uniform density of the set A, respectively. If V (A) =V (A), then V (A) =V (A) =V (A) is called the
σ -uniform density of A.
Denote by Iσ the class of all A⊆ N with V (A) = 0.

A sequence x = (xk) is said to be Iσ -convergent to L if for every ε > 0, the set Aε =
{

k : |xk−L| ≥ ε
}

belongs
to Iσ , i.e., V (Aε) = 0. It is denoted by Iσ − limxk = L.

The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically equivalent if

lim
k

xk

yk
= 1

(denoted by x∼ y).

The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically statistical equivalent of
multiple L if for every ε > 0,

lim
n

1
n

∣∣∣∣
{

k ≤ n :
∣∣∣∣

xk

yk
−L
∣∣∣∣≥ ε

}∣∣∣∣= 0

(denoted by x
SL∼ y) and simply asymptotically statistical equivalent if L = 1.

The two nonnegative sequences x = (xk) and y = (yk) are said to be strongly asymptotically equivalent of
multiple L with respect to the ideal I if for every ε > 0,

{
n ∈ N :

1
n

n

∑
k=1

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈I

(denoted by xk
I (ω)∼ yk) and simply strongly asymptotically equivalent with respect to the ideal I , if L = 1.

The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically Iσ -equivalent of multiple L

if for every ε > 0, Aε =

{
k ∈ N :

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈Iσ , i.e., V (Aε) = 0. It is denoted by xk

[I L
σ ]∼ yk.

A function f : [0,∞)→ [0,∞) is called a modulus if

1. f (x) = 0 if and if only if x = 0,

2. f (x+ y)≤ f (x)+ f (y),

94



3. f is increasing,

4. f is continuous from the right at 0.

A modulus may be unbounded (for example f (x) = xp, 0 < p < 1) or bounded (for example
f (x) = x

x+1 ).

Let f be modulus function. The two nonnegative sequences x = (xk) and y = (yk) are said to be f -asymptotically
equivalent of multiple L with respect to the ideal I provided that, for every ε > 0,

{
k ∈ N : f

(∣∣∣∣
xk

yk
−L
∣∣∣∣
)
≥ ε
}
∈I

(denoted by xk
I ( f )∼ yk) and simply f -asymptotically I -equivalent if L = 1.

Let f be modulus function. The two nonnegative sequences x = (xk) and y = (yk) are said to be strongly
f -asymptotically equivalent of multiple L with respect to the ideal I provided that, for every ε > 0

{
n ∈ N :

1
n

n

∑
k=1

f
(∣∣∣∣

xk

yk
−L
∣∣∣∣
)
≥ ε

}
∈I

(denoted by xk
I (ω f )∼ yk)) and simply strongly f -asymptotically I -equivalent if L = 1.

Lemma 1.1 [16] Let f be a modulus and 0 < δ < 1. Then, for each x≥ δ we have f (x)≤ 2 f (1)δ−1x.

2. Main Results

Definition 2.1 The sequences x = (xk) and y = (yk) are said to be strongly asymptotically I -invariant equiva-
lent of multiple L if for every ε > 0,

{
n ∈ N :

1
n

n

∑
k=1

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈Iσ

(denoted by xk
[I L

σ ]∼ yk) and simply strongly asymptotically I -invariant equivalent if L = 1.

Definition 2.2 Let f be a modulus function. The sequences x= (xk) and y= (yk) are said to be f -asymptotically
I -invariant equivalent of multiple L if for every ε > 0,

{
k ∈ N : f

(∣∣∣∣
xk

yk
−L
∣∣∣∣
)
≥ ε
}
∈Iσ

(denoted by xk
I L

σ ( f )∼ yk) and simply f-asymptotically I -invariant equivalent if L = 1.

Definition 2.3 Let f be a modulus function. The sequences x = (xk) and y = (yk) are said to be strongly
f-asymptotically I -invariant equivalent of multiple L if for every ε > 0,

{
n ∈ N :

1
n

n

∑
k=1

f
(∣∣∣∣

xk

yk
−L
∣∣∣∣
)
≥ ε

}
∈Iσ

(denoted by xk
[I L

σ ( f )]∼ yk)) and simply strongly f-asymptotically I -invariant equivalent if L = 1.

Theorem 2.4 Let f be a modulus function. Then,

xk
[I L

σ ]∼ yk⇒ xk
[I L

σ ( f )]∼ yk.

Proof. Let xk
[I L

σ ]∼ yk and ε > 0 be given. Choose 0 < δ < 1 such that f (t) < ε for 0 ≤ t ≤ δ . Then, for
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m = 1,2, . . ., we can write

1
n

n
∑

k=1
f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)

=
1
n

n
∑

k=1∣∣∣∣∣∣

xσ k(m)

yσ k(m)

−L

∣∣∣∣∣∣
≤δ

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)

+
1
n

n
∑

k=1∣∣∣∣∣∣

xσ k(m)

yσ k(m)

−L

∣∣∣∣∣∣
>δ

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)

and so by Lemma 1.1

1
n

n

∑
k=1

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)
< ε +

(
2 f (1)

δ

)
1
n

n

∑
k=1

∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣

uniformly in m. Thus, for every any γ > 0
{

n ∈ N :
1
n

n

∑
k=1

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)
≥ γ

}
⊆
{

n ∈ N :
1
n

n

∑
k=1

∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥

(γ− ε)δ
2 f (1)

}
,

uniformly in m. Since xk
[I L

σ ]∼ yk, it follows the later set and hence, the first set in above expression belongs to

Iσ . This proves that xk
[I L

σ ( f )]∼ yk.

Definition 2.5 The sequences xk and yk are said to be asymptotically I -invariant statistical equivalent of
multiple L if for every ε > 0 and each γ > 0,

{
n ∈ N :

1
n

∣∣∣∣
{

k ≤ n :
∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣∣≥ γ
}
∈Iσ

(denoted by xk
I (Sσ )∼ yk) and simply asymptotically I -invariant statistical equivalent if L = 1.

Theorem 2.6 Let f be a modulus function. Then,

xk
[I L

σ ( f )]∼ yk⇒ xk
I (Sσ )∼ yk.

Proof. Assume that xk
[I L

σ ( f )]∼ yk and ε > 0 be given. Since for m = 1,2, . . .,

1
n

n
∑

k=1
f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)
≥ 1

n

n
∑

k=1∣∣∣∣
xσ k(m)

yσ k(m)

−L

∣∣∣∣≥ε

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)

≥ f (ε).
1
n

∣∣∣∣∣

{
k ≤ n :

∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣∣∣

it follows that for any γ > 0,
{

n ∈ N :
1
n

∣∣∣
{

k ≤ n :
∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣≥ γ
f (ε)

}
⊆
{

n ∈ N :
1
n

n

∑
k=1

f
(∣∣∣∣

xσk(m)

yσk(m)

−L
∣∣∣∣
)
≥ γ

}
,

uniformly in m. Since xk
[I L

σ ( f )]∼ yk, so the last set belongs to Iσ . But then by the definition of an ideal, the first

set belongs to Iσ and therefore xk
I (Sσ )∼ yk
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Abstract: In this paper, we introduce the concepts of strongly asymptotically
lacunary ideal invariant equivalence, f -asymptotically lacunary ideal invariant
equivalence, strongly f -asymptotically lacunary ideal invariant equivalence and
asymptotically lacunary ideal invariant statistical equivalence for sequences. Also,
we investigate some relationships among them.

1. Introduction

Throughout the paper N denotes the set of all natural numbers and R the set of all real numbers. The concept
of convergence of a real sequence has been extended to statistical convergence independently by Fast [1],
Schoenberg [24] and studied by many authors. The idea of I -convergence was introduced by Kostyrko et al.
[2] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of N.
Several authors including Raimi [17], Schaefer [23], Mursaleen and Edely [7], Mursaleen [9], Savaş [18, 19],
Nuray and Savaş [11], Pancaroǧlu and Nuray [13] and some authors have studied invariant convergent sequences.
The concept of strongly σ -convergence was defined by Mursaleen [8]. Savaş and Nuray [20] introduced the
concepts of σ -statistical convergence and lacunary σ -statistical convergence and gave some inclusion relations.
Nuray et al. [12] defined the concepts of σ -uniform density of a subset A of the set N, Iσ -convergence and
investigated relationships between Iσ -convergence and invariant convergence also Iσ -convergence and [Vσ ]p-
convergence. Pancaroḡlu and Nuray [13] studied Statistical lacunary invariant summability. Recently, Nuray
and Ulusu [25] investigated lacunary I -invariant convergence and lacunary I -invariant Cauchy sequence of
real numbers.
Marouf [6] peresented definitions for asymptotically equivalent and asymptotic regular matrices. Patterson [14]
presented asymptotically statistical equivalent sequences for nonnegative summability matrices. Patterson and
Savaş [15, 22] introduced asymptotically lacunary statistically equivalent sequences and also asymptotically
σθ -statistical equivalent sequences. Ulusu [26, 27] studied asymptotically ideal invariant equivalence and
asymptotically lacunary Iσ -equivalence.
Modulus function was introduced by Nakano [10]. Maddox [5], Pehlivan [16] and many authors used a modulus
function f to define some new concepts and inclusion theorems. Kumar and Sharma [3] studied lacunary
equivalent sequences by ideals and modulus function.
Now, we recall the basic concepts and some definitions and notations (See [2, 4–6, 12, 14, 16]).
Let σ be a mapping of the positive integers into itself. A continuous linear functional ϕ on `∞, the space of real
bounded sequences, is said to be an invariant mean or a σ mean, if and only if,

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1...),

*npancaroglu@aku.edu.tr
†edundar@aku.edu.tr
‡ulusu@aku.edu.tr
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3. φ(xσ(n)) = φ(x) for all x ∈ `∞.

The mappings φ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m,
where σm(n) denotes the mth iterate of the mapping σ at n. Thus φ extends the limit functional on c, the
space of convergent sequences, in the sense that φ(x) = limx for all x ∈ c. In case σ is translation mappings
σ(n) = n+1, the σ mean is often called a Banach limit and Vσ , the set of bounded sequences all of whose
invariant means are equal, is the set of almost convergent sequences.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr−kr−1→
∞ as r→ ∞. Throughout the paper, we let θ a lacunary sequence.
The sequence x = (xk) is Sσθ -convergent to L, if for every ε > 0,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |xσk(n)−L| ≥ ε
}∣∣∣= 0, uniformly in n=1,2,... .

A family of sets I ⊆ 2N is called an ideal if and only if
(i) /0 ∈I , (ii) For each A,B ∈I we have A∪B ∈I , (iii) For each A ∈I and each B⊆ A we have B ∈I .
An ideal is called nontrivial if N /∈ I and nontrivial ideal is called admissible if {n} ∈ I for each n ∈ N.
Throughout the paper we let I be an admissible ideal.
Let A⊆ N and

sm = min
n

∣∣∣A∩
{

σ(n),σ2(n), ...,σm(n)
}∣∣∣ and Sm = max

n

∣∣∣A∩
{

σ(n),σ2(n), ...,σm(n)
}∣∣∣.

If the limits V (A) = lim
m→∞

sm
m and V (A) = lim

m→∞
Sm
m exist then, they are called a lower σ -uniform density and an

upper σ -uniform density of the set A, respectively. If V (A) =V (A), then V (A) =V (A) =V (A) is called the
σ -uniform density of A.
Denote by Iσ the class of all A⊆ N with V (A) = 0.
A sequence x = (xk) is said to be Iσ -convergent to L if for every ε > 0, the set Aε =

{
k : |xk−L| ≥ ε

}
belongs

to Iσ , i.e., V (Aε) = 0. It is denoted by Iσ − limxk = L.
Let θ = {kr} be a lacunary sequence, A⊆ N and

sr = min
n

{∣∣A∩{σm(n) : m ∈ Ir}
∣∣
}

and Sr = max
n

{∣∣A∩{σm(n) : m ∈ Ir}
∣∣
}
.

If the limits Vθ (A) = lim
r→∞

sr
hr

and Vθ (A) = lim
r→∞

Sr
hr

exist then, they are called a lower lacunary σ -uniform density

and an upper lacunary σ -uniform density of the set A, respectively. If Vθ (A) =Vθ (A), then Vθ (A) =Vθ (A) =
Vθ (A) is called the lacunary σ -uniform density of A.
Denoted by Iσθ the class of all A⊆ N with Vθ (A) = 0.
A sequence (xk) is said to be lacunary Iσ -convergent or Iσθ -convergent to L if for every ε > 0, Aε =

{
k :

|xk−L| ≥ ε
}
∈Iσθ , i.e., Vθ (Aε) = 0. It is denoted by Iσθ − limxk = L.

The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically equivalent if lim
k

xk
yk

= 1

(denoted by x∼ y).
The two nonnegative sequences x = (xk) and y = (yk) are strongly asymptotically lacunary invariant equiv-

alent of multiple L if lim
r

1
hr

∑
k∈Ir

∣∣∣∣
xσ k(m)

yσk(m)

−L
∣∣∣∣ = 0, uniformly in m (denoted by x

Nσθ∼ y) and strongly simply

asymptotically lacunary invariant equivalent if L = 1.
The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically lacunary invariant statistical
equivalent of multiple L if for every ε > 0,

lim
r

1
hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣∣= 0, uniformly in m

(denoted by x
Sσθ∼ y) and simply asymptotically lacunary invariant statistical equivalent if L = 1.

The two nonnegative sequences x = (xk) and y = (yk) are said to be strongly asymptotically equivalent of
multiple L with respect to the ideal I if for every ε > 0,

{
n ∈ N :

1
n

n

∑
k=1

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈I

(denoted by xk
I (ω)∼ yk) and simply strongly asymptotically equivalent with respect to the ideal I , if L = 1.
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The two nonnegative sequences x = (xk) and y = (yk) are said to be strongly asymptotically lacunary equivalent
of multiple L respect to the ideal I provided that for every ε > 0,

{
r ∈ N :

1
hr

∑
k∈Ir

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈I

(denoted by xk
[I (Nθ )]∼ yk) and simply strongly asymptotically lacunary I -equivalent with respect to the ideal

I , if L = 1.
The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically lacunary statistical equivalent
of multiple L with respect to the ideal I provided that for every ε > 0 and γ > 0,

{
r ∈ N :

1
hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}∣∣∣∣≥ γ
}
∈I

(denoted by xk
I (Sθ )∼ yk) and simply asymptotically lacunary I -statistical equivalent if L = 1.

The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically Iσ -equivalent of multiple L

if for every ε > 0, Aε =

{
k ∈ N :

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈Iσ , i.e., V (Aε) = 0. It is denoted by xk

[I L
σ ]∼ yk.

The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically Iσθ -equivalent of multiple

L if for every ε > 0, Aε =

{
k ∈ Ir :

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈Iσθ , i.e., Vθ (Aε) = 0. It is denoted by xk

[I L
σθ ]∼ yk.

A function f : [0,∞)→ [0,∞) is called a modulus if

1. f (x) = 0 if and if only if x = 0,

2. f (x+ y)≤ f (x)+ f (y),

3. f is increasing,

4. f is continuous from the right at 0.

A modulus may be unbounded (for example f (x) = xp, 0 < p < 1) or bounded (for example
f (x) = x

x+1 ).
Let f be modulus function. The two nonnegative sequences x = (xk) and y = (yk) are said to be f -asymptotically
equivalent of multiple L with respect to the ideal I provided that, for every ε > 0,

{
k ∈ N : f

(∣∣∣∣
xk

yk
−L
∣∣∣∣
)
≥ ε
}
∈I

(denoted by xk
I ( f )∼ yk) and simply f -asymptotically I -equivalent if L = 1.

Let f be modulus function. The two nonnegative sequences x = (xk) and y = (yk) are said to be strongly
f -asymptotically equivalent of multiple L with respect to the ideal I provided that, for every ε > 0

{
n ∈ N :

1
n

n

∑
k=1

f
(∣∣∣∣

xk

yk
−L
∣∣∣∣
)
≥ ε

}
∈I

(denoted by xk
I (ω f )∼ yk)) and simply strongly f -asymptotically I -equivalent if L = 1.

Let f be a modulus function. The two nonnegative x = (xk) and y = (yk) are said to be strongly f -asymptotically
lacunary equivalent of multiple L with respect to the ideal I provided that for every ε > 0,

{
r ∈ N :

1
hr

∑
k∈Ir

f
(∣∣∣∣

xk

yk
−L
∣∣∣∣
)
≥ ε

}
∈I

(denoted by xk
[I (N f

θ )]∼ yk)) and simply strongly f -asymptotically lacunary I -equivalent if L = 1.
The sequences x = (xk) and y = (yk) are said to be strongly asymptotically I -invariant equivalent of multiple
L if for every ε > 0, {

n ∈ N :
1
n

n

∑
k=1

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈Iσ

(denoted by xk
[I L

σ ]∼ yk) and simply strongly asymptotically I -invariant equivalent if L = 1.
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Let f be a modulus function. The sequences x = (xk) and y = (yk) are said to be f -asymptotically I -invariant
equivalent of multiple L if for every ε > 0,

{
k ∈ N : f

(∣∣∣∣
xk

yk
−L
∣∣∣∣
)
≥ ε
}
∈Iσ

(denoted by xk
I L

σ ( f )∼ yk) and simply f-asymptotically I -invariant equivalent if L = 1.
Let f be a modulus function. The sequences x = (xk) and y = (yk) are said to be strongly f-asymptotically
I -invariant equivalent of multiple L if for every ε > 0,

{
n ∈ N :

1
n

n

∑
k=1

f
(∣∣∣∣

xk

yk
−L
∣∣∣∣
)
≥ ε

}
∈Iσ

(denoted by xk
[I L

σ ( f )]∼ yk)) and simply strongly f-asymptotically I -invariant equivalent if L = 1.
The sequences xk and yk are said to be asymptotically I -invariant statistical equivalent of multiple L if for
every ε > 0 and each γ > 0,

{
n ∈ N :

1
n

∣∣∣∣
{

k ≤ n :
∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣∣≥ γ
}
∈Iσ

(denoted by xk
I (Sσ )∼ yk) and simply asymptotically I -invariant statistical equivalent if L = 1.

Lemma 1.1 [16] Let f be a modulus and 0 < δ < 1. Then, for each x≥ δ we have f (x)≤ 2 f (1)δ−1x.

2. Main Results

Definition 2.1 The sequences x = (xk) and y = (yk) are said to be strongly asymptotically lacunary I -invariant
equivalent of multiple L, if for every ε > 0

{
r ∈ N :

1
hr

∑
k∈Ir

∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}
∈Iσθ

(denoted by xk
[I L

σθ ]∼ yk) and simply strongly asymptotically lacunary I -invariant equivalent if L = 1.

Definition 2.2 Let f be a modulus function. The sequences x= (xk) and y= (yk) are said to be f -asymptotically
lacunary I -invariant equivalent of multiple L, if for every ε > 0

{
k ∈ N : f

(∣∣∣∣
xk

yk
−L
∣∣∣∣
)
≥ ε
}
∈Iσθ ,

(denoted by xk
I L

σθ ( f )∼ yk) and simply f-asymptotically lacunary I -invariant equivalent if L = 1.

Definition 2.3 Let f be a modulus function. The sequences x = (xk) and y = (yk) are said to be strongly
f-asymptotically lacunary I -invariant equivalent of multiple L, if for every ε > 0

{
r ∈ N :

1
hr

∑
k∈Ir

f
(∣∣∣∣

xk

yk
−L
∣∣∣∣
)
≥ ε

}
∈Iσθ

(denoted by xk
[I L

σθ ( f )]∼ yk)) and simply strongly f-asymptotically lacunary I -invariant equivalent if L = 1.

Theorem 2.4 Let f be a modulus function. Then,

xk
[I L

σθ ]∼ yk⇒ xk
[I L

σθ ( f )]∼ yk.

Proof. Let xk
[I L

σθ ]∼ yk and ε > 0 be given. Choose 0 < δ < 1 such that f (t) < ε for 0 ≤ t ≤ δ . Then, for
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m = 1,2, . . ., we can write

1
hr

∑
k∈Ir

f
(∣∣∣∣

xσk(m)

yσk(m)

−L
∣∣∣∣
)

=
1
hr

∑
k∈Ir∣∣∣∣∣∣

xσ k(m)

yσ k(m)

−L

∣∣∣∣∣∣
≤δ

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)

+
1
hr

∑
k∈Ir∣∣∣∣∣∣

xσ k(m)

yσ k(m)

−L

∣∣∣∣∣∣
>δ

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)

and so by Lemma 1.1

1
hr

∑
k∈Ir

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)
< ε +

(
2 f (1)

δ

)
1
hr

∑
k∈Ir

∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣

uniformly in m. Thus, for each any γ > 0
{

r ∈ N :
1
hr

∑
k∈Ir

f
(∣∣∣∣

xσ k(m)

yσ k(m)

−L
∣∣∣∣
)
≥ γ

}
⊆
{

r ∈ N :
1
hr

∑
k∈Ir

∣∣∣∣
xσk(m)

yσk(m)

−L
∣∣∣∣≥

(γ− ε)δ
2 f (1)

}
,

uniformly in m. Since xk
[I L

σθ ]∼ yk, it follows the later set and hence, the first set in above expression belongs to

Iσθ . This proves that xk
[I L

σθ ( f )]∼ yk.

Definition 2.5 The sequences xk and yk are said to be asymptotically lacunary I -invariant statistical equivalent
of multiple L if for every ε > 0 and each γ > 0,

{
r ∈ N :

1
hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣∣
xk

yk
−L
∣∣∣∣≥ ε

}∣∣∣∣≥ γ
}
∈Iσθ

(denoted by xk
I (Sσθ )∼ yk) and simply asymptotically lacunary I -invariant statistical equivalent if L = 1.

Theorem 2.6 Let f be a modulus function. Then,

xk
[I L

σθ ( f )]∼ yk⇒ xk
I (Sσθ )∼ yk.

Proof. Assume that xk
[I L

σθ ( f )]∼ yk and ε > 0 be given. Since for m = 1,2, . . .,

1
hr

∑
k∈Ir

f
(∣∣∣∣

xσk(m)

yσk(m)

−L
∣∣∣∣
)
≥ 1

hr
∑

k∈Ir∣∣∣∣
xσk(m)

yσk(m)

−L

∣∣∣∣≥ε

f
(∣∣∣∣

xσk(m)

yσk(m)

−L
∣∣∣∣
)

≥ f (ε).
1
hr

∣∣∣∣∣

{
k ∈ Ir :

∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣∣∣

it follows that for any γ > 0,
{

r ∈ N :
1
hr

∣∣∣
{

k ∈ Ir :
∣∣∣∣
xσ k(m)

yσ k(m)

−L
∣∣∣∣≥ ε

}∣∣∣≥ γ

}
⊆
{

r ∈ N :
1
hr

∑
k∈Ir

f
(∣∣∣∣

xσk(m)

yσk(m)

−L
∣∣∣∣
)
≥ γ f (ε)

}
,

uniformly in m. Since xk
[I L

σθ ( f )]∼ yk, the last set belongs to Iσθ and so by the definition of an ideal, the first set

belongs to Iσθ . Therefore, xk
I (Sσθ )∼ yk.
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Abstract: The purpose of this study is to extend the notions of I -convergence,
I -limit superior and I -limit inferior, I -cluster point and I -limit point to
functions defined on discrete countable amenable semigroups.

1. Introduction

Let G be a discrete countable amenable semigroup with identity in which both right and left cancelation laws
hold, and w(G) and m(G) denote the spaces of all real valued functions and all bounded real functions f on
G respectively. m(G) is a Banach space with the supremum norm ‖ f‖∞ = sup{| f (g)| : g ∈ G}. Nomika [17]
showed that, if G is countable amenable group, there exists a sequence {Sn} of finite subsets of G such that (i)
G = ∪∞

i=1Sn, (ii) Sn ⊂ Sn+1, n = 1,2,3, ..., (iii) limn→∞
|Sng−∩Sn|
|Sn| = 1, limn→∞

|gSn−∩Sn|
|Sn| = 1 for all g ∈G. Here

|A| denotes the number of elements in the finite set A. Any sequence of finite subsets of G satisfying (i), (ii)
and (iii) is called a Folner sequence for G.
The sequence Sn = {0,1,2, ...,n−1} is a familiar Folner sequence giving rise to the classical Cesàro method of
summability.
The concept of summability in amenable semigroups was introduced in [14], [15]. In [3], Douglass extended
the notion of arithmetic mean to amenable semigroups and obtained a characterization for almost convergence
in amenable semigroups.
In [16], the notions of convergence and statistical convergence, statistical limit point and statistical cluster point
to functions on discrete countable amenable semigroups were introduced.
Fast [5] presented an interesting generalization of the usual sequential limit which he called statistical conver-
gence for number sequences.
After studies about statistical convergence, Kostyrko, Macaj and Wilczyński defined I -convergence in a metric
space by using the notion of an ideal of the set of positive integers.(see [10]) Later, it was further studied
by Salát, Tripathy and Ziman ([12], [13]) and many others. I -convergence is a generalization of statistical
convergence.
We recall the concept of asymptotic and logarithmic density of a set A ⊂ N (see [19] pp. 71, 95-96). Let
A ⊂ N. Put dn (A) = 1

n ∑n
k=1 χA (k) and δn (A) = 1

pn
∑n

k=1
χA(k)

k for n ∈ N, where pn = ∑n
k=1

1
k . The numbers

d (A) = limsupn→∞ dn (A) and d (A) = liminfn→∞ dn (A) are called the lower and upper asymptotic density of
A, respectively. Similarly, the numbers δ (A) = liminfn→∞ δn (A) and δ (A) = limsupn→∞ δn (A) are called the
lower and upper logarithmic density of A, respectively. If d (A) = d (A) (δ (A) = δ (A)), then d (A) = d (A) is
called the asymptotic density of A (δ (A) = δ (A) is called the logarithmic density of A, respectively). It is well
known that for each A⊂ N, d (A)≤ δ (A)≤ δ (A)≤ d (A).
Denote by Id , Iδ the class of all A with d (A) = 0(δ (A) = 0, respectively). Then Id and Iδ are non-trivial
admissible ideals, Id-convergence concides with the statistical convergence and Iδ -convergence is said to be
logarithmic statistical convergence.
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Recently, Das, Savas and Ghosal [2] introduced new notions, namely I -statistical convergence and I -lacunary
statistical convergence by using ideal.
In [8], he extended the concepts of statistical limit superior and inferior (as introduced by Fridy and Orhan) to
I -limit superior and inferior and give some I -analogue of properties of statistical limit superior and inferior
for a sequence of real numbers.
The purpose of this study is to extend the notions of I -convergence, I -limit superior and I -limit inferior,
I -cluster point and I -limit point to functions defined on discrete countable amenable semigroups. Also, in
this paper, we make a new approach to the notions of [V,λ ]-summability and λ -statistical convergence by using
ideals and introduce new notions, namely, I -[V,λ ]-summability and I -λ -statistical convergence to functions
defined on discrete countable amenable semigroups. For the particular case when the amenable semigroup is
the additive positive integers, our definition and theorems yield the results of [8], [10], [14].

2. Definitions and Notations

Definition 2.1 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f ∈ w(G) is said to be convergent to s, for any Folner sequence {Sn} for G, if for
each ε > 0 there exists k0 ∈ N such that | f (g)− s|< ε for all m > k0 and g ∈ G\Sm.

Definition 2.2 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f ∈ w(G) is said to be a Cauchy sequence for any Folner sequence {Sn} for G, if for
each ε > 0 there exists k0 ∈ N such that | f (g)− f (h) |< ε for all m > k0 and g ∈ G\Sm.

Definition 2.3 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f ∈ w(G) is said to be strongly summable to s, for any Folner sequence {Sn} for G,
if

lim
n→∞

1
|Sn| ∑

g∈Sn

| f (g)− s|= 0,

where |Sn| denotes the cardinality of the set Sn.
The upper and lower Folner densities of a a set S⊂ G are defined by

δ (S) = lim
n→∞

sup
1
|Sn|
|{g ∈ Sn : g ∈ S}|

and
δ (S) = lim

n→∞
inf

1
|Sn|
|{g ∈ Sn : g ∈ S}|

respectively δ (S) = δ (S), then

δ (S) = lim
n→∞

1
|Sn|
|{g ∈ Sn : g ∈ S}|

is called Folner density of S. Take G = N, Sn = {0,1,2, ...,n−1} and S be the set of positive integers with
leading digit 1 in the decimal expansion. The set S has no Folner density with respect to the Folner sequence
{Sn}, since δ (S) = 1

9 , δ (S) = 5
9 . To facililate this idea we introduce the following notion: If f is function

such that f (g) satisfies property P for all g expect a set of Folner density zero, we say that f (g) satisfies P for
"almost all g", and abbreviate this by "a.a.g".
Definition 2.4 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f ∈ w(G) is said to be statistically convergent to s, for any Folner sequence {Sn} for
G, if for every ε > 0

lim
n→∞

1
|Sn|
|{g ∈ Sn : | f (g)− s|}|= 0.

The set of all statistically convergent functions will be denoted by S (G).

Definition 2.5 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f ∈ w(G) is said to be statistical Cauchy function for any Folner sequence {Sn} for
G, if for every ε > 0 and l ≥ 0, then there exists an m ∈ G\Sl such that

lim
n→∞

1
|Sn|
|{g ∈ Sn : | f (g)− f (m) | ≥ ε}|= 0.
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3. Main Results

Definition 3.1 Let G be a discrete countable amenable semigroup with identity in which both right and left
cancelation laws hold. f ∈ w(G) is said to be I -convergent to s for any Folner sequence {Sn} for G, if for
every ε > 0;

{g ∈ Sn : | f (g)− s| ≥ ε} ∈I ;

i.e., | f (g)− s|< ε a.a.g. The set of all I -convergent sequences will be denoted by I (G).
In this section, we study the concepts of I -limit superior and I -limit inferior for a Folner sequence, give the
relationship between them, and prove some basic properties of these concepts.
For any Folner sequence {Sn} for G and for f ∈ w(G) let B f denote the set,

B f := {b ∈ R : {g ∈ Sn : f (g)> b} /∈I }

and similarly,
A f := {a ∈ R : {g ∈ Sn : f (g)< a} /∈I }

We begin with a definition.
Definition 3.2 If f ∈ w(G), then the I -limit superior of f ∈ w(G), for any Folner sequence {Sn} for G, is
given by

I - limsup f :
{

supB f , if B f 6= /0,
−∞, if B f = /0,

Similarly, the I -limit inferior for any Folner sequence {Sn} for G is given by

I - liminf f :
{

infA f , if A f 6= /0,
∞, if A f = /0,

It is easy to see that for any f ∈ w(G) and for any Folner sequence {Sn} for G, I -liminf f ≤I − limsup f .
Definition 3.3 The function f ∈ w(G) is said to be I -bounded for any Folner sequence {Sn} for G, if there is
a number M such that

{g ∈ Sn : | f (g) | ≥M} ∈I .

Note that I -boundedness implies that I -limsup f and I -liminf f are finite. The following theorem can be
proved by a straightforward least upper bound argument.
Theorem 3.4 For any Folner sequence {Sn} for G, if µ = I -limsup f is finite, then for each ε > 0

{g ∈ Sn : f (g)> µ− ε} /∈I and {g ∈ Sn : f (g)> µ + ε} ∈I . (1.1)

Conversely, if (1.1) holds for every ε > 0 then µ = I − limsup f .

Proof. Let ε > 0. Since µ + ε > µ = sup
{

f : supB f /∈I
}

, the number µ + ε is not in
{

f : supB f /∈I
}

and {g ∈ Sn : f (g)> µ + ε} ∈ I . Further µ − ε < µ and there exists t ′ ∈ R such that µ − ε < t ′ < µ ,
t ′ ∈

{
f : supB f /∈I

}
. Hence {g ∈ Sn : f (g)> t ′} /∈I and also {g ∈ Sn : f (g)> µ− ε} /∈I . Consequently

(1.1) holds.
On the other hand, suppose that the number µ fulfils (1.1) for every ε > 0. Then, if ε > 0, we have µ +ε /∈{

f : supB f /∈I
}

and I − limsup f ≤ µ + ε . Since this holds for every ε > 0, we have I − limsup f ≤ µ .
The first condition in (1.1) implies I − limsup f ≥ µ − ε for each ε > 0, so we have I − limsup f ≥ µ .
Inequalities I − limsup f ≤ µ and I − limsup f ≥ µ imply µ = I − limsup f .

The dual statement for I -limsup f is as follows.
Theorem 3.5 For any Folner sequence {Sn} for G, if λ = I -liminf f is finite, then for each ε > 0

{g ∈ Sn : f (g)< λ + ε} /∈I and {g ∈ Sn : f (g)< λ − ε} ∈I . (2.1)

Conversely, if (2.1) holds for every ε > 0 then λ = I -liminf f .

Proof. The proof of this theorem is similar to proof of the theorem 1.

Theorem 3.6 For any Folner sequence {Sn} for G,

I − liminf f ≤I − limsup f .
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Proof. First consider the case in which I -limsup f = −∞. Hence we have B f = /0, so for every b in R,
{g ∈ Sn : f (g)> b}∈I which implies that {g ∈ Sn : f (g)≤ b}∈F (I ) so for every a in in R, {g ∈ Sn : f (g)≤ a} /∈
I . Hence I -liminf f =−∞.

The case in which I -limsup f = +∞ needs no proof, so we next assume that µ := I -limsup f is
finite and λ := I -liminf f . Given ε > 0 we show that µ + ε ∈ A f , so that λ ≤ µ + ε . By theorem 1,
{g ∈ Sn : f (g)> µ + ε} ∈I because µ = supB f . This implies

{
g ∈ Sn : f (g)≤ µ + ε

2

}
∈F (I ). Since

{
g ∈ Sn : f (g)≤ µ +

ε
2

}
⊆ {g ∈ Sn : f (g)< µ + ε}

and F (I ) is a filter on N,
{g ∈ Sn : f (g)< µ + ε} ∈F (I ) .

This implies
{g ∈ Sn : f (g)< µ + ε} /∈I .

Hence µ + ε ∈ A f . By the definition λ := I -liminf f , so we conclude that λ ≤ µ + ε ; and since ε is arbitrary
this proves that λ ≤ µ .

Theorem 3.7 For any Folner sequence {Sn} for G, I -bounded function f is I -convergent if and only if
I -limsup f = I -liminf f .

Proof. For any Folner sequence {Sn} for G, let λ := I -liminf f and µ := I − limsup f . First assume that
I -lim f = s and ε > 0. Then {g∈ Sn : | f (g)−s| ≥ ε} ∈I , so that {g ∈ Sn : f (g)> s+ ε} ∈I which implies
that µ ≤ s. We also have {g ∈ Sn : f (g)< s− ε} ∈I , which yields that s≤ λ . Therefore µ ≤ λ . Combining
this with T heorem 3 we conclude that µ = λ .

Now assume that for any Folner sequence {Sn} for G, I -limsup f = I -liminf f . If ε > 0, then (1.1) and
(2.1) imply that {

g ∈ Sn : f (g)> s+
ε
2

}
∈I

and {
g ∈ Sn : f (g)< s− ε

2

}
∈I .

Hence, for any Folner sequence {Sn} for G, I -lim f = s.

Definition 3.8 Let G be a discrete countable amenable semigroup with identity in which both right and left
cancelation laws hold. f ∈ w(G) is said to be I -Cauchy function for any Folner sequence {Sn} for G if, for
each ε > 0 and l ≥ 0, then there exists an m ∈ G/Sl such that

{g ∈ Sn : | f (g)− f (m) | ≥ ε} ∈I

i.e., | f (g)− f (m) |< ε a.a.g.

Theorem 3.9 The following statements are equivalent:
(i) f ∈ w(G) is I -convergent function
(ii) f ∈ w(G) is I -Cauchy function.

Proof. (i)⇒ (ii) To prove that (i) implies (ii) we assume that I -lim f (g) = s. Let ε > 0. Then | f (g)− s|< ε
2

a.a.g and, if g0 is chosen so that | f (g0)− s|< ε
2 a.a.g, then we have

| f (g)− f (g0)|< | f (g)− s|+ | f (g0)− s|< ε
2
+

ε
2
= ε

a.a.g. Hence f is I -Cauchy function.
(ii)⇒ (i) Next {g ∈ Sn : | f (g)− f (m) |< ε} ∈F (I ) holds for all ε > 0. Then the set

Cε = {g ∈ Sn : f (g) ∈ [ f (m)− ε, f (m)+ ε]} ∈F (I )

for all ε > 0. Denote Jε = [ f (m)− ε, f (m)+ ε].
Fix an ε > 0. Then Cε ∈F (I ) and C ε

2 ∈F (I ). Hence Cε ∩C ε
2 ∈F (I ). This implies

J = Jε ∩ J ε
2 6= /0,

{g ∈ Sn : f (g) ∈ J} ∈F (I ) ,
diam(J)≤ 1

2 diam(Jε) .

(diam(J) denotes the lenght of the interval J.) This way, by induction, we can construct the sequence of (closed)
intervals Jε = I0 ⊇ I1 ⊇ ...⊇ In ⊇ ... with the property diam(In)≤ 1

2 diam(In−1)(n = 2,3, ...). Then there exists
a s ∈ ⋂

n∈N
In and it is routine work to verify I -lim f (g) = s.
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4. I -Limit Points and I -Cluster points

In [10] Koystrkro introduced the concepts of I limit point and I cluster point. In this section we extend
these concepts of I limit point and I cluster point to the functions defined on discrete countable amenable
semigroups. If f ∈ w(G) and H ⊂G, we write R f (G) to denote the range of f ∈ w(G). If R f (H) is a subset of
R f (G) and limn→∞

|H∩Sn|
|Sn| = 0 then R f (H) is called a subset of Folner density zero for any Folner sequence

{Sn} for G, or a thin subset. On the other hand R f (H) is a nonthin subset of R f (G) if limn→∞
|H∩Sn|
|Sn| 6= 0.

Definition 4.1 The number s is a I limit point for an f ∈ w(G), for any Folner sequence {Sn} for G, provided
that there is nonthin subset of R f (G) that f I -converges to s in it.

Definition 4.2 The number c is a I cluster point for an f ∈ w(G), for any Folner sequence {Sn} for G,
provided that for each ε > 0 the set {g ∈ Sn : | f (g)− c|< ε} /∈I .

For f ∈ w(G), let L f (G), I
(
Λ f (G)

)
, I

(
Γ f (G)

)
denote the sets of all ordinary limit points, I limit points

and I cluster points of f , respectively. It is clear that I
(
Λ f (G)

)
⊆I

(
Γ f (G)

)
⊆ L f (G).

Theorem 4.3 Let f ∈ w(G) be I -bounded for any Folner sequence {Sn} for G and let I
(
Γ f (G)

)
be the set

of all I cluster points of f , for any Folner sequence {Sn} for G. Then

I - limsup f = maxI
(
Γ f (G)

)
.

Proof. Put I -limsup f = µ . Suppose µ ′ > µ . First we show that µ ′ is not in I
(
Γ f (G)

)
. We have

µ = supS, S = {t : {g ∈ Sn : f (g)> t} /∈I } . (7.1)

Choose ε > 0 such that µ < µ ′− ε < µ ′. Then µ ′− ε /∈ S and
{

g ∈ Sn : f (g)> µ ′− ε
}
∈I .

It follows from the definition of I cluster point for an f ∈ w(G) that µ ′ /∈I
(
Γ f (G)

)
.

We show µ ∈I
(
Γ f (G)

)
. Let η > 0. It follows from (7.1) that there is a t0 ∈R such that µ−η < t0 ≤ µ ,

t0 ∈ S. Hence
{g ∈ Sn : f (g)> t0} /∈I . (7.2)

Simultaneously, since µ + η
2 /∈ S, we have

{
g ∈ Sn : f (g)> µ +

η
2

}
∈I . (7.2′)

It follows from (7.2) and (7.2′) {g ∈ Sn : f (g) ∈ (µ−η ,µ +η)} /∈I and µ ∈I
(
Γ f (G)

)
.

Remark 4.4 It can be shown for a I -bounded sequence {Sn} for G the equality

I - liminf f = minI
(
Γ f (G)

)
.

Example 4.5 Take G = Z, H = {0,±1,±3,±5,±7, ...}, Sn = [−n,n] and define f as follows:

f (g) =
{

0, if g ∈ H,
1, if g /∈ G\H.

Then L f (G) = {0,1} and I
(
Λ f (G)

)
= {0}.

5. Relationship between Id and Iδ -Convergence and Cesàro summability

Recall that the Folner sequence {Sn} for G is said to be strongly (C,1)-summable to s if and only if
limn→∞

1
|Sn| ∑

g∈Sn

| f (g)− s|= 0.

If the Folner sequence {Sn} for G is bounded, then Id-lim f = s implies (C,1)-lim f (g) = s. The converse
is obviously not true. (e.g. {Sn}= {0,1,0,1, ...}). However f ∈ m(G) is bounded, the Id-convergence to
some number is equivalent to strongly Cesàro-summability to the same number. But, for Iδ -convergence the
situation is different.
Proposition 5.1 Let f ∈ w(G) be I -bounded for any Folner sequence {Sn} for G such that Iδ -lim f = 0 and
(C,1)-lim f does not exist.
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Proof. Put S =
∞⋃

n=2
Sn, where Sn =

{
nn2

+1,nn2
+2, ...,nn2+1

}
for n ∈ N, n ≥ 2. If S (k) = dk (S) for k ∈ N,

then

d (S)≥ lim
n→∞

sup
S
(

nn2+1
)

nn2+1
≥ lim

n→∞
sup

nn2+1−nn2

nn2+1
= 1.

Hence d (S) = 1. Simultaneously
n
∑

k=1

1
k = lnn+ γ +O

( 1
n

)
, where γ is an Euler constant, we have ∑

j∈Sn

1
j =

lnn+O
(

1
nn2

)
for all n ∈ N, n≥ 2. From this by a simple calculation we get

δ (S)≤ lim
n→∞

n
∑

k=1
lnk+O(1)

nn2+1

∑
j=1

1
j

≤ lim
n→∞

n lnn+O(1)
(n2 +1) lnn+O(1)

= 0.

So we have δ (S) = 0 and consequently d (S) = 0. So d (S) does not exist.
Define f as follows:

f (g) =
{

0, if g ∈ G\S,
1, if g ∈ S.

Since δ (S) = 0 we have Iδ -lim f = 0. But (C,1)-lim f (g) does not exist.

6. Conclusion

The convergence of folner sequences on amenable semigroups has been recently studied by several authors. In
this study, we extend concepts of statistical limit superior and inferior (as introduced by Nuray and Rhoades) to
I -limit superior and inferior and give some I -analogue of properties of statistical limit superior and inferior
for folner seqeunces on amenable semigroup. We investigate some properties of the new concepts. So, we have
extended some well-known results.
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Ömer KİŞİ *1, Erhan GÜLER †2

1,2Bartın University, Faculty of Sciences, Department of Mathematics, 74100 Bartın, TURKEY

Keywords:
Invariant convergence,
double sequence,
lacunary sequence,
I -convergence.

Abstract: In this paper, the concept of lacunary uniform density of any subset
A of the set N×N is defined. Associate with this, the concept of lacunary I2-
invariant convergence for double Folner sequences

{
Sk j
}

for G was given. Also,
we examine relationships between this new type convergence concept and the
concepts of lacunary invariant convergence and p-strongly lacunary invariant con-
vergence of double Folner sequences. Finally, introducing lacunary I ∗2 -invariant
convergence and lacunary I2-invariant Cauchy concepts for double Folner se-
quences, we give the relationships among these concepts and relationships with
lacunary I2-invariant convergence concept.

1. Introduction

The idea of the statistical convergence was given by Zygmund [36] in the first edition of his monograph
published in Warsaw in 1935. The concept of statistical convergence was introduced by Fast [31] and then
reintroduced by Schoenberg [29] independently. Over the years, statistical convergence has been developed in
([7], [30], [32], [33], [34], [13]) and turned out very useful to resolve many convergence problems arising in
Analysis.
A number sequence x=(xk) is said to be statistically convergent to the number l if for every ε > 0, limn→∞

1
n |{k≤

n : |xk− l| ≥ ε}|= 0.In this case we write st− limk→∞ xk = l. Statistical convergence is a natural generalization
of ordinary convergence. If limxk = l, then st− limxk = l. The converse does not hold in general.
Mursaleen and Edely [13] extended the above idea from single to double sequences of scalars and established
relations between statistical convergence and strongly Cesàro summable double sequences.
Lacunary statistical convergence was defined by Fridy and Orhan [35]. Çakan and Altay [34] presented
multidimensional analogues of the results presented by Fridy and Orhan [35].
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr−kr−1→
∞ as r→ ∞. Throughout this paper the intervals determined by θ will be denoted by Ir = (kr−1,kr].
A sequence x = (xk) is said to be lacunary statistically convergent to the number L if for every ε > 0,
limr→∞

1
hr
|{k ∈ Ir : |xk−L| ≥ ε}|= 0. In this case we write Sθ − limxk = L or xk→ L(Sθ ).

The idea of I -convergence was introduced by Kostyrko et al. [6] as a generalization of statistical convergence
which is based on the structure of the ideal I of subset of the set of natural numbers. Das et al. [25], [8]
introduced the concept of I -convergence of double sequences in a metric space and studied some properties of
this convergence.
The notion of lacunary ideal convergence of real sequences was introduced in [20]. Das et al. [24] introduced
new notions, namely I -statistical convergence and I -lacunary statistical convergence by using ideal. Belen et
al. [1] introduced the notion of ideal statistical convergence of double sequences, which is a new generelization
of the notions of statistical convergence and usual convergence. Kumar et al. [39] introduced I -lacunary
statistical convergence of double sequences. More investigation and applications on this notion can be found in
[21].

*Presented by Ömer KİŞİ by okisi@bartin.edu.tr
†eguler@bartin.edu.tr
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Several authors have studied invariant convergent sequences (see, [11],[12], [22], [23], [38]). Savaş and Nuray
[26] introduced the concepts of σ -statistically convergence and lacunary σ -statistically convergence and gave
some inclusion relations. Pancaroğlu and Nuray [40] defined the concept lacunary invariant summability and
p-strongly lacunary invariant summability. The concept of lacunary strongly σ -convergence was introduced by
Savaş [22].
In [16], the concepts of σ -uniform density of subsets A of the set N of positive integers and corresponding
Iσ -convergence were introduced. Also, inclusion relations between Iσ -convergence and invariant convergence
also Iσ -convergence and [Vσ ]p were given [16]. Recently, the concept of lanunary σ -uniform density of the
set A⊂ N, lacunary Iσ -convergence, lacunary I ∗σ -convergence, lacunary Iσ -Cauchy, lacunary I ∗σ -Cauchy
sequences of real numbers were defined by Ulusu and Nuray [14] and similar concepts can be seen in [16].
Ulusu et al. [15] defined the lacunary I2-invariant convergence for double sequence.
Let σ be a one-to-one mapping of the set of positive integers into itself such that σm (n) =

(
σm−1 (n)

)
,

m = 1,2,3, .... A continuous linear functional Φ on l∞, the space of real bounded sequences, is said to be an
invariant mean or a σ mean, if and only if,
(1) Φ(x)≥ 0, for all sequences x = (xn) with xn ≥ 0 for all n;
(2) Φ(e) = 1, where e = (1,1,1, ...) ;
(3) Φ

(
xσ(n)

)
= Φ(x) for all x ∈ l∞.

The mapping Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers n and m, where
σm (n) denotes the mth iterate of the mapping σ at n. Thus, Φ extends the limit functional on c, the space of
convergent sequences, in the sense that Φ(x) = limx, for all x∈ c. In case σ is translation mapping σ (n) = n+1,
the σ mean is often called a Banach limit and Vσ , the set of bounded sequences all of whose invariant means
are equal, is the set of almost convergent sequences.
A sequence x=(xk) is σ -statistically convergent to L if for every ε > 0, limm→∞

1
m

∣∣∣
{

k ≤ m :
∣∣∣xσk(n)−L

∣∣∣≥ ε
}∣∣∣=

0, uniformly in n.
In this case, we write Sσ − limx = L or xk→ L(Sσ ).
Nuray et al. [16] introduced the concepts of σ -uniform density and Iσ -convergence.
A sequence x = (xk) is Iσ convergent to the number L if for every ε > 0, Aε = {k : |xk−L| ≥ ε} ∈Iσ , that is
V (Aε) = 0. In this case, we write Iσ − limx = L.
Let G be a discrete countable amenable semigroup with identity in which both right and left cancelation laws
hold, and w(G) and m(G) denote the spaces of all real valued functions and all bounded real functions f on
G respectively. m(G) is a Banach space with the supremum norm ‖ f‖∞ = sup{| f (g)| : g ∈ G}. Nomika [28]
showed that, if G is countable amenable group, there exists a sequence {Sn} of finite subsets of G such that (i)
G = ∪∞

i=1Sn, (ii) Sn ⊂ Sn+1, n = 1,2,3, ..., (iii) limn→∞
|Sng−∩Sn|
|Sn| = 1, limn→∞

|gSn−∩Sn|
|Sn| = 1 for all g ∈G. Here

|A| denotes the number of elements in the finite set A. Any sequence of finite subsets of G satisfying (i), (ii)
and (iii) is called a Folner sequence for G.
The sequence Sn = {0,1,2, ...,n−1} is a familiar Folner sequence giving rise to the classical Cesàro method of
summability.
The concept of summability in amenable semigroups was introduced in [9], [10]. In [4], Douglas extended the
notion of arithmetic mean to amenable semigroups and obtained a characterization for almost convergence in
amenable semigroups.
In [27], the notions of convergence and statistical convergence, statistical limit point and statistical cluster point
to functions on discrete countable amenable semigroups were introduced.
Let G be a discrete countable amenable semigroup with identity in which both right and left cancelation
laws hold. f ∈ w(G) is said to be I -convergent to s for any Folner sequence {Sn} for G, if for every ε > 0;
{g ∈ Sn : | f (g)− s| ≥ ε} ∈I ; i.e., | f (g)−s|< ε a.a.g. The set of all I -convergent sequences will be denoted
by I (G).
Let G be a discrete countable amenable semigroup with identity in which both right and left cancelation laws
hold. The function f ∈ w(G) is said to be I -invariant convergent to s for any Folner sequence {Sn} for G if
for every ε > 0;

{g ∈ Sn : | f (g)− s| ≥ ε}
belongs to Iσ ; i.e., V (Aε) = 0. The set of all I -invariant convergent sequences will be denoted by Iσ (G).
Let G be a discrete countable amenable semigroup with identity in which both right and left cancelation laws
hold. The function f ∈ w(G) is said to be invariant convergent to s for any Folner sequence {Sn} for G if

lim
n→∞

1
|Sn| ∑

1≤k≤|Sn|&g∈Sn

f
(

gσ k(m)

)
= s, uniformly in m.

In this case, we write f → s(Vσ ) .
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A double sequence x = (xmn) of real numbers is said to be convergent to L ∈ R in Pringsheim’s sense (shortly,
p-convergent to L ∈ R), if for any ε > 0, there exists Nε ∈ N such that |xmn−L|< ε, whenever m,n > Nε . In
this case, we write

lim
m,n→∞

xmn = L.

We recall that a subset K of N×N is said to have natural density d(K) if

d(K) = lim
m,n→∞

K(m,n)
m.n

,

where K(m,n) = |{( j,k) ∈ N×N : j ≤ m,k ≤ n}|.
A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i} belong to I2 for each i ∈N.
It is evident that a strongly admissible ideal is admissible also.
Throughout the paper we take I2 as a strongly admissible ideal in N×N.

I 0
2 =

{
A⊂ 2N×N : (∃m(A) ∈ N)(i, j ≥ m(A) =⇒ (i, j) /∈ A)

}
.

Then I 0
2 is a strongly admissible ideal if and only if I 0

2 ⊂I2.
Let (X ,ρ) be a metric space A double sequence x = (xmn) in X is said to be I2-convergent to L ∈ X , if for any
ε > 0 we have A

A(ε) = {(m,n) ∈ N×N : ρ(xmn,L)≥ ε} ∈I2.

In this case, we say that x is I2-convergent and we write

I2− lim
m,n→∞

xmn = L.

An admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint
sets {E1,E2, ...} belonging to I2, there exists a countable family of sets {F1,F2, ...} such that E j∆Fj ∈I 0

2 , i.e.,

E j∆Fj is included in the finite union of rows and columns in N×N for each j ∈ N and F =
∞⋃

j=1
Fj ∈I2 (hence

Fj ∈I2 for each j ∈ N).
A double sequence θ = {(kr, ju)} is called double lacunary sequence if there exist two increasing sequences of
integers (kr) and ( ju) such that

k0 = 0, hr = kr− kr−1→ ∞ and j0 = 0, hu = ju− ju−1→ ∞, r,u→ ∞.

We will use the following notation kus := kuls, hus := huhs and θus is determined by

Ius := {(k, j) : kr−1 < k ≤ kr and ju−1 < l ≤ ju} ,

qu :=
kr

kr−1
, qu :=

ju
ju−1

Throughout the paper, by θ = {(kr, ju)} we will denote a double lacunary sequence of positive real numbers,
respectively, unless otherwise stated.

2. Main results

Definition 2.1 f ∈ w(G) is said to be lacunary invariant convergent to s, for any double Folner sequence
{

Sk j
}

for G, if

lim
r,u→∞

1
hru

∑
k, j∈Iru&g∈Sk j

f
(

gσ k(m),σ j(n)

)
= s,

uniformly in n,m and it is denoted by Sk j→ s
(
V σθ

2 (G)
)
.

Definition 2.2 Let θ = {(kr, ju)} be a double lacunary sequence, A⊂ N×N and

pru := min
m,n

∣∣∣
{

A∩
{(

σ k (m) ,σ j (n) : (k, j)
)
∈ Iru

}}∣∣∣

and
Pru := max

m,n

∣∣∣
{

A∩
{(

σ k (m) ,σ j (n) : (k, j)
)
∈ Iru

}}∣∣∣

If the following limit exist

V θ
2 (A) := lim

r,u→∞

pru

Pru
, V θ

2 (A) := lim
r,u→∞

Pru

pru
,
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then they are called a lower lacunary σ -uniform density and an upper lacunary σ -uniform density of the set A,
respectively. If V θ

2 (A) =V θ
2 (A), then V θ

2 (A) =V θ
2 (A) =V θ

2 (A) is called the lacunary σ -uniform density of A.
Denote by I σθ

2 the class of all A⊆ N×N with V θ
2 (A) = 0.

Throughout the paper we take I σθ
2 as a strongly admissible ideal in N×N.

Definition 2.3 The function f ∈ w(G) is said to be I2-bounded for any Folner sequence
{

Sk, j
}

for G, if there
is a number M such that

{(k, j) ∈ Iru&g ∈ Sk j : | f (g) | ≥M} ∈I2.

Definition 2.4 f ∈ w(G) is said to be lacunary I2-invariant convergent, or I σθ
2 -convergent to s, for any

double Folner sequence
{

Sk j
}

for G, if for every ε > 0, the set

A(ε) =
{
(k, j) ∈ Iru&g ∈ Sk j :

∣∣∣ f
(

gσk(m),σ j(n)

)
− s
∣∣∣≥ ε

}

belongs to I σθ
2 ; i.e., V θ

2 A(ε) = 0, uniformly in m,n. In this case, we write

I σθ
2 - lim f

(
gσ k(m),σ j(n)

)
= s or f

(
gσk(m),σ j(n)

)
→ s

(
I σθ

2

)
, where g ∈ Sk j.

Theorem 2.5 Suppose that
{

Sk j
}

is a bounded double Folner sequence. If
{

Sk j
}

is lacunary I2-invariant
convergent to s, then

{
Sk j
}

is lacunary invariant convergent to s.

Proof. Let θ = {(kr, ju)} be a double lacunary sequence, m,n ∈ N be arbitrary, ε > 0. Now we calculate

t (k, j,r,u) :=

∣∣∣∣∣∣
1

hru
∑

k, j∈Iru&g∈Sk j

f
(

gσ k(m),σ j(n)

)
− s

∣∣∣∣∣∣
.

We have
t (k, j,r,u)≤ t(1) (k, j,r,u)+ t(2) (k, j,r,u)

where
t(1)(m,n, f ) :=

1
hru

∑
k, j∈Iru&g∈Sk j∣∣∣ f
(

gσ j(m)

)
−s
∣∣∣≥ε

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

and
t(2)(m,n,x) =

1
hru

∑
k, j∈Iru&g∈Sk j∣∣∣ f
(

gσ j(m)

)
−s
∣∣∣<ε

∣∣∣ f
(

gσk(m),σ j(n)

)
− s
∣∣∣ .

Therefore, we have t(2)(m,n, f ) < ε , for every m,n = 1,2, .... The boundedness of double folner sequence is
implies that there exist M > 0 such that

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣≤M, ( j = 1,2, ...;m = 1,2...),

then this implies that

t(1)(m,n, f ) ≤ M
hru

∣∣∣
{

k, j ∈ Iru&g ∈ Sk j :
∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣≥ ε

}∣∣∣

≤M.
maxm

∣∣∣
{

1< j<|Sn|,: fk
(∣∣∣ f
(

gσk(m),σ j(n)

)
−s
∣∣∣
)
≥ε
}∣∣∣

hru

= M. Sru
hru

.

Hence,
{

Sk j
}

is lacunary invariant summable to s.

But converse of the theorem does not hold. For example,
{

Sk j
}

is the double sequence defined by the following;

Sk j :=





1,
if kr−1 < k < kr−1 +

[√
hr
]

,

jr−1 < j < jr−1 +
[√

hr

]
,

and k+ j is an even integer.

0,
if kr−1 < k < kr−1 +

[√
hr
]

,

jr−1 < j < jr−1 +
[√

hr

]
,

and k+ j is an old integer.

where σ (m) = m+1 and σ (n) = n+1, this folner sequence is lacunary invariant convergent to 1
2 , but it is not

lacunary I2-invariant convergent.
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Definition 2.6 f ∈ w(G) is said to be strongly lacunary invariant convergent to s, for any double Folner
sequence

{
Sk j
}

for G, if

lim
r,u→∞

1
hru

∑
k, j∈Iru&g∈Sk j

∣∣∣ f
(

gσk(m),σ j(n)

)
− s
∣∣∣= 0,

uniformly in n,m and it is denoted by Sk j→ s
([

V σθ
2 (G)

])
.

Definition 2.7 f ∈ w(G) is said to be p-strongly lacunary invariant convergent (0 < p < ∞) to s, for any double
Folner sequence

{
Sk j
}

for G, if

lim
r,u→∞

1
hru

∑
k, j∈Iru&g∈Sk j

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

p
= 0,

uniformly in n,m and it is denoted by Sk j→ s
([

V σθ
2 (G)

]
p

)
.

Theorem 2.8 If a double sequence
{

Sk j
}

for G is p-strongly lacunary invariant convergent to s, then
{

Sk j
}

is
lacunary I2-invariant convergent to s.

Proof. Let Sk j → s
([

V σθ
2 (G)

]
p

)
, 0 < p < ∞. Suppose ε > 0. Then for every double lacunary sequence

θ = {(kr, ju)} and for every m,n ∈ N, we have

∑
k, j∈Iru&g∈Sk j

∣∣∣ f
(

gσk(m),σ j(n)

)
− s
∣∣∣

p

≥ ∑
k, j∈Iru&g∈Sk j∣∣∣ f

(
gσk(m),σ j(n)

)
−s
∣∣∣≥ε

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

≥ ε p.
∣∣∣
{

k, j ∈ Iru&g ∈ Sk j :
∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣≥ ε

}∣∣∣

≥ ε p.maxm,n

∣∣∣
{

k, j ∈ Iru&g ∈ Sk j :
∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣≥ ε

}∣∣∣

and
1

hru
∑

k, j∈Iru&g∈Sk j

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

p

≥ ε p.
maxm,n

∣∣∣
{

k, j∈Iru&g∈Sk j :
∣∣∣ f
(

gσk(m),σ j(n)

)
−s
∣∣∣≥ε

}∣∣∣
hru

= ε p. Sru
hru

This implies limr,u→∞
Sru
hru

= 0 and so
{

Sk j
}

is I σθ
2 -convergent to s.

Theorem 2.9 If a double sequence
{

Sk j
}
∈ l2

∞ and
{

Sk j
}

is lacunary I2-invariant convergent to s, then
{

Sk j
}

is p-strongly lacunary invariant convergent to s (0 < p < ∞).

Proof. Now suppose that
{

Sk j
}
∈ l2

∞ and
{

Sk j
}

is lacunary I2-invariant convergent to s. Let 0 < p < ∞ and
ε > 0. By assumption, we have V θ

2 (Aε) = 0. The boundedness of
{

Sk j
}

implies that there exist M > 0 such
that ∣∣∣ f

(
gσ k(m),σ j(n)

)
− s
∣∣∣≤M, (k, j) ∈ Iru;m,n = 1,2, ....
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Observe that for every m,n ∈ N we have that

1
hru

∑
k, j∈Iru&g∈Sk j

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

p

= 1
hru

∑
k, j∈Iru&g∈Sk j&

∣∣∣ f
(

gσ j(m)

)
−s
∣∣∣≥ε

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

p

+ 1
hru

∑
k, j∈Iru&g∈Sk j&

∣∣∣ f
(

gσ j(m)

)
−s
∣∣∣<ε

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣

p

≤M.
maxm

∣∣∣
{

1≤ j≤|Sn|:
∣∣∣ f
(

gσk(m),σ j(n)

)
−s
∣∣∣≥ε

}∣∣∣
|Sn| + ε p

≤M. Sru
hru

+ ε p.

Hence, we obtain

lim
r,u→∞

1
hru

∑
k, j∈Iru&g∈Sk j

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣= 0, uniformly in m,n.

This completesnthe proof of the therorem.

Definition 2.10 A double Folner sequence
{

Sk j
}

is lacunary I ∗2 -invariant convergent or I σθ
2∗ -convergent to s

if and only if there exists a set M2 ∈F
(
I σθ

2

)(
H = N×N \ M2 ∈I σθ

2

)
such that

lim
k, j→∞

Sk j = s, (k, j) ∈M2.

In this case, we write I σθ
2∗ -limk, j→∞ Sk j = s or Sk j→ s

(
I σθ

2∗
)
.

Theorem 2.11 If a double sequence
{

Sk j
}

is lacunary I ∗2 -invariant convergent to s, then this sequence is
lacunary I2-invariant convergent to s.

Proof. Since I σθ
2∗ -limk, j→∞ Sk j = s there exists a set M2 ∈F

(
I σθ

2

)
(H = N×N \ M2 ∈I σθ

2 ) such that

lim
k, j→∞

Sk j = s, (k, j) ∈M2.

Given ε > 0. By (1), there exists k0, j0 ∈ N such that
∣∣∣ f
(

gσk(m),σ j(n)

)
− s
∣∣∣ < ε , for all (k, j) ∈ M2 and

k > k0, j > j0. Hence for every ε > 0, we have

T (ε) =
{
(k, j) ∈ N×N :

∣∣∣ f
(

gσ k(m),σ j(n)

)
− s
∣∣∣> ε

}

⊂ H ∪ (M2∩ (({1,2, ...,(k0−1)}×N)∪ (N×{1,2, ...,(k0−1)}))) .

Since I σθ
2 ⊂ 2N×N is strongly admissible ideal,

H ∪ (M2∩ (({1,2, ...,(k0−1)}×N)∪ (N×{1,2, ...,(k0−1)}))) ∈I σθ
2 ,

so we have T (ε) ∈I σθ
2 that is V θ

2 (T (ε)) = 0. Hence, I σθ
2 -limk, j→∞ Sk j = s.

The converse of the Theorem 4 holds if I σθ
2 has property (AP2).

Theorem 2.12 Let I σθ
2 has property (AP2). If a double sequence

{
Sk j
}

is lacunary I2-invariant convergent
to s, then this sequence is lacunary I ∗2 -invariant convergent to s.
Finally, we define the concepts of lacunary I2-invariant Cauchy and lacunary I ∗2 -invariant Cauchy sequences.
Definition 2.13 A double Folner sequence

{
Sk j
}

is said to be lacunary I2-invariant Cauchy sequence or
I σθ

2 -Cauchy sequence, if for every ε > 0, there exist numbers s = s(ε), t = t (ε) ∈ N such that

A(ε) =
{
(k, j) ,(s, t) ∈ Iru :

∣∣ f
(
Sk j
)
− f (Sst)

∣∣≥ ε
}
∈I σθ

2 ,

that is, V θ
2 (A(ε)) = 0.
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Definition 2.14 A double Folner sequence
{

Sk j
}

is said to be lacunary I ∗2 -invariant Cauchy sequence or
I σθ

2∗ -Cauchy sequence, if there exists a set M2 ∈F
(
I σθ

2

)
,
(
H = N×N \ M2 ∈I σθ

2

)
such that for every

(k, j) ,(s, t) ∈M2
lim

k, j,s,t→∞

∣∣ f
(
Sk j
)
− f (Sst)

∣∣= 0.

The proof of the theorems are similar to the proof of Theorems in ([17], [18], [19]) so we omit them
Theorem 2.15 If a double Folner sequence

{
Sk j
}

is I σθ
2 -convergent, then

{
Sk j
}

is I σθ
2 -Cauchy sequence.

Theorem 2.16 If a double Folner sequence
{

Sk j
}

is I σθ
2∗ -Cauchy sequence, then I σθ

2 -Cauchy sequence.

Theorem 2.17 Let I σθ
2 has property (AP2). If a double sequence

{
Sk j
}

is I σθ
2 -Cauchy sequence, then

{
Sk j
}

is I σθ
2∗ -Cauchy sequence.
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[24] Das P., Savaş E., Ghosal S.K., On generalizations of certain summability methods using ideals, Appl.
Math. Lett. 24 (2011) 1509–1514.

117



[25] Das P., Kostyrko P., Wilczyński W., Malik P., I and I ∗-convergence of double sequences, Math. Slovaca,
58 (5) (2008) 605–620.
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Abstract: In this paper, we employ the tan( F(ξ )
2 )-expansion method to explore

the solution structure of (3+1)-dimensional potential-YTSF equation. We obtain
new solitary wave solutions in form of trigonometric function, hyperbolic function,
exponential function and rational function solutions. We also plot two- and three-
dimensional graphics for some of the obtained solutions. In this study, all the
computations are performed with the aid of Mathematica 9 and consequently a
comprehensive conclusion is submitted.

1. Introduction

In the field of nonlinear science such as biology, chemistry physics and mathematical physics, etc. nonlinear
partial differential equations (NLPDEs) are used frequently to explain models like fluid dynamics, plasma
physics, optic fibers, chemical kinematics, etc. Owing to the significant role of NLPDEs in many phenomena,
the investigation of solutions of these equations has become more attractive for researchers. In order to
obtain solutions to the equations in this category, various methods are developed and applied such as (G

′
/G)-

expansion method [1], the extended (G
′
/G) method [2], generalized (G

′
/G) method [3], Kudryashov method

[4], tanh function method [5], jacobi elliptic function method [6] and many other analytical methods are used in
[7–14, 16].
In this study, we apply the tan( F(ξ )

2 )-expansion method [15] to the (3+1)-dimensional potential-YTSF equation,
given by [17]:

−4uxt +uxxxz +4uxuxz +2uxxuz +3uyy = 0. (1.1)

Several of approaches have been formulated by many researchers to investigate the solution structures of
equation (1.1), such as exp-function method [18], the kudryashov method [4], the extended (G

′
/G)-expansion

method [19], the homoclinic test technique [20].
The remaining part of this study if formed as follows: the description of tan(.)-expansion method is given in
section 2, the application of this method to the (3+1)-dimensional potential-YTSF equation is presented in
section 3, in section 4 two- and three-dimensional plots of some obtained solutions are shown and finally the
conclusion is presented in section 5.

*ozlem.isik@klu.edu.tr
†hbulut@firat.edu.tr
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2. Description of the Method

Consider the following NLPDE

H(u, u2, ux, uxx, ut , utt , uxt , . . .) = 0, (2.1)

where H is a function of u(x, t) and its partial derivatives in which the highest order derivatives and the nonlinear
terms are connected. Performing the travelling wave transformation u(x, t) = U(ξ ), ξ = x− kt, Eq. (2.1)
reduces to the following ordinary differential equation (ODE):

Q(U
′
, U

′′
, U

′′
, . . .) = 0, (2.2)

where Q is a function in U(ξ ) and its derivatives with respect to ξ and k is the wave velocity.
The solution of the Eq. (2.2) is given as follows:

U(ξ ) =
m

∑
i=0

Ai

(
p+ tan

(F(ξ )
2

))i
+

m

∑
i=1

Bi

(
p+ tan

(F(ξ )
2

))−i
, Am 6= 0,Bm 6= 0, (2.3)

where m is a positive integer that can be determined by applying the balancing technique to the highest order
derivative and the highest nonlinear term in Eq. (2.2). The coefficients Ai(0 ≤ i ≤ m), Bi(1 ≤ i ≤ m) are
constants to be determined and F = F(ξ ) supplies the first order nonlinear ordinary differential equation
(NODE), given by [15]:

F
′
(ξ ) = a sin(F(ξ ))+b cos(F(ξ ))+ c. (2.4)

Substituting Eq. (2.3), it’s derivative along with Eq. (2.4) into Eq. (2.1) and simplifying, produces algebraic

system of equations for tan
(

F(ξ )
2

)i
, cot

(
F(ξ )

2

)i
. Then, all the coefficients of tan

(
F(ξ )

2

)i
, cot

(
F(ξ )

2

)i
have to

vanish. After collecting this separated algebraic system equations, we calculate k, p, A0, A1, B1, . . . , Am, Bm.
For the solutions of Eq. (2.4), see [15].

3. Implementation of the Method

Consider the (3+1)-dimensional potential-YTSF equation given in Eq. (1.1), section (1).

Using the travelling wave transformation u = U(ξ ), ξ = x+ y+ z− kt, Eq. (1.1) reduces to the following
NODE:

(4k+3)U
′
+3(U

′
)2 +U

′′′
= 0, (3.1)

by applying the balancing technique on Eq. (1.1) by considering the highest derivative U
′′′

and the highest
power nonlinear term (U

′
)2, we obtain m = 1.

Using m = 1 together with Eq. (2.3), we choose the solution to Eq. (1.1) as follows:

U(ξ ) = A0 +A1

(
p+ tan

(F(ξ )
2

))
+B1

(
p+ tan

(F(ξ )
2

))−1
, (3.2)

substituting Eq. (3.2) into Eq. (3.1) and simplifying together with Eq. (2.4), we obtain a system of algebraic
equations in terms of A1, B1, p, k, a, b, c. We solve the system of the algebraic equation for the coefficients
A1, B1, p, k, a, b, c, and we obtain a different cases of solution to the coefficients. We obtain a number of
families of soliton solutions under each case by considering solutions to Eq. (2.4) given by [15].

Case-1: A1 = 0, B1 = b+ c−2ap−bp2 + cp2, k = 1
4 (−3−a2−b2 + c2),

has the following families of solutions:

Solution-1: a2 +b2− c2 < 0 and b− c 6= 0

u(x,y,z, t) =− (b− c)(2ap+b(p2−1)− c(1+ p2))

a+ p(b− c)−
√

c2−a2−b2 tan[β1]
, (3.3)

where β1 =
1
8

√
c2−a2−b2 ((3+a2 +b2− c2)t +4(x+ y+ z))

Solution-2: a2 +b2− c2 > 0 b 6= 0 and c = 0
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u(x,y,z, t) =
b(b−2ap−bp2)

a+bp+
√

a2 + p2 tanh
[

1
8

√
a2 +b2((3+a2 +b2)t +4(x+ y+ z))

] , (3.4)

Solution-3: a2 +b2− c2 < 0, c 6= 0 and b = 0

u(x,y,z, t) =
c(c−2ap+ cp2)

cp−a+
√

c2−a2 tan
[

1
8

√
c2−a2((3+a2− c2)t +4(x+ y+ z))

] , (3.5)

Solution-4: a2 +b2 = c2

u(x,y,z, t) =
b−2ap−bp2 +

√
a2 +b2 (1+ p2)

p−
(b+
√

a2+b2)

(
2+a

(
3t
4 +x+y+z

))

a2
(

3t
4 +x+y+z

)
, (3.6)

Solution-5: c = a

u(x,y,z, t) =
b+a(p−1)2−bp2

1−(a+b)e
1
4 b((3+b2)t+4(x+y+z))

−1+(a−b)e
1
4 b((3+b2)t+4(x+y+z))

+ p
, (3.7)

Solution-6: a = c

u(x,y,z, t) =− (p−1)(b+ c+bp− cp)

1+(b+c)e
1
4 b((3+b2)t+4(x+y+z))

−1+(b−c)e
1
4 b((3+b2)t+4(x+y+z))

+ p
, (3.8)

Solution-7: c =−a

u(x,y,z, t) =
a−b+ p(a+b)

−1+ 2b

(1+p)

(
a+b−e

1
4 b((3+b2)t+4(x+y+z))

) , (3.9)

Solution-8: b =−c

u(x,y,z, t) = 2p
(

c− a

p+(a− cp)e
1
4 a((3+a2)t+4(x+y+z))

)
, (3.10)

Solution-9: b = 0 and a = c

u(x,y,z, t) =
c2(p−1)2(3t +4(x+ y+ z))

c(p−1)(3t +4(x+ y+ z))−8
, (3.11)

Solution-10: a = 0 and b = c

u(x,y,z, t) =
2c

p+ c
(

3t
4 + x+ y+ z

) , (3.12)

Solution-11: a = 0 and b =−c

u(x,y,z, t) =
2cp2

p− 1

c

(
3t
4 +x+y+z

) , (3.13)

Solution-12: a = 0 and b = 0

u(x,y,z, t) =
c(1+ p2)

p+ tan
[

1
2 c
(
− 1

4 (c
2−3)t + x+ y+ z

)] . (3.14)

Case-2: A1 = b− c, B1 = 0, k = 1
4 (−3−a2−b2 + c2),

has the following families of solutions:
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Solution-1: a2 +b2− c2 < 0 and b− c 6= 0

u(x,y,z, t) = a+ p(b− c)−
√

c2−a2−b2 tan[β2], (3.15)

where β2 =
1
8

√
c2−a2−b2((3+a2 +b2− c2)t +4(x+ y+ z))

Solution-2: a2 +b2− c2 > 0 and b− c 6= 0

u(x,y,z, t) = a+ p(b− c)+
√

a2 +b2− c2 tanh[β3], (3.16)

where β3 =
1
8

√
a2 +b2− c2((3+a2 +b2− c2)t +4(x+ y+ z))

Solution-3: a2 +b2− c2 > 0, b 6= 0 and c = 0

u(x,y,z, t) = a+bp+
√

a2 +b2 tanh[
1
8

√
a2 +b2((3+a2 +b2)t +4(x+ y+ z))], (3.17)

Solution-4: a2 +b2− c2 < 0, c 6= 0 and b = 0

u(x,y,z, t) = a− cp−
√

c2−a2 tan[
1
8

√
c2−a2((3+a2− c2)t +4(x+ y+ z))], (3.18)

Solution-5: a2 +b2 = c2

u(x,y,z, t) =
(

b−
√

a2 +b2
)(

p−

(
b+
√

a2 +b2
)(

2+a
(

3t
4 + x+ y+ z

))

a2
(

3t
4 + x+ y+ z

)
)
, (3.19)

Solution-6: c = a

u(x,y,z, t) = a−ap+b

(
1− 2

1+(b−a)e
1
4 b((3+b2)t+4(x+y+z))

+ p

)
, (3.20)

Solution-7: a = c

u(x,y,z, t) = c− cp+b

(
1+

2

−1+(b− c)e
1
4 b((3+b2)t+4(x+y+z))

+ p

)
, (3.21)

Solution-8: c =−a

u(x,y,z, t) = (a+b)

(
1− 2b

a+b− e
1
4 b((3+b2)t+4(x+y+z))

+ p

)
, (3.22)

Solution-9: b =−c

u(x,y,z, t) = 2

(
a+

a

−1+ ce
1
4 a((3+a2)t+4(x+y+z))

− cp

)
, (3.23)

Solution-10: b = 0 and a = c

u(x,y,z, t) = c− cp+
8

3t +4(x+ y+ z)
, (3.24)

Solution-11: a = 0 and b =−c

u(x,y,z, t) =−2cp+
2

3t
4 + x+ y+ z

, (3.25)

Solution-12: a = 0 and b = 0

u(x,y,z, t) =−c
(

p+ tan
[ 1

2
c
(
− 1

4
(c2−3)t + x+ y+ z

)])
, (3.26)

Case-3: A1 = b− c, B1 = b+ c+bp2− cp2, a = cp−bp,
k = 1

4 (−3−b2−3bB1 +3cB1 + c2−b2 p2 +2bcp2− c2 p2),
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has the following families of solutions:

Solution-1: a2 +b2− c2 < 0 and b− c 6= 0

u(x,y,z, t) =
√
−(b− c)(b+ c+ p2(b− c))

(
−1+ cot2[β3]

)
tan[β3], (3.27)

where β3 =
1
8

√
−(b− c)(b+ c+ p2(b− c))((3+4b2−4c2 +4p2(b− c)2)t +4(x+ y+ z))

Solution-2: a2 +b2− c2 > 0 and b− c 6= 0

u(x,y,z, t) =
√

b2− c2 +(bp− cp)2
(

1+ coth2[β4]
)

tanh[β4], (3.28)

where β4 =
1
8

√
b2− c2 +(bp− cp)2((3+4b2−4c2 +4p2(b− c)2)t +4(x+ y+ z))

Solution-3: a2 +b2− c2 > 0, b 6= 0 and c = 0

u(x,y,z, t) = 2b
√

1+ p2 coth
[ 1

4
b
√

1+ p2((3+4b2(1+ p2))t +4(x+ y+ z))
]
, (3.29)

Solution-4: a2 +b2− c2 < 0, c 6= 0 and b = 0

u(x,y,z, t) = 2c
√

1− p2 cot
[ 1

4
c
√

1− p2((3+4c2(p2−1))t +4(x+ y+ z))
]
, (3.30)

Solution-5: a = c

u(x,y,z, t) = 2b+
1

− 1
4b +

be
1
2 b((3+4b2)t+4(x+y+z))

4(p−1)2

, (3.31)

Solution-6: c =−a

u(x,y,z, t) =−
2b
(

b2 +(1+ p)2e
1
2 b((3+4b2)t+4(x+y+z))

)

b2− (1+ p)2e
1
2 b((3+4b2)t+4(x+y+z))

, (3.32)

Solution-7: b = 0 and a = c

u(x,y,z, t) =
8

3t +4(x+ y+ z)
, (3.33)

Solution-8: a = 0 and b = c

u(x,y,z, t) =
2c

p+ c
(

3t
4 + x+ y+ z

) , (3.34)

Case-4: A1 = 0, B1 = b+ c+bp2− cp2, a = cp−bp,
k = 1

8 (−6+b2−3bB1 +3cB1− c2 +b2 p2−2bcp2 + c2 p2),
has the following families of solutions:

Solution-1: a2 +b2− c2 < 0 and b− c 6= 0

u(x,y,z, t) =
√
−(b− c)(b+ c+ p2(b− c)) cot[β5], (3.35)

where β5 =
1
8

√
−(b− c)(b+ c+ p2(b− c))((3+b2− c2 + p2(b− c)2)t +4(x+ y+ z))

Solution-2: a2 +b2− c2 > 0 and b− c 6= 0

u(x,y,z, t) =
√

b2− c2 +(bp− cp)2 coth[β6], (3.36)

where β6 =
1
8

√
b2− c2 +(bp− cp)2((3+b2− c2 + p2(b− c)2)t +4(x+ y+ z))

Solution-3: a2 +b2− c2 > 0, b 6= 0 and c = 0
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u(x,y,z, t) = b
√

1+ p2 coth
[ 1

8
b
√

1+ p2((3+b2(1+ p2))t +4(x+ y+ z))
]
, (3.37)

Solution-4: a2 +b2− c2 < 0, c 6= 0 and b = 0

u(x,y,z, t) = c
√

1− p2 cot
[ 1

8
c
√

1− p2((3+ c2(p2−1))t +4(x+ y+ z))
]
, (3.38)

Solution-5: c = a

u(x,y,z, t) = b− 2b(p−1)

−1+be
1
4 b((3+b2)t+4(x+y+z))+ p

, (3.39)

Solution-6: a = c

u(x,y,z, t) = b+
2b(p−1)

1+be
1
4 b((3+b2)t+4(x+y+z))− p

, (3.40)

Solution-7: c =−a

u(x,y,z, t) = b− 2b2

b+(1+ p)e
1
4 b((3+b2)t+4(x+y+z))

, (3.41)

Solution-8: b =−c

u(x,y,z, t) = 2cp
(

1− 2

1+ ce
1
2 cp((3+4c2 p2)t+4(x+y+z))

)
, (3.42)

4. Graphics

In this section, we parade the two- and three-dimensional plots of some obtained solutions.

Fig. 1. The 3D and 2D surfaces of Eq. (3.3) by considering the values a = 1, b = 2, c = 3, p = 0.5, t = 0.001,
z = 0.002, −2 < x < 2, −1 < y < 1 and y = 0.003 for the 2D graphic.

Fig. 2. The 3D and 2D surfaces of Eq. (3.5) by considering the values a = 1, b = 2, p = 0.5, t = 0.001,
z = 0.002, −2 < x < 2, −1 < y < 1 and y = 0.003 for the 2D graphic.
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Fig. 3. The 3D and 2D surfaces of Eq. (3.6) by considering the values a = 1, b = 2, p = 0.5, t = 0.001,
z = 0.002, −2 < x < 2, −1 < y < 1 and y = 0.003 for the 2D graphic.

Fig. 4. The 3D and 2D surfaces of Eq. (3.17) by considering the values a = 1, b = 2, p = 0.5, t = 0.001,
z = 0.002, −2 < x < 2, −1 < y < 1 and y = 0.003 for the 2D graphic.

Fig. 5. The 3D and 2D surfaces of Eq. (3.30) by considering the values c = 3, t = 0.001, z = 0.002, −2 < x <
2, −1 < y < 1 and y = 0.003 for the 2D graphic.
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Fig. 6. The 3D and 2D surfaces of Eq. (3.38) by considering the values c = 3, t = 0.001, z = 0.002, −2 < x <
2, −1 < y < 1 and y = 0.003 for the 2D graphic.

5. Conclusion

In this article, we successfully applied the powerful tan( F(ξ )
2 )-expansion method to the (3+1)-dimensional

potential-YTSF equation. We are able to construct a number of new solitary wave solutions with trigonometric,
hyperbolic, exponential and rational function structures. We carried out all the computation in this paper with
help of Wolfram Mathematica 9, we checked all the obtained solutions and they indeed satisfied equation
(1.1), and we also plot the two- and three-dimensional graphics of some obtained solutions using the same
computer program. When we compare our obtained results with the results obtained in [17], we observed that
our results are newly constructed solutions with the different solution structures. We can finally say that the
tan( F(ξ )

2 )-expansion method is easy and highly computarized method that can be applied to different class of
complicated NLPDEs.
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Şahsene ALTINKAYA*1, Sibel YALÇIN TOKGÖZ †2

1,2Department of Mathematics, Bursa Uludag University, 16059 Bursa, TURKEY

Keywords:
Chebyshev polynomials,
coefficient bounds,
quasi-subordination.
MSC: 30C45

Abstract: In this study, we use the Chebyshev polynomial expansion to con-
struct a new subclass of bi-univalent functions involving quasi-subordination.

1. Introduction and Definitions

Let E be the unit disc
{z ∈ C : |z|< 1} ,

and let A be the class of functions analytic in E, satisfying the conditions

f (0) = 0, f ′(0) = 1.

Then each f ∈A has the Taylor expansion

f (z) = z+
∞

∑
m=2

amzm. (1.1)

The class of this kind of functions is represented by S .
Let the functions f ,g be analytic in E. If there exists a Schwarz function ϖ , which is analytic in E under the
conditions

ϖ (0) = 0, |ϖ (z)|< 1,

such that
f (z) = g(ϖ (z)) (z ∈ E) ,

then the function f is subordinate to g in E, and indite f (z)≺ g(z) (z ∈ E).
Furthermore, for two analytic functions f and g, the function f is said to be quasi-subordinate to g in E and
written as

f (z)≺q g(z) (z ∈ E)

if there exists an analytic function ϕ (|ϕ(z)| ≤ 1) such that
f (z)
ϕ(z)

analytic in E and

f (z)
ϕ(z)

≺ g(z) (z ∈ E)

that is, there exists a Schwarz function ϖ(z) such that f (z) = ϕ(z)g(ϖ(z)). Also, one observes that if ϕ(z) = 1,
then f (z) = g(ϖ(z)) so that f (z) ≺ g(z) in E. Also notice that if ϖ(z) = z, then f (z) = ϕ(z)g(z) and it
is said that is majorized by g and written f (z)� g(z) in E. Hence it is obvious that quasi-subordination
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is a generalization of subordination as well as majorization (see, e.g. [14], [13], [12] for works related to
quasi-subordination).
The Koebe One-Quarter Theorem (see [6]) ensures that the image of E under every f ∈S contains a disc of
radius 1

4 . So, every f ∈S has an inverse f−1 which satisfies

f−1 ( f (z)) = z (z ∈ E)

and

f
(

f−1 (w)
)
= w

(
|w|< r0 ( f ) , r0 ( f )≥ 1

4

)
,

where
g(w) = f−1 (w) = w −a2w2 +

(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .
A function f ∈A is said to be bi-univalent in E if both f and f−1 are univalent in E. The class consisting of
bi-univalent functions are denoted by σ . A concept of bi-univalent analytic functions is due to Lewin [11]. Ever
since then, the first two coefficients |a2| and |a3| of the bi-univalent functions was used by many researchers,
see for example, [1], [3], [4], [8], [16], [17], [18]. The coefficient estimate problem for Taylor-Maclaurin
coefficients |an| for n≥ 4 is presumably still an open problem. Anyway, using Faber polynomial expansions,
several authors obtained coefficient estimates |an| for classes bi-univalent functions, see for example [2], [9],
[10].
One of the important tools in numerical analysis, from both theoretical and practical points of view, is Chebyshev
polynomials. There are four kinds of Chebyshev polynomials. The majority of research papers dealing with
specific orthogonal polynomials of Chebyshev family, contain mainly results of Chebyshev polynomials of first
and second kinds Tm(z) and Um(z) and their numerous uses in different applications, see for example, Doha [7]
and Mason [15].
The Chebyshev polynomials of the second kinds are well known. In the case of a real variable x on (−1,1),
they are defined by

Um(x) =
sin(m+1)θ

sinθ
,

where the subscript m denotes the polynomial degree and where x = cosθ .
Now, we consider the function that is the generating function of a Chebyshev polynomial:

H(z, t) =
1

1−2tz+ z2 t ∈
( 1

2 ,1
]

= 1+
∞
∑

m=1

sin(m+1)θ
sinθ

zm (z ∈ E).

If we choose t = cosθ , θ ∈
(
− π

3 ,
π
3

)
, then

H(z, t) = 1+2cosθz+(3cos2 θ − sin2 θ)z2 + · · · (z ∈ E).

Following see, we can write

H(z, t) = 1+U1(t)z+U2(t)z2 + · · ·
(

t ∈
(

1
2
,1
]
, z ∈ E

)
, (1.2)

where Um−1 =
sin(marccos t)√

1− t2
(m ∈ N) are the Chebyshev polynomials of the second kind. Also it is known

that
Um(t) = 2tUm−1(t)−Um−2(t),

and
U1(t) = 2t, U2(t) = 4t2−1, U3(t) = 8t3−4t, . . . . (1.3)

Now, we establish a new subclass of analytic and bi-univalent functions based on quasi-subordination.
Definition 1.1 A function f ∈ σ is said to be in the class

Wσ (β , t,γ)
(

0≤ β ≤ 1, t ∈
(

1
2
,1
]
,γ ∈ C\{0}

)
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if the following quasi-subordinations are satisfied:

1
γ

[{
β f ′(z)+(1−β )

z f ′(z)
f (z)

}
−1
]
≺q (H(z, t)−1) (z ∈ E) (1.4)

and
1
γ

[{
βg′(w)+(1−β )

wg′(w)
g(w)

}
−1
]
≺q (H(w, t)−1) (w ∈ E), (1.5)

where g = f−1.

It is clear from the definition that f ∈Wσ (β , t,γ) if and only if there exists a function ϕ (|ϕ(z)| ≤ 1) such that

(1− γ) f (z)
z + γ(Dq f )(z)
ϕ(z)

≺ (H(z, t)−1) (z ∈ E)

and
(1− γ) g(w)

w + γ(Dqg)(w)
ϕ(w)

≺ (H(w, t)−1) (w ∈ E),

where the function H(z, t) is given by (1.2), and that the function ϕ , analytic in E, is of the form:

ϕ(z) = d0 +d1z+d2z2 + · · · (|ϕ(z)| ≤ 1, z ∈ E). (1.6)

Motivated by the earlier work of Dziok et al. [5], we study the Chebyshev polynomial expansions to provide
estimates for the initial coefficients of a newly-constructed subclass of bi-univalent functions.

2. Coefficient bounds for the function class Wσ (β , t,γ)

Theorem 2.1 Let f given by (1.1) be in the class Wσ (β , t,γ) . Then

|a2| ≤
2 |γd0| t

√
2t√

4(1+2β )γt2− (1+β )2(4t2−1)

and

|a3| ≤
4 |γd0|2 t2

(1+β )2 +
2t |γ|(|d0|+ |d1|)

2+β
.

Proof. Let f ∈Wσ (β , t,γ) . The inequalities (1.4) and (1.5) imply the existence of two Schwarz functions

u(z) =
∞

∑
n=1

unzn

and

v(w) =
∞

∑
n=1

vnwn,

with
|uk| ≤ 1, |vk| ≤ 1 (∀k ∈ N) (2.1)

so that
1
γ

[{
β f ′(z)+(1−β )

z f ′(z)
f (z)

}
−1
]
= ϕ(z)(H(u(z), t)−1)

1
γ

[{
βg′(w)+(1−β )

wg′(w)
g(w)

}
−1
]
= ϕ(w)(H(v(w), t)−1) ,

or equivalently

1
γ

[{
β f ′(z)+(1−β ) z f ′(z)

f (z)

}
−1
]

=U1(t)u1d0z

+
[(

U1(t)u2 +U2(t)u2
1
)

d0 +U1(t)u1d1
]

z2 + · · ·
(2.2)
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and
1
γ

[{
βg′(w)+(1−β ) wg′(w)

g(w)

}
−1
]

=U1(t)v1d0w

+
[(

U1(t)v2 +U2(t)v2
1
)

d0 +U1(t)v1d1
]

w2 + · · · .
(2.3)

It follows from (2.2) and (2.3) that
1+β

γ
a2 =U1(t)u1d0, (2.4)

(2+β )a3− (1−β )a2
2

γ
=U1(t)u1d1 +

(
U2(t)u2

1 +U1(t)u2
)

d0, (2.5)

− 1+β
γ

a2 =U1(t)v1d0, (2.6)

3(1+β )a2
2− (2+β )a3

γ
=U1(t)v1d1 +

(
U2(t)v2

1 +U1(t)v2
)

d0. (2.7)

From the equations (2.4) and (2.6), we can easily see that

u1 =−v1, (2.8)

2(1+β )2

γ2 a2
2 =U2

1 (t)
(
u2

1 + v2
1
)

d2
0 . (2.9)

If we add (2.5) to (2.7), we get

2(1+2β )
γ

a2
2 =U1(t)(u2 + v2)d0 +U2(t)

(
u2

1 + v2
1
)

do +U1(t)(u1 + v1)d1. (2.10)

Using (2.9) in equality (2.10),
[

2(1+2β )
γ

− 2U2(t)
U2

1 (t)
(1+β )2

γ2d0

]
a2

2 =U1(t)(u2 + v2)d0. (2.11)

From (1.3), (2.11) and (2.1), we get

|a2| ≤
2 |γd0| t

√
2t√

4(1+2β )γt2− (1+β )2(4t2−1)
.

Next, if we subtract (2.7) from (2.5), we obtain

2(2+β )
γ

(a3−a2
2) =U1(t)(u2− v2)d0 +U2(t)

(
u2

1− v2
1
)

d0 +U1(t)(u1− v1)d1. (2.12)

Then, in view of (2.8) and (2.9), also (2.12)

a3 =
U2

1 (t)γ
2d2

0

2(1+β )2

(
u2

1 + v2
1
)
+

2U1(t)γd1u1 +U1(t)γd0 (u2− v2)

2(2+β )
.

Notice that from (1.3) and (2.1)

|a3| ≤
4 |γd0|2 t2

(1+β )2 +
2t |γ|(|d0|+ |d1|)

2+β
.
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Abstract: In this study, we use the Faber polynomial expansions to obtain
upper bounds for |an| (n > 3) coefficients of functions belong to a subclass of
bi-univalent functions involving the Jackson q-derivative operator in the open unit
disc

E= {z ∈ C : |z|< 1} .

1. Introduction, Definitions and Notations

Let A denote the class of functions of the form:

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disc E. By S we denote the subclass of A consisting of functions the form
(1.1) which are also univalent in E. Further, P be the class of functions consisting of ϕ, such that

ϕ(z) = 1+
∞

∑
n=1

ϕnzn,

which are regular in the open unit disc E and satisfy the condition ℜ(ϕ(z))> 0 in E.
In order to introduce the principles of subordination and quasi-subordination, we let f and g be two analytic
functions in E. We say that f is subordinate to the function g, written as:

f (z)≺ g(z) (z ∈ E) ,

if there exists a Schwarz function ϖ (z) =
∞
∑

n=1
cnzn, analytic in E, with

ϖ (0) = 0 and |ϖ (z)|< 1 (z ∈ E)

such that
f (z) = g(ϖ (z)) (z ∈ E) .

For the Schwarz function ϖ (z), we note that |cn|< 1 (see Duren [11]).
Furthermore, for two analytic functions f and g, the function f is said to be quasi-subordinate to the function g
in E, written as:

f (z)≺q g(z) (z ∈ E)

if there exists an analytic function ϕ (|ϕ(z)| ≤ 1) such that the function
f (z)
ϕ(z)

analytic in E and

f (z)
ϕ(z)

≺ g(z) (z ∈ E)
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that is, there exists the above-mentioned Schwarz function ϖ(z) such that

f (z) = ϕ(z)g(ϖ(z)).

One observes that, in the special case when ϕ(z) = 1, the quasi-subordination coincides with the usual
subordination. Also notice that if ϖ(z) = z, then f (z) = ϕ(z)g(z) and it is said that is majorized by g and
written f (z)� g(z) in E. Hence it is obvious that quasi-subordination is a generalization of subordination as
well as majorization (see [22]).
The Koebe One-Quarter Theorem [11] states that the image of E under every function f in the normalized
univalent function class S contains a disc of radius 1

4 . Thus, clearly, every such univalent function has an
inverse f−1 which satisfies the following condition:

f−1 ( f (z)) = z (z ∈ E)

and

f
(

f−1 (w)
)
= w

(
|w|< r0 ( f ) ; r0 ( f )≥ 1

4

)
,

where
g(w) = f−1 (w) = w −a2w2 +

(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .
A function f ∈A is said to be bi-univalent in E if both f and f−1 are univalent in E. Let σ denote the class
of bi-univalent functions defined in the unit disc E. For a brief history of functions in the class, see [26]
(see also [10], [9], [18], [20]). Recently, Srivastava et al. [26], Altınkaya and Yalçın [6] made an effort to
introduce various subclasses of the bi-univalent function class σ and found non-sharp coefficient estimates
on the initial coefficients |a2| and |a3| (see also [27], [28]). But the coefficient problem for each one of the
following Taylor–Maclaurin coefficients

|an| , n ∈ N\{1,2} ; N= {1,2,3, ...}

is still an open problem. In the literature, there are only a few works determining the general coefficient bounds
|an| for the analytic bi-univalent functions ([7], [15], [17]).
The Faber polynomials introduced by Faber [12] play an important role in various areas of mathematical
sciences, especially in Geometric Function Theory. Grunsky [14] succeeded in establishing a set of conditions
for a given function which are necessary and in their totality sufficient for the univalency of this function,
and in these conditions the coefficients of the Faber polynomials play an important role. Schiffer [23] gave a
differential equations for univalent functions solving certain extremum problems with respect to coefficients of
such functions; in this differential equation appears again a polynomial which is just the derivative of a Faber
polynomial (see, for details, [24]). Using the Faber polynomial expansion of functions f ∈A of the form (1.1),
the coefficients of its inverse map g = f −1 may be expressed as follows (see [3]):

g(w) = f−1 (w) = w+
∞

∑
n=2

1
n

K−n
n−1 (a2,a3, ...)wn,

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−1)!

an−1
2 +

(−n)!
[2(−n+1)]!(n−3)!

an−3
2 a3

+
(−n)!

(−2n+3)!(n−4)!
an−4

2 a4

+
(−n)!

[2(−n+2)]!(n−5)!
an−5

2
[
a5 +(−n+2)a2

3
]

(1.2)

+
(−n)!

(−2n+5)!(n−6)!
an−6

2 [a6 +(−2n+5)a3a4]

+∑
j≥7

an− j
2 Vj,

such that Vj (7≤ j ≤ n) is a homogeneous polynomial in the variables a2,a3, ...,an (see, for details, [4]). In
particular, the first three terms of K−n

n−1 are given below:

134



1
2

K−2
1 = −a2,

1
3

K−3
2 = 2a2

2−a3, (1.3)

1
4

K−4
3 = −

(
5a3

2−5a2a3 +a4
)
.

In general, an expansion of K p
n is given by (see [3])

K p
n = pan +

p(p−1)
2

E2
n +

p!
(p−3)!3!

E3
n + ...+

p!
(p−n)!n!

En
n (p ∈ Z), (1.4)

where
Z= {0,±1,±2, . . .} and E p

n = E p
n (a2,a3, ...)

and, alternatively, by (see [1] and [2])

Em
n (a1,a2, ...,an) =

∞

∑
m=1

m!(a1)
µ1 ...(an)

µn

µ1!...µn!
, (1.5)

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ...,µn satisfying the following conditions:

µ1 +µ2 + ... +µn = m, (1.6)
µ1 +2µ2 + ... +nµn = n.

Evidently,
En

n (a1,a2, ...,an) = an
1.

In the field of Geometric Functions Theory, various subclasses of analytic functions have been studied from
different viewpoints. The fractional q-calculus is the important tools that are used to investigate subclasses of
analytic functions. Historically speaking, a firm footing of the usage of the the q-calculus in the context of
Geometric Function Theory was actually provided and the basic (or q-) hypergeometric functions were first
used in Geometric Function Theory in a book chapter by Srivastava (see, for details, [25]). In fact, the theory
of univalent functions can be described by using the theory of the q-calculus. Moreover, in recent years, such
q-calculus operators as the fractional q-integral and fractional q-derivative operators were used to construct
several subclasses of analytic functions (see, for example, [5], [8] and [21]).
For the convenience, we provide some basic definitions and concept details of q-calculus which are used in
this paper. We suppose throughout the paper that 0 < q < 1. We recall the definitions of fractional q-calculus
operators of complex valued function f . We shall follow the notation and terminology in [13].
Definition 1.1 (See [16]) The q-derivative of a function f is defined on a subset of C is given by

(Dq f )(z) =
f (z)− f (qz)
(1−q)z

(z 6= 0) , (1.7)

and (Dq f )(0) = f ′(0) provided f ′(0) exists.
Note that

lim
q→1−

(Dq f )(z) = lim
q→1−

f (z)− f (qz)
(1−q)z

=
d f (z)

dz

if f is differentiable. From (1.7), we deduce that

(Dq f )(z) = 1+
∞

∑
n=2

[n]q anzn−1, (1.8)

where the symbol [n]q denotes the so-called the twin-basic number is a natural generalization of the q-number,
that is

[n]q =
1−qn

1−q
(q 6= 1) .

The object of this paper is to introduce a new subclass of bi-univalent functions defined by using the Jackson
q-derivative operator and use the Faber polynomial expansion techniques to derive bounds for the general
Taylor-Maclaurin coefficients |an| for the functions in this class. We also obtain estimates for the initial
coefficients |a2| and |a3| of these functions.
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2. The general Taylor-Maclaurin coefficients |an|
We begin this section by introducing the function class Tσ (q;γ) by means of the following definition.
Definition 2.1 Let the function Ψ ∈P be univalent in E and let Ψ(E) be symmetrical about the real axis with

Ψ′(0)> 0.

We say that a function f ∈ σ is in the class

Tσ (q;γ) (γ ≥ 1)

if the following quasi-subordinations hold true:

(1− γ)
f (z)

z
+ γ(Dq f )(z)≺q Ψ(z) (z ∈ E) (2.1)

and

(1− γ)
g(w)

w
+ γ(Dqg)(w)≺q Ψ(w) (w ∈ E), (2.2)

where g = f−1.
It is clear from Definition 2.1 that f ∈ Tσ (q;γ) if and only if there exists a function h (|h(z)| ≤ 1) such that

(1− γ) f (z)
z + γ(Dq f )(z)
h(z)

≺ (Ψ(z)) (z ∈ E)

and
(1− γ) g(w)

w + γ(Dqg)(w)
h(w)

≺ (Ψ(w)) (w ∈ E).

Throughout this paper, we suppose that the function Ψ ∈P is of the form:

Ψ(z) = 1+B1z+B2z2 + · · · (B1 > 0, z ∈ E).

and that the function h, analytic in E, is of the form:

h(z) = H0 +H1z+H2z2 + · · · (|h(z)| ≤ 1, z ∈ E).

Our main result is given by Theorem 2.2 below.
Theorem 2.2 Let f given by (1.1) be in the class Tσ (q;γ). If am = 0 for 2≤ m≤ n−1, then

|an| ≤
B1 + |Hn−1|

1+
(
[n]q−1

)
γ

(n > 3).

Proof. For analytic functions f of the form (1.1), we have

(1− γ)
f (z)

z
+ γ(Dq f )(z) =

∞

∑
n=2

[
1+
(
[n]q−1

)
γ
]

anzn−1 (2.3)

and

(1− γ)
g(w)

w
+ γ(Dqg)(w) =

∞

∑
n=1

[
1+
(
[n]q−1

)
γ
]

bnwn−1

(2.4)

=
∞

∑
n=1

[
1+
(
[n]q−1

)
γ
]

× 1
n

K−n
n−1 (a2,a3, ...,an)wn−1.

On the other hand, the inequalities (2.1) and (2.2) imply the existence of two Schwarz functions u(z) =
∞
∑

n=1
cnzn

and v(w) =
∞
∑

n=1
dnwn so that

(1− γ)
f (z)

z
+ γ(Dq f )(z) = h(z)Ψ(u(z)) (2.5)
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and

(1− γ)
g(w)

w
+ γ(Dqg)(w) = h(z)Ψ(v(w)). (2.6)

Thus, from (2.3) and (2.5) yields

[
1+
(
[n]q−1

)
γ
]

an = Hn−1 +
n−1

∑
t=1

t

∑
k=1

BkEk
n (c1,c2, ...,cn)Hn−(t+1) (H0 = 1). (2.7)

Similarly, by using (2.4) and (2.6), we find that

[
1+
(
[n]q−1

)
γ
]

bn = Hn−1 +
n−1

∑
t=1

t

∑
k=1

BkEk
n (d1,d2, ...,dn)Hn−(t+1). (2.8)

We note that, for am = 0 (2≤ m≤ n−1), we have

bn =−an

and so
[
1+
(
[n]q−1

)
γ
]

an = B1cn−1 +Hn−1,

−
[
1+
(
[n]q−1

)
γ
]

an = B1dn−1 +Hn−1.

Now taking the absolute values of either of the above two equations and using the facts that |cn−1| ≤ 1 and
|dn−1| ≤ 1, we obtain

|an|=
|B1cn−1 +Hn−1|∣∣∣1+

(
[n]q−1

)
γ
∣∣∣
=
|B1dn−1 +Hn−1|∣∣∣1+

(
[n]q−1

)
γ
∣∣∣
≤ B1 + |Hn−1|

1+
(
[n]q−1

)
γ
, (2.9)

which evidently completes the proof of Theorem 2.2.

Corollary 2.3 If we take h(z) = 1 and Ψ(z) =
( 1+z

1−z

)ξ
(0 < ξ ≤ 1) which gives B1 = 2ξ , in Theorem 2.2, then

we obtain

|an| ≤
2ξ

1+
(
[n]q−1

)
γ

(n > 3).

Corollary 2.4 If we take h(z) = 1 and Ψ(z) = 1+(1−2ξ )z
1−z (0 < ξ ≤ 1) which gives B1 = 2(1−ξ ), in Theorem

2.2, then we obtain

|an| ≤
2(1−ξ )

1+
(
[n]q−1

)
γ

(n > 3).
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Abstract: In this study, we define several new subclasses of bi-univalent
functions involving a differential operator in the open unit disc

E= {z ∈ C : |z|< 1} .

Moreover, we obtain estimates on the coefficients for functions belonging to these
classes.

1. Introduction

Let A be the class of functions analytic in E, satisfying the conditions

f (0) = 0, f ′(0) = 1.

Then each f ∈A has the Taylor expansion

f (z) = z+
∞

∑
n=2

anzn. (1.1)

The class of this kind of functions is represented by S . Further, let P be the class of functions Φ(z) =

1+
∞
∑

n=1
Φnzn that are analytic in E and satisfy the condition ℜ(Φ(z))> 0 in E. By the Caratheodory’s lemma

(e.g., see [10]) we have |Φn| ≤ 2.
Let the functions f ,g be analytic in E. If there exists a Schwarz function ϖ , which is analytic in E under the
conditions

ϖ (0) = 0, |ϖ (z)|< 1,

such that
f (z) = g(ϖ (z)) (z ∈ E) ,

then, the function f is subordinate to g in E, and indite f (z)≺ g(z) (z ∈ E).
The Koebe One-Quarter Theorem (see [10]) ensures that the image of E under every f ∈S contains a disc of
radius 1

4 . So, every f ∈S has an inverse f−1 which satisfies

f−1 ( f (z)) = z(z ∈ E)

and

f
(

f−1 (w)
)
= w

(
|w|< r0 ( f ) , r0 ( f )≥ 1

4

)
,

where
g(w) = f−1 (w) = w −a2w2 +

(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .

*Presented by Şahsene ALTINKAYA, sahsene@uludag.edu.tr
†syalcin@uludag.edu.tr
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A function f ∈A is said to be bi-univalent in E if both f and f−1 are univalent in E. The class consisting of
bi-univalent functions are denoted by σ . A concept of bi-univalent analytic functions is due to Lewin [14]. Ever
since then, the first two coefficients |a2| and |a3| of the bi-univalent functions was used by many researchers,
see for example, [5], [7], [8], [11], [16], [17], [18]. The coefficient estimate problem for Taylor-Maclaurin
coefficients |an| for n≥ 4 is presumably still an open problem. Anyway, using Faber polynomial expansions,
several authors obtained coefficient estimates |an| for classes bi-univalent functions, see for example [6], [12],
[13].
The Faber polynomials introduced by Faber play an important role in various areas of mathematical sciences,
especially in Geometric Function Theory. By using the Faber polynomial expansion of functions f ∈A of the
form (1.1), the coefficients of its inverse map g = f −1 may be expressed as follows (see Airault and Bouali
[3]):

g(w) = f−1 (w) = w+
∞

∑
n=2

1
n

K−n
n−1 (a2,a3, ...)wn,

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−1)!

an−1
2 +

(−n)!
[2(−n+1)]!(n−3)!

an−3
2 a3

+
(−n)!

(−2n+3)!(n−4)!
an−4

2 a4

+
(−n)!

[2(−n+2)]!(n−5)!
an−5

2
[
a5 +(−n+2)a2

3
]

(1.2)

+
(−n)!

(−2n+5)!(n−6)!
an−6

2 [a6 +(−2n+5)a3a4]

+∑
j≥7

an− j
2 Vj,

such that Vj (7≤ j ≤ n) is a homogeneous polynomial in the variables a2,a3, ...,an (see, for details, Airault and
Ren [4]). In particular, the first three terms of K−n

n−1 are given below:

1
2

K−2
1 = −a2,

1
3

K−3
2 = 2a2

2−a3, (1.3)

1
4

K−4
3 = −

(
5a3

2−5a2a3 +a4
)
.

In general, an expansion of K p
n is given by (see Airault and Bouali [3])

K p
n = pan +

p(p−1)
2

E2
n +

p!
(p−3)!3!

E3
n + ...+

p!
(p−n)!n!

En
n (p ∈ Z), (1.4)

where
Z= {0,±1,±2, . . .} and E p

n = E p
n (a2,a3, ...)

and, alternatively, by (see Airault [1] and [2])

Em
n (a1,a2, ...,an) =

∞

∑
m=1

m!(a1)
µ1 ...(an)

µn

µ1!...µn!
, (1.5)

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ...,µn satisfying the following conditions:

µ1 +µ2 + ... +µn = m, (1.6)
µ1 +2µ2 + ... +nµn = n.

Evidently,
En

n (a1,a2, ...,an) = an
1.

Now, we establish a new subclass of analytic and bi-univalent functions based on subordination.
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Definition 1.1 A function f ∈ σ is said to be in the class

Mσ (µ,β ,Φ) (µ ≥ 0,β ≥ 1; z,w ∈ E)

if the following subordinations are satisfied:

(1−β )
(

f (z)
z

)µ
+β f ′(z)

(
f (z)

z

)µ−1

≺Φ(z) (1.7)

and

(1−β )
(

g(w)
w

)µ
+βg′(w)

(
g(w)

w

)µ−1

≺Φ(w) , (1.8)

where g = f−1.

2. Coefficient bounds for the function class Mσ (µ,β ,Φ)

Theorem 2.1 Let f given by (1.1) be in the class Mσ (µ,β ,Φ). Then

|a2| ≤min

{
2

µ +β
,

√
8

(µ +2β )(β +1)

}

and

|a3| ≤min

{
4

(µ +β )2 +
2

µ +2β
,

8
(µ +2β )(µ +1)

+
2

µ +βλ

}
.

Proof. Let f ∈ Mσ (µ,β ,Φ) .The inequalities (1.7) and (1.8) imply the existence of two positive real part
functions

ϖ (z) = 1+
∞

∑
n=1

tnzn

and

ϑ (w) = 1+
∞

∑
n=1

snwn,

where ℜ(ϖ (z))> 0 and ℜ(ϑ (w))> 0 in P so that

(1−β )
(

f (z)
z

)µ
+β f ′(z)

(
f (z)

z

)µ−1

= Φ(ϖ(z)), (2.1)

(1−β )
(

g(w)
w

)µ
+βg′(w)

(
g(w)

w

)µ−1

= Φ(ϑ(w)). (2.2)

It follows from (2.1) and (2.2) that
(µ +β )a2 = Φ1t1, (2.3)

(µ +2β )
[

µ−1
2

a2
2 +a3

]
= Φ1t2 +Φ2t2

1 (2.4)

and
− (µ +β )a2 = Φ1s1, (2.5)

(µ +2β )
[

µ +3
2

a2
2−a3

]
= Φ1s2 +Φ2s2

1. (2.6)

From (2.3) or (2.5) we obtain

|a2| ≤
|Φ1t1|
µ +β

=
|Φ1s1|
µ +β

≤ 2
µ +β

. (2.7)

Adding (2.4) to (2.6) implies

(µ +2β )(µ +1)a2
2 = Φ1 (t2 + s2)+Φ2

(
t2
1 + s2

1
)

or, equivalently

|a2| ≤
√

8
(µ +2β )(µ +1)

. (2.8)
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Next, in order to find the bound on the coefficient |a3|, we subtract (2.6) from (2.4). We thus get

2(µ +2β )
(
a3−a2

2
)
= Φ1 (t2− s2)+Φ2

(
t2
1 − s2

1
)

(2.9)

or

|a3| ≤ |a2|2 +
|Φ1 (t2− s2)|
2(µ +2β )

= |a2|2 +
2

µ +2β

(2.10)

Upon substituting the value of a2
2 from (2.7) and (2.8) into (2.10), it follows that

|a3| ≤
4

(µ +β )2 +
2

µ +2β

and
|a3| ≤

8
(µ +2β )(µ +1)

+
2

µ +2β
.

Theorem 2.2 Let f ∈Mσ (µ,β ,Φ). If am = 0 with 2≤ m≤ n−1, then

|an| ≤
2

µ +(n−1)β
(n≥ 4).

Proof. By using the Faber polynomial expansion of functions f ∈ A of the form (1.1) and its inverse map
g = f−1, we can write

(1−β )
(

f (z)
z

)µ
+β f ′(z)

(
f (z)

z

)µ−1

= 1+
∞

∑
n=2

Gn−1 (a2,a3, ...,an)anzn−1 (2.11)

and

(1−β )
(

g(w)
w

)µ
+βg′(w)

(
g(w)

w

)µ−1

= 1+
∞

∑
n=1

Gn−1 (A2,A3, ...,An)anwn−1,

where

G1 = (µ +β )a2, (2.12)

G2 = (µ +2β )
[

µ−1
2

a2
2 +a3

]
,

G3 = (µ +3β )
[
(µ−1)(µ−2)

3!
a3

2 +(µ−1)a2a3 +a4

]

and, in general (see [9])

Gn−1 = ([µ +(n−1)β ]× [(µ−1)!]

×
[

∑
i1+2i2+···(n−1)in−1=n−1

ai1
2 ai2

3 . . .ain−1
n

i1!i2! . . . in! [µ− (i1 + i2 + · · ·+ in−1)]!

]
.

Next, by using the Faber polynomial expansion of functions ϖ ,ϑ ∈P , we also obtain

Φ(ϖ(z)) = 1+
∞

∑
n=1

n

∑
k=1

ΦkFk
n (t1, t2, ..., tn)zn

and

Φ(ϑ(w)) = 1+
∞

∑
n=1

n

∑
k=1

ΦkFk
n (s1,s2, ...,sn)wn.

Comparing the corresponding coefficients yields

[µ +(n−1)β ]an =
n−1

∑
k=1

ΦkFk
n−1 (t1, t2, ..., tn−1) n≥ 2
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and

[µ +(n−1)β ]An =
n−1

∑
k=1

ΦkFk
n−1 (s1,s2, ...,sn−1) (n≥ 2).

Note that for am = 0, 2≤ m≤ n−1, we have An =−an and so

[µ +(n−1)β ]an = Φ1tn−1

− [µ +(n−1)β ]an = Φ1sn−1

Now taking the absolute values of either of the above two equations and using the facts that |Φ1| ≤ 2, |tn−1| ≤
1and |sn−1| ≤ 1, we obtain

|an| ≤
|Φ1tn−1|

µ +(n−1)β
=

|Φ1sn−1|
µ +(n−1)β

≤ 2
µ +(n−1)β

. (2.13)

The next theorem restricts our attention to the Fekete-Szegö inequalities over the class Mσ (µ,β ,Φ) for a real
parameter.
Theorem 2.3 (See [15]) Suppose that the function f of the form (1.1) belongs to the class Mσ (µ,β ,Φ) .Then,
for a real number η

∣∣a3−ηa2
2
∣∣≤





Φ1
µ+2β ; |η−1| ≤ µ+1

2

∣∣∣1+ 2(Φ2−Φ1)(µ+β )2

(µ+2β )(µ+1)Φ2
1

∣∣∣

2Φ3
1|η−1|

|(µ+2β )(µ+1)Φ2
1+2(Φ2−Φ1)(µ+β )2| ; |η−1| ≥ µ+1

2

∣∣∣1+ 2(Φ2−Φ1)(µ+β )2

(µ+2β )(µ+1)Φ2
1

∣∣∣
.
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Abstract: We investigate certain subclasses of convex harmonic univalent
functions defined by subordination. We obtain coefficient bounds, distortion
theorems, extreme points, convolution and convex combinations for these classes
of functions. Also relevant connections of the results presented here with diverse
known results are briefly denoted.

1. Introduction and Preliminaries

A continuous complex valued function f = u+ iv defined in a simply connected complex domain D⊂ C
is said to be harmonic in D if both u and v are real harmonic in D. Consider the functions U and V analytic in D
so that u = ℜ(U) and v = ℑ(V ). Then the harmonic function f can be expressed by

f (z) = h(z)+g(z), z ∈ D,

where h = (U +V )/2 and g = (U −V )/2. We call h the analytic part and g co-analytic part of f . If g is
identically zero then f reduces to the analytic case. A necessary and sufficient condition for f to be locally
univalent and sense-preserving in D is that |g′(z)|< |h′(z)| , z ∈ D (see Clunie and Sheil-Small [2]).
Let H denote the class of functions f = h+g which are harmonic sense-preserving, and univalent in the open
unit disk E= {z : z ∈C and |z|< 1} with f (0) = fz(0)−1 = 0. Thus, any function f ∈H can be written in the
form

f (z) = z+
∞

∑
n=2

anzn +
∞

∑
n=1

bnzn, |b1|< 1. (1.1)

Also, let H denote the subclass of H consisting of functions f = h+g so that the functions h and g take the
form

h(z) = z−
∞

∑
n=2
|an|zn and g(z) =−

∞

∑
n=1
|bn|zn, |b1|< 1. (1.2)

Recently, Kim et al. [7], studied a family of complex valued harmonic convex univalent functions related to
uniformly convex analytic functions, denoted by HCV (k,α), 0≤ k < ∞, so that f = h+g ∈ HCV (k,α) if and
only if

ℜ

{
1+(1+ keiθ )

z2h′′(z)+2zg′(z)+ z2g′′(z)

zh′(z)− zg′(z)

}
≥ α,

θ ∈ R, 0≤ α < 1. When α = k = 0 and k = 0, this class is denoted by HC and HC(α), respectively. These
classes have been studied by Silverman [9], Avcı and Zlotkiewicz [1], Öztürk and Yalçın [8], Jahangiri [6],
Yalçın [10], Yalçın and Öztürk [11].
We say that a function f ∈ H is subordinate to a function F ∈ H, and write f ≺ F , if there exists a complex
valued function w which maps E into oneself with w(0) = 0, such that f (z) = F(w(z)) (z ∈ E).
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Furthermore, if the function F is univalent in E, then we have the following equivalence:

f (z)≺ F (z)⇔ f (0) = F(0) and f (E)⊂ F(E).

Denote by HC(k,A,B) the subclass of H consisting of functions f of the form (1.1) that satisfy the condition

1+(1+ keiθ )
z2h′′(z)+2zg′(z)+ z2g′′(z)

zh′(z)− zg′(z)
≺ 1+Az

1+Bz
, (1.3)

where −B≤ A < B≤ 1, 0≤ k < ∞ and θ ∈ R.
Finally, we let HC(k,A,B)≡ HC(k,A,B)∩H.
By suitably specializing the parameters, the classes HC(k,A,B) reduces to the various subclasses of harmonic
univalent functions. Such as,
(i) HC(0,A,B) = KH(A,B) ([5]),
(ii) HC(k,2α−1,1) = HCV (k,α), 0≤ α < 1 ([7]),
(iii) HC(1,2γ−1,1) = RSH(1,γ), 0≤ γ < 1 ([12]),
(iv) HC(0,2α−1,1) = HC(α), 0≤ α < 1 ([1], [8], [6]),
(v) HC(0,−1,1) = HC ([9]).
Making use of the techniques and methodology used by Dziok (see [3], [4]), Dziok et al. [5], in this paper,
we find necessary and sufficient conditions, distortion bounds, compactness and extreme points for the above
defined class HC(k,A,B).

2. Main Results

For functions f1 and f2 ∈ H of the form

fm(z) = z+
∞

∑
n=2

am,nzn +
∞

∑
n=1

bm,nzn, (z ∈ E, m = 1,2),

we define the Hadamard product of f1 and f2 by

( f1 ∗ f2)(z) = z+
∞

∑
n=2

a1,n a2,nzn +
∞

∑
n=1

b1,n b2,nzn (z ∈ E).

First we state and prove the necessary and sufficient conditions for harmonic functions in HC(k,A,B).
Theorem 2.1 Let f ∈ H. Then f ∈ HC(k,A,B) if and only if

f (z)∗φ(z;ζ ) 6= 0, (ζ ∈ C, |ζ |= 1, z ∈ E\{0}),

where

φ(z;ζ ) =
(B−A)ζ z+2(1+ keiθ )z2 +[A+(1+2keiθ )B]ζ z2

(1− z)3

+
2(1+ keiθ )z+[A+(1+2keiθ )B]ζ z+(B−A)ζ z2

(1− z)3 .

Proof. Let f ∈ H be of the form (1.1). Then f ∈ HC(k,A,B) if and only if it satisfies (1.3) or equivalently

1+(1+ keiθ )
z2h′′(z)+2zg′(z)+ z2g′′(z)

zh′(z)− zg′(z)
6= 1+Aζ

1+Bζ
, (2.1)

where ζ ∈ C, |ζ |= 1 and z ∈ E\{0}. Since

h(z) = h(z)∗ z
1− z

, g(z) = g(z)∗ z
1− z

,

zh′(z) = h(z)∗ z
(1− z)2 , zg′(z) = g(z)∗ z

(1− z)2

and

z2h′′(z) = h(z)∗ 2z2

(1− z)3 , z2g′′(z) = g(z)∗ 2z2

(1− z)3 ,
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the inequality (2.1) yields

(1+Bζ )
[
zh′(z)+(1+ keiθ )(z2h′′(z)+ z2g′′(z))+(1+2keiθ )zg′(z)

]

−(1+Aζ )
[
zh′(z)− zg′(z)

]

= h(z)∗
{
(1+Bζ )

[
z

(1− z)2 +(1+ keiθ )
2z2

(1− z)3

]
− (1+Aζ )

z
(1− z)2

}

+g(z)∗
{
(1+Bζ )

[
(1+2keiθ )

z̄
(1− z̄)2 +(1+ keiθ )

2z2

(1− z)3

]

+(1+Aζ )
z̄

(1− z̄)2

}

= h(z)∗ (B−A)ζ z+2(1+ keiθ )z2 +[A+(1+2keiθ )B]ζ z2

(1− z)3

+g(z)∗ 2(1+ keiθ )z+[A+(1+2keiθ )B]ζ z+(B−A)ζ z2

(1− z)3

= f (z)∗φ(z;ζ ) 6= 0.

Here we state a result due to Silverman [9], which we will use throughout this paper.
Theorem 2.2 Let f be of the form (1.1). If

∞

∑
n=2

n2|an|+
∞

∑
n=1

n2|bn| ≤ 1, (2.2)

then f is harmonic, sense preserving, univalent in E, and f ∈ HC. Condition (2.2) is also necessary if
f ∈ HC∩H .
Now we state and prove a sufficient coefficient bound for the class HC(k,A,B).
Theorem 2.3 Let f be of the form (1.1). If 0≤ k < ∞, −B≤ A < B≤ 1, and

∞

∑
n=2

Φn |an|+
∞

∑
n=1

Ψn |bn| ≤ B−A, (2.3)

where
Φn = n [(1+ k)(Bn+n−1)−A−Bk] (2.4)

and
Ψn = n [(1+ k)(Bn+n+1)+A+Bk] , (2.5)

then f is harmonic, sense preserving, univalent in E, and f ∈ HC(k,A,B).

Proof. Since n(B−A) ≤ (1 + k)(Bn + n− 1)− A− Bk and n(B−A) ≤ (1 + k)(Bn + n + 1) + A + Bk for
0≤ k < ∞, and −B≤ A < B≤ 1, it follows from Theorem 2.2 that f ∈ HC and hence f is sense preserving
and convex univalent in E. Now, we only need to show that if (1.3) holds then f ∈ HC(k,A,B). By definition
of subordination, f ∈ HC(k,A,B) if and only if there exists a complex valued function w; w(0) = 0, |w(z)|<
1 (z ∈ E) such that

1+(1+ keiθ )
z2h′′(z)+2zg′(z)+ z2g′′(z)

zh′(z)− zg′(z)
=

1+Aw(z)
1+Bw(z)

or equivalently ∣∣∣∣
(1+keiθ )(z2h′′(z)+z2g′′(z))+2(1+keiθ )zg′(z)

(B−A)zh′(z)+B(1+keiθ )(z2h′′(z)+z2g′′(z))+[A+B(1+2keiθ )]zg′(z)

∣∣∣∣< 1. (2.6)
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Substituting for z2h′′(z), zh′(z), z2g′′(z) and zg′(z) in (2.6), we obtain
∣∣∣(1+ keiθ )

(
z2h′′(z)+ z2g′′(z)+2zg′(z)

)∣∣∣

−
∣∣∣(B−A)zh′(z)+B(1+ keiθ )(z2h′′(z)+ z2g′′(z))

+[A+B(1+2keiθ )]zg′(z)
∣∣∣

=

∣∣∣∣∣
∞

∑
n=2

n(n−1)(1+ keiθ )anzn +
∞

∑
n=1

n(n+1)(1+ keiθ )bnzn

∣∣∣∣∣

−
∣∣∣∣∣(B−A)z+

∞

∑
n=2

n
[
Bn−A+Bkeiθ (n−1)

]
anzn

+
∞

∑
n=1

n
[
Bn+A+Bkeiθ (n+1)

]
bnzn

∣∣∣∣∣

≤
∞

∑
n=2

n [(1+ k)(Bn+n−1)−A−Bk] |an| |z|n

+
∞

∑
n=1

n [(1+ k)(Bn+n+1)+A+Bk] |bn| |z|n− (B−A) |z|

≤ |z|
{

∞

∑
n=2

n [(1+ k)(Bn+n−1)−A−Bk] |an|

+
∞

∑
n=1

n [(1+ k)(Bn+n+1)+A+Bk] |bn|− (B−A)

}

< 0,

by (2.3).

The harmonic functions

f (z) = z+
∞

∑
n=2

B−A
Φn

xnzn +
∞

∑
n=1

B−A
Ψn

ynz̄n, (2.7)

where ∑∞
n=2 |xn|+∑∞

n=1 |yn|= 1, show that the coefficient bound given by in Theorem 2.3 is sharp.
Since

∞

∑
n=2

Φn |an|+
∞

∑
n=1

Ψn |bn|= (B−A)
∞

∑
n=2
|xn|+(B−A)

∞

∑
n=1
|yn|= B−A,

the functions of the form (2.7) are in HC(k,A,B).
Next we show that the bound (2.3) is also necessary for HC(k,A,B).
Theorem 2.4 Let f = h+g with h and g of the form (1.2). Then f ∈ HC(k,A,B) if and only if the condition
(2.3) holds.

Proof. In view of Theorem 2.3, we only need to show that f /∈ HC(k,A,B) if condition (2.3) does not hold.
We note that a necessary and sufficient condition for f = h+g given by (1.2) to be in HC(k,A,B) is that the
coefficient condition (2.3) to be satisfied. Equivalently, we must have

∣∣∣∣∣∣∣∣

−
∞
∑

n=2
n(n−1)(1+ keiθ )|an|zn−

∞
∑

n=1
n(n+1)(1+ keiθ ) |bn|zn

(B−A)z−
∞
∑

n=2
n [Bn−A+Bkeiθ (n−1)] |an|zn−

∞
∑

n=1
n [Bn+A+Bkeiθ (n+1)] |bn| z̄n

∣∣∣∣∣∣∣∣
< 1.

For z = r < 1 we obtain
∞
∑

n=2
n(n−1)(1+k)|an|rn−1+

∞
∑

n=1
n(n+1)(1+k)|bn|rn−1

(B−A)−
∞
∑

n=2
n[Bn−A+Bk(n−1)]|an|rn−1−

∞
∑

n=1
n[Bn+A+Bk(n+1)]|bn|rn−1

< 1. (2.8)

If condition (2.3) does not hold then condition (2.8) does not hold for r sufficiently close to 1. Thus there
exists z0 = r0 in (0,1) for which the quotient (2.8) is greater than 1. This contradicts the required condition for
f ∈ HC(k,A,B) and so the proof is completed.
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Theorem 2.5 Let f ∈ HC(k,A,B). Then for |z|= r < 1, we have

| f (z)| ≤ (1+ |b1|)r

+
1
2

(
B−A

(1+k)(2B+1)−A−Bk −
(1+k)(B+2)+A+Bk
(1+k)(2B+1)−A−Bk |b1|

)
r2

and

| f (z)| ≥ (1−|b1|)r

− 1
2

(
B−A

(1+k)(2B+1)−A−Bk −
(1+k)(B+2)+A+Bk
(1+k)(2B+1)−A−Bk |b1|

)
r2.

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be
omitted. Let f ∈ HC(k,A,B). Taking the absolute value of f we have

| f (z)| ≤ (1+ |b1|)r+
∞

∑
n=2

(|an|+ |bn|)rn

≤ (1+ |b1|)r+
B−A

2 [(1+ k)(2B+1)−A−Bk]

×
∞

∑
n=2

(Φn |an|+Ψn |bn|)r2

≤ (1+ |b1|)r+
{B−A− [(1+ k)(B+2)+A+Bk]|b1|}

2 [(1+ k)(2B+1)−A−Bk]
r2.

The following covering result follows from the left hand inequality in Theorem 2.5.
Corollary 2.6 Let f = h+g with h and g of the form (1.2). If f ∈ HC(k,A,B) then

{
w : |w|< 2(1+ k)(B+1)+(B−A)(1−3|b1|)

2 [(1+ k)(2B+1)−A−Bk]

}
⊂ f (E).

Theorem 2.7 Set
h1(z) = z, hn(z) = z− B−A

Φn
zn, (n = 2,3, ...)

and
gn(z) = z− B−A

Ψn
z̄n, (n = 1,2, ...).

Then f ∈ HC(k,A,B) if and only if it can be expressed as

f (z) =
∞

∑
n=1

(xnhn(z)+ yngn(z)) ,

where xn ≥ 0, yn ≥ 0 and
∞
∑

n=1
(xn + yn) = 1. In particular, the extreme points of HC(k,A,B) are {hn} and {gn}.

Proof. Suppose

f (z) =
∞

∑
n=1

(xnhn(z)+ yngn(z))

=
∞

∑
n=1

(xn + yn)z−
∞

∑
n=2

B−A
Φn

xnzn−
∞

∑
n=1

B−A
Ψn

ynz̄n.

Then

∞

∑
n=2

Φn |an|+
∞

∑
n=1

Ψn |bn| = (B−A)
∞

∑
n=2

xn +(B−A)
∞

∑
n=1

yn

= (B−A)(1− x1)≤ B−A
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and so f ∈ HC(k,A,B). Conversely, if f ∈ HC(k,A,B), then

|an| ≤
B−A

Φn
and |bn| ≤

B−A
Ψn

.

Set
xn =

Φn

B−A
|an| (n = 2,3, ...) and yn =

Ψn

B−A
|bn| (n = 1,2, ...).

Then note by Theorem 2.4, 0≤ xn ≤ 1(n = 2,3, ...) and 0≤ yn ≤ 1 (n = 1,2, ...). We define

x1 = 1−
∞

∑
n=2

xn−
∞

∑
n=1

yn

and note that by Theorem 2.4, x1≥ 0. Consequently, we obtain f (z) =∑∞
n=1 (xnhn(z)+ yngn(z)) as required.

Now we show that HC(k,A,B) is closed under convex combinations of its members.
Theorem 2.8 The class HC(k,A,B) is closed under convex combination.

Proof. For i = 1,2,3, ... let fi ∈ HC(k,A,B), where fi is given by

fi(z) = z−
∞

∑
n=2
|ani |zn−

∞

∑
n=1
|bni |z̄n.

Then by (2.3),
∞

∑
n=1

(Φn|ani |+Ψn|bni |)≤ 2(B−A). (2.9)

For ∑∞
i=1 ti = 1, 0≤ ti ≤ 1, the convex combination of fi may be written as

∞

∑
i=1

ti fi(z) = z−
∞

∑
n=2

(
∞

∑
i=1

ti|ani |
)

zn−
∞

∑
n=1

(
∞

∑
i=1

ti|bni |
)

z̄n.

Then by (2.6),

∞

∑
n=1

(
Φn

∞

∑
i=1

ti|ani |+Ψn

∞

∑
i=1

ti|bni |
)

=
∞

∑
i=1

ti

(
∞

∑
n=1

[Φn|ani |+Ψn|bni |]
)

≤ 2(B−A)
∞

∑
i=1

ti = 2(B−A).

This is the condition required by (2.3) and so ∑∞
i=1 ti fi(z) ∈ HC(k,A,B).
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1,2Department of Mathematics, Bursa Uludag University, 16059 Bursa, TURKEY

Keywords:
Harmonic functions,
univalent functions,
Hadamard product,
multiplier transformation,
modified differential
operator,
subordination.
MSC: 30C45, 30C50

Abstract: In the paper, we introduce new subclasses of functions defined by
multiplier differential operator and give coefficient bounds for these subclasses.
Also, we obtain necessary and sufficient convolution conditions, distortion bounds
and extreme points for these subclasses of functions.

1. Introduction and Preliminaries

Let Ur = {z ∈ C : |z|< r} be open disk of radius r of complex plane and let U =U1 be the open unit disk.
We denote by A the class of analytic functions on U .
A harmonic mapping f of the simply connected domain D is a complex-valued function of the form f = h+g,
where h and g analytic and h(0) = h′(0)−1 = 0, g(0) = 0. We call h and g analytic and co-analytic part of
f , respectively. The Jacobian of f is given by J f (z) = | fz(z)|2−| fz(z)|2 = |h′(z)|2−|g′(z)|2 . A result of Lewy
[13] states that f is locally univalent if and only if its Jacobian is never zero, and is sense-preserving if the
Jacobian is positive.
By SH we denote the class of complex-valued, sense-preserving univalent harmonic mappings that are normal-
ized in U . Then for f = h+g ∈ SH, we may express the analytic functions h and g as

h(z) = z+
∞

∑
k=2

akzk, g(z) =
∞

∑
k=1

bkzk; |b1|< 1. (1.1)

Note that SH reduces to the class S of normalized analytic univalent sense-preserving functions in U , if the
co-analytic part of f is identically zero.
The subclass SH0 of SH consists of all functions in SH which have the additional property g′(0) = b1 = 0.
Also, notice that S⊂ SH0 ⊂ SH.
In 1984 Clunie and Sheil-Small [6] investigated the class SH as well as its geometric subclasses and obtained
some coefficient bounds. Since then, there have been several related papers on SH and its subclasses such as
Avcı and Złotkiewicz [3], Silverman [15], Jahangiri [11], Silverman and Silvia [16], Yaşar and Yalçın [17],
Yalçın [19] studied the harmonic univalent functions.
For f ∈ A, the differential operator Dn

α,µ(λ ,w) was introduced by Bucur et al. [4], where n ∈ N0 = N∪
{0}, µ,λ ,w≥ 0, 0≤ α ≤ µwλ .
Next, for f ∈ SH of the form (1.1) Altınkaya and Yalçın [1] defined the modified differential operator
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Dn
α,µ(λ ,w) : SH→ SH by

D0
α,µ(λ ,w) f (z) = f (z),

D1
α,µ(λ ,w) f (z) = (α−µwλ ) f (z)+(µwλ −α +1)(z fz(z)− z fz(z)),

...
Dn

α,µ(λ ,w) f (z) = D1
α,µ(λ ,w)

(
Dn−1

α,µ (λ ,w) f (z)
)
.

(1.2)

If f is given by (1.1), then from (1.2), we see that

Dn
α,µ(λ ,w) f (z) = Dn

α,µ(λ ,w)h(z)+(−1)nDn
α,µ(λ ,w)g(z),

where

Dn
α,µ(λ ,w)h(z) = z+

∞

∑
k=2

[
(k−1)(µwλ −α)+ k

]n
akzk

and

Dn
α,µ(λ ,w)g(z) =

∞

∑
k=1

[
(k+1)(µwλ −α)+ k

]n
bkzk,

where µ,λ ,w≥ 0, 0≤ α ≤ µwλ (Altınkaya and Yalçın [1]).
We remark that when f ∈ A, for α = µ = 0 we get Sălăgean differential operator [14], for α = λ = w = 1 we
get the operator introduced by Al-Oboudi [2], for λ = w = 1 we obtain the operator introduced by Darus and
Ibrahim [7], if α = 1 we get the operator introduced by Darus and Faisal [8].
Also, we notice that when f ∈ SH, for α = µ = 0 we obtain modified Sălăgean differential operator introduced
by Jahangiri et al. [12], and if α = λ = w = 1 we get the operator introduced by Yaşar and Yalçın [18].
The Hadamard product of functions f1 and f2 of the form

ft (z) = z+
∞

∑
k=2

at,kzk +
∞

∑
k=1

bt,kzk (z ∈U, t = {1,2})

is defined by

( f1 ∗ f2)(z) = z+
∞

∑
k=2

a1,ka2,kzk +
∞

∑
k=1

b1,kb2,kzk.

Also if f is given by (1.1), then we have

Dn
α,µ(λ ,w) f (z) = f (z)∗

(
ψ1(z)+ψ2(z)

)
∗ ...∗

(
ψ1(z)+ψ2(z)

)

︸ ︷︷ ︸
n times

,

= h(z)∗ψ1(z)∗ ...∗ψ1(z)︸ ︷︷ ︸
n times

+g(z)∗ψ2(z)∗ ...∗ψ2(z)︸ ︷︷ ︸
n times

,

where

ψ1(z) =
z+(µwλ −α)z2

(1− z)2 , ψ2(z) =
(µwλ −α)z2 +(2α−2µwλ −1)z

(1− z)2 .

With a view to recalling the principle of subordination between analytic functions, let the functions f and g
be analytic in U. Given functions f ,g ∈ A, f is subordinate to g if there exists a complex-valued function φ
which maps U into itself with φ (0) = 0 such that f (z) = g(φ (z)) , z ∈U. We denote this subordination by
f (z)≺ g(z) , z ∈U. In particular, if the function g is univalent in U , the above subordination is equivalent to
f (0) = g(0), f (U)⊂ g(U).
Denote by

SHn,λ
α,µ,w(A,B)

(
µ,λ ,w≥ 0, 0≤ α ≤ µwλ , −B≤ A < B≤ 1

)

the subclass of SH consisting of functions f of the form (1.1) that satisfy the condition

Dn+1
α,µ (λ ,w) f (z)

Dn
α,µ(λ ,w) f (z)

≺ 1+Az
1+Bz

, (1.3)

where Dn
α,µ(λ ,w) f (z) is defined by (1.2).

By suitably specializing the parameters, the class SHn,λ
α,µ,w(A,B) reduces to the various subclasses of harmonic

univalent functions. Such as,
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• SHn,λ
α,µ,w(2β −1,1) = SH(λ ,w,n,α,β ) (Altınkaya and Yalçın [1]),

• SHn,1
1,µ,1(2β −1,1) = SH(µ,n,β ); 0≤ β < 1, µ ≥ 1 (Yaşar and Yalçın [18]),

• SHn,λ
0,0,w(2β −1,1) = H(n,β ); 0≤ β < 1, (Jahangiri et al. [12]),

• SH0,λ
0,0,w(−1,1) = SH∗(0) (Avcı and Zlotkiewicz [3], Silverman [15], Silverman and Silvia [16]),

• SH0,λ
0,0,w(2β −1,1) = SH∗(β ); 0≤ β < 1, (Jahangiri [11]),

• SH1,λ
0,0,w(−1,1) = KH(0) (Avcı and Zlotkiewicz [3], Silverman [15], Silverman and Silvia [16]),

• SH1,λ
0,0,w(2β −1,1) = KH(β ); 0≤ β < 1, (Jahangiri [11]),

• SHn,λ
0,0,w(A,B) = Hn(A,B) (Dziok et al. [10]),

• SH0,λ
0,0,w(A,B) = SH∗(A,B) (Dziok [9]),

• SHn,1
0,µ,1(A,B) = SH(µ,n,A,B) (Çakmak et al. [5]).

Making use of the techniques and methodology used by Dziok [9], Dziok et al. [10], in this paper we find
necessary and sufficient conditions, distortion bounds, compactness and extreme points for the above defined
class SHn,λ

α,µ,w(A,B).

2. Main Results

First, we provide a necessary and sufficient convolution condition for the harmonic functions in SHn,λ
α,µ,w(A,B).

Theorem 2.1 For z ∈U\{0}, let f ∈ SH. Then f ∈ SHn,λ
α,µ,w(A,B) if and only if

Dn
α,µ(λ ,w) f (z)∗ϕ (z;ζ ) 6= 0 (ζ ∈ C, |ζ |= 1) ,

where

ϕ (z;ζ ) = z
(B−A)ζ +

[
1+µwλ −α +

(
A+B(µwλ −α)

)
ζ
]

z

(1− z)2

+z
2(α−µwλ −1)+

[
2B(α−µwλ )− (B+A)

]
ζ +

[
µwλ −α +1+

(
A+B(µwλ −1)

)
ζ
]

z

(1− z)2 .

Proof. Let f ∈ SH. Then f ∈ SHn,λ
α,µ,w(A,B) if and only if the condition (1.3) holds or equivalently

Dn+1
α,µ (λ ,w) f (z)

Dn
α,µ(λ ,w) f (z)

6= 1+Aζ
1+Bζ

(ζ ∈ C, |ζ |= 1) . (2.1)

Now for

Dn
α,µ(λ ,w) f (z) = Dn

α,µ(λ ,w) f (z)∗
(

z
1− z

+
z

1− z

)

and
Dn+1

α,µ (λ ,w) f (z) = Dn
α,µ(λ ,w) f (z)∗

(
ψ1(z)+ψ2(z)

)
,

the inequality (2.1) yields

(1+Bζ )Dn+1
α,µ (λ ,w) f (z)− (1+Aζ )Dn

α,µ(λ ,w) f (z)

= Dn
α,µ(λ ,w) f (z)∗

{
(1+Bζ )[z+(µwλ−α)z2]

(1−z)2 +
(1+Bζ )[(2α−2µwλ−1)z+(µwλ−α)z2]

(1−z)2

}

−Dn
α,µ(λ ,w) f (z)∗

{
(1+Aζ )z

1−z + (1+Aζ )z
1−z

}

= Dn
α,µ(λ ,w) f (z)∗

{
(B−A)ζ z+[1+µwλ−α+(A+B(µwλ−α))ζ ]z2

(1−z)2

+
[2(α−µwλ−1)+(2B(α−µwλ )−(B+A))ζ ]z+[µwλ−α+1+(A+B(µwλ−α))ζ ]z2+

(1−z)2

}

= Dn
α,µ(λ ,w) f (z)∗ϕ (z;ζ ) 6= 0.
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A sufficient coefficient for the functions in SHn,λ
α,µ,w(A,B) is provided in the following.

Theorem 2.2 Let f = h+g be so that h and g are given by (1.1). Then f ∈ SHn,λ
α,µ,w(A,B), if

∞

∑
k=2

Dk |ak|+
∞

∑
k=1

Ek |bk| ≤ B−A, (2.2)

where
Dk =

[
(k−1)(µwλ −α)+ k

]n{
(k−1)(µwλ −α)(1+B)+ k(1+B)− (1+A)

}
(2.3)

and
Ek =

[
(k+1)(µwλ −α)+ k

]n{
(k+1)(µwλ −α)(1+B)+ k(1+B)+(1+A)

}
. (2.4)

Proof. It is easy to see that the theorem is true for f (z) = z. So, we assume that ak 6= 0 or bk 6= 0 for k ≥ 2.
Since Dk ≥ k(B−A) and Ek ≥ k(B−A) by (2.2), we obtain

∣∣h′(z)
∣∣−
∣∣g′(z)

∣∣ ≥ 1−
∞

∑
k=2

k |ak| |z|k−1−
∞

∑
k=1

k |bk| |z|k−1

≥ 1−|z|
(

∞

∑
k=2

k |ak|+
∞

∑
k=1

k |bk|
)

≥ 1− |z|
B−A

(
∞

∑
k=2

Dk |ak|+
∞

∑
k=1

Ek |bk|
)

≥ 1−|z|> 0.

Therefore f is sense preserving and locally univalent in U . For the univalence condition, consider z1,z2 ∈U so
that z1 6= z2. Then ∣∣∣∣

zk
1− zk

2
z1− z2

∣∣∣∣=
∣∣∣∣∣

k

∑
m=1

zm−1
1 zk−m

2

∣∣∣∣∣≤
k

∑
m=1

∣∣zm−1
1

∣∣
∣∣∣zk−m

2

∣∣∣< k, k ≥ 2.

Hence

∣∣∣∣
f (z1)− f (z2)

h(z1)−h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣
g(z1)−g(z2)

h(z1)−h(z2)

∣∣∣∣= 1−

∣∣∣∣∣∣∣∣

∞
∑

k=1
bk
(
zk

1− zk
2
)

(z1− z2)+
∞
∑

k=2
ak
(
zk

1− zk
2

)

∣∣∣∣∣∣∣∣

> 1−

∞
∑

k=1
k |bk|

1−
∞
∑

k=2
k |ak|

≥ 1−

∞
∑

k=1

Ek
B−A |bk|

1−
∞
∑

k=2

Dk
B−A |ak|

≥ 0,

which proves univalence.
On the other hand, f ∈ SHn,λ

α,µ,w(A,B) if and only if there exists a complex valued function φ ; φ(0) = 0, |φ(z)|<
1 (z ∈U) such that

Dn+1
α,µ (λ ,w) f (z)

Dn
α,µ(λ ,w) f (z)

=
1+Aφ(z)
1+Bφ(z)

or equivalently ∣∣∣∣∣
Dn+1

α,µ (λ ,w) f (z)−Dn
α,µ(λ ,w) f (z)

BDn+1
α,µ (λ ,w) f (z)−ADn

α,µ(λ ,w) f (z)

∣∣∣∣∣< 1, (z ∈U). (2.5)
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The above inequality (2.5) holds, since for |z|= r (0 < r < 1) we obtain
∣∣Dn+1

α,µ (λ ,w) f (z)−Dn
α,µ(λ ,w) f (z)

∣∣−
∣∣BDn+1

α,µ (λ ,w) f (z)−ADn
α,µ(λ ,w) f (z)

∣∣

=

∣∣∣∣
∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n
(k−1)(µwλ −α +1)akzk

+ (−1)n+1
∞
∑

k=1

[
(k+1)(µwλ −α)+ k

]n
(k+1)(µwλ −α +1)bkzk

∣∣∣∣

−
∣∣∣∣(B−A)z+

∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n [
B(k−1)(µwλ −α)+Bk−A

]
akzk

+ (−1)n+1
∞
∑

k=1

[
(k+1)(µwλ −α)+ k

]n [
B(k+1)(µwλ −α)+Bk+A

]
bkzk

∣∣∣∣

≤
∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n{
(k−1)(µwλ −α)(1+B)+ k(1+B)− (1+A)

}
|ak| |z|k

+
∞
∑

k=1

[
(k+1)(µwλ −α)+ k

]n{
(k+1)(µwλ −α)(1+B)+ k(1+B)+(1+A)

}
|bk| |z|k

−(B−A) |z|

< |z|
{

∞
∑

k=2
Dk |ak|+

∞
∑

k=1
Ek |bk|− (B−A)

}
≤ 0,

therefore f ∈ SHn,λ
α,µ,w(A,B), and so the proof is completed.

Next we show that the condition (2.2) is also necessary for the functions f ∈ SH to be in the class SHT n,λ
α,µ,w(A,B)=

T n∩SHn,λ
α,µ,w(A,B) where T n is the class of functions f = h+g ∈ SH so that

f = h+g = z−
∞

∑
k=2
|ak|zk +(−1)n

∞

∑
k=1
|bk|zk (z ∈U). (2.6)

Theorem 2.3 Let f = h+ g be defined by (2.6). Then f ∈ SHT n,λ
α,µ,w(A,B) if and only if the condition (2.2)

holds.

Proof. The ‘if’ part follows from Theorem 2.2. For the ‘only-if’ part, assume that f ∈ SHT n,λ
α,µ,w(A,B), then by

(2.5) we have
∣∣∣∣∣∣

∞
∑

k=2

[
(k−1)(µwλ−α)+k

]n
(k−1)(µwλ−α+1)|ak |zk+

∞
∑

k=1

[
(k+1)(µwλ−α)+k

]n
(k+1)(µwλ−α+1)|bk |zk

(B−A)z−
∞
∑

k=2

[
(k−1)(µwλ−α)+k

]n[
B(k−1)(µwλ−α)+Bk−A

]
|ak |zk−

∞
∑

k=1

[
(k+1)(µwλ−α)+k

]n[
B(k+1)(µwλ−α)+Bk+A

]
|bk |zk

∣∣∣∣∣∣
< 1.

For z = r < 1 we obtain
{

∞
∑

k=2

[
(k−1)(µwλ−α)+k

]n
(k−1)(µwλ−α+1)|ak |+

∞
∑

k=1

[
(k+1)(µwλ−α)+k

]n
(k+1)(µwλ−α+1)|bk |

}
rk−1

B−A−
{

∞
∑

k=2

[
(k−1)(µwλ−α)+k

]n[
B(k−1)(µwλ−α)+Bk−A

]
|ak |+

∞
∑

k=1

[
(k+1)(µwλ−α)+k

]n[
B(k+1)(µwλ−α)+Bk+A

]
|bk |

}
rk−1

< 1.

Thus, for Dk and Ek as defined by (2.3) and (2.4), we have
∞

∑
k=2

Dk |ak|rk−1 +
∞

∑
k=1

Ek |bk|rk−1 < B−A (0≤ r < 1). (2.7)

Let {σk} be the sequence of partial sums of the series
∞

∑
k=2

Dk |ak|+
∞

∑
k=1

Ek |bk| .

Then {σk} is a nondecreasing sequence and by (2.7) it is bounded above by B−A. Thus, it is convergent and
∞

∑
k=2

Dk |ak|+
∞

∑
k=1

Ek |bk|= lim
k→∞

σk ≤ B−A.

This gives the condition (2.2).
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In the following we show that the class of functions of the form (2.6) is convex and compact.

Theorem 2.4 The class SHT n,λ
α,µ,w(A,B) is a convex and compact subset of SH.

Proof. Let ft ∈ SHT n,λ
α,µ,w(A,B), where

ft(z) = z−
∞

∑
k=2

∣∣at,k
∣∣zk +(−1)n

∞

∑
k=1

∣∣bt,k
∣∣zk (z ∈U, t ∈ N). (2.8)

Then 0≤ η ≤ 1, let f1, f2 ∈ SHT n,λ
α,µ,w(A,B) be defined by (2.8). Then

κ(z) = η f1(z)+(1−η) f2(z)

= z−
∞

∑
k=2

(
η
∣∣a1,k

∣∣+(1−η)
∣∣a2,k

∣∣)zk

+(−1)n
∞

∑
k=1

(
η
∣∣b1,k

∣∣+(1−η)
∣∣b2,k

∣∣)zk

and
∞
∑

k=2
Dk
[
η
∣∣a1,k

∣∣+(1−η)
∣∣a2,k

∣∣]+
∞
∑

k=1
Ek
[
η
∣∣b1,k

∣∣+(1−η)
∣∣b2,k

∣∣]

= η
{

∞
∑

k=2
Dk
∣∣a1,k

∣∣+
∞
∑

k=1
Ek
∣∣b1,k

∣∣
}
+(1−η)

{
∞
∑

k=2
Dk
∣∣a2,k

∣∣+
∞
∑

k=1
Ek
∣∣b2,k

∣∣
}

≤ η(B−A)+(1−η)(B−A) = B−A.

Thus, the function κ = η f1 + (1− η) f2 belongs to the class SHT n,λ
α,µ,w(A,B). This means that the class

SHT n,λ
α,µ,w(A,B) is convex.

However, for ft ∈ SHT n,λ
α,µ,w(A,B), t ∈ N and |z| ≤ r (0 < r < 1), we get

| ft(z)| ≤ r+
∞

∑
k=2

∣∣at,k
∣∣rk +

∞

∑
k=1

∣∣bt,k
∣∣rk

≤ r+
∞

∑
k=2

Dk
∣∣at,k

∣∣rk +
∞

∑
k=1

Ek
∣∣bt,k

∣∣rk

≤ r+(B−A)r2.

Therefore, SHT n,λ
α,µ,w(A,B) is locally uniformly bounded. Let

ft(z) = z−
∞

∑
k=2

∣∣at,k
∣∣zk +(−1)n

∞

∑
k=1

∣∣bt,k
∣∣zk (z ∈U, t ∈ N)

and let f = h+g be so that h and g are given by (1.1). Using Theorem 2.3 we obtain

∞

∑
k=2

Dk
∣∣at,k

∣∣+
∞

∑
k=1

Ek
∣∣bt,k

∣∣≤ (B−A). (2.9)

If we assume that ft → f , then we conclude that
∣∣at,k

∣∣→ |ak| and
∣∣bt,k

∣∣→ |bk| as k→ ∞ (t ∈ N). Let {σk} be

the sequence of partial sums of the series
∞
∑

k=2
Dk
∣∣at,k

∣∣+
∞
∑

k=1
Ek
∣∣bt,k

∣∣. Then {σk} is a nondecreasing sequence

and by (2.9) it is bounded above by B−A. Thus, it is convergent and

∞

∑
k=2

Dk
∣∣at,k

∣∣+
∞

∑
k=1

Ek
∣∣bt,k

∣∣= lim
k→∞

σk ≤ B−A.

Therefore f ∈ SHT n,λ
α,µ,w(A,B) and therefore the class SHT n,λ

α,µ,w(A,B) is closed. In consequence, the class
SHT n,λ

α,µ,w(A,B) is compact subset of SH, which completes the proof.

We continue with the following theorem.
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Theorem 2.5 Extreme points of the class SHT n,λ
α,µ,w(A,B) are the functions f of the form (1.1) where h = hk

and g = gk are of the form
h1(z) = z, hk(z) = z− B−A

Dk
zk,

gk(z) = (−1)n B−A
Ek

zk (z ∈U, k ≥ 2).
(2.10)

Proof. Let gk = η f1 +(1−η) f2 where 0 < η < 1 and f1, f2 ∈ SHT n,λ
α,µ,w(A,B) are functions of the form

ft(z) = z−
∞

∑
k=2

∣∣at,k
∣∣zk +(−1)n

∞

∑
k=2

∣∣bt,k
∣∣zk (z ∈U, t ∈ {1,2}).

Then, by (2.10), we have
∣∣b1,k

∣∣=
∣∣b2,k

∣∣= B−A
Ek

and therefore a1,t = a2,t = 0 for t ∈ {2,3, . . .} and b1,t = b2,t = 0 for t ∈ {2,3, . . .}\{k} . It follows that
gk(z) = f1(z) = f2(z) and gk are in the class of extreme points of the function class SHT n,λ

α,µ,w(A,B). Similarly,
we can verify that the functions hk(z) are the extreme points of the class SHT n,λ

α,µ,w(A,B). Now, suppose that a
function f of the form (1.1) is in the family of extreme points of the class SHT n,λ

α,µ,w(A,B) and f is not of the
form (2.10). Then there exists m ∈ {2,3, . . .} such that

0 < |am|< B−A
[(m−1)(µwλ−α)+m]

n{(m−1)(µwλ−α)(1+B)+m(1+B)−(1+A)}
or

0 < |bm|< B−A
[(m+1)(µwλ−α)+m]

n{(m+1)(µwλ−α)(1+B)+m(1+B)+(1+A)} .

If
0 < |am|< B−A

[(m−1)(µwλ−α)+m]
n{(m−1)(µwλ−α)(1+B)+m(1+B)−(1+A)} ,

then putting

η =
|am|[(m−1)(µwλ−α)+m]

n{(m−1)(µwλ−α)(1+B)+m(1+B)−(1+A)}
B−A

and
Φ =

f −ηhm

1−η
,

we have 0 < η < 1, hm 6= Φ.

Therefore, f is not in the family of extreme points of the class SHT n,λ
α,µ,w(A,B). Similarly, if

0 < |bm|< B−A
[(m+1)(µwλ−α)+m]

n{(m+1)(µwλ−α)(1+B)+m(1+B)+(1+A)} ,

then putting

η =
|bm|[(m+1)(µwλ−α)+m]

n{(m+1)(µwλ−α)(1+B)+m(1+B)+(1+A)}
B−A

and
Φ =

f −ηgm

1−η
,

we have 0 < η < 1, gm 6= Φ.

It follows that f is not in the family of extreme points of the class SHT n,λ
α,µ,w(A,B) and so the proof is completed.
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Abstract: In this paper, a new class of complex-valued harmonic univalent
functions defined by using a new differential operator is introduced. We inves-
tigate coefficient bounds, distortion inequalities, extreme points and inclusion
results for this class.

1. Introduction and Preliminaries

Harmonic functions are famous for their use in the study of minimal surfaces and also play important
roles in a variety of problems in applied mathematics (e.g. see Choquet [4], Dorff [5], Duren [6]). A continuous
function f = u+ iv is a complex valued harmonic function in a complex domain C if both u and v are real
harmonic in C. In any simply connected domain D⊂ C we can write f = h+g, where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for f to be
locally univalent and sense- preserving in D is that

∣∣∣h′(z)
∣∣∣>
∣∣∣g′(z)

∣∣∣ in D (see [3]).
Denote by SH the class of functions f = h+g that are harmonic univalent and sense-preserving in the unit disk

U = {z : z ∈ C and |z|< 1}

for which f (0) = fz(0)−1 = 0. Then for f = h+g ∈ SH, we may express the analytic functions h and g as

h(z) = z+
∞

∑
k=2

akzk, g(z) =
∞

∑
k=1

bkzk. (1.1)

Therefore

f (z) = z+
∞

∑
k=2

akzk +
∞

∑
k=1

bkzk, |b1|< 1.

Note that SH reduces to the class S of normalized analytic univalent functions in U if the co-analytic part of f
is identically zero.
In 1984 Clunie and Sheil-Small [3] investigated the class SH as well as its geometric subclasses and obtained
some coefficient bounds. Since then, there has been several related papers on SH and its subclasses such as Avcı
and Zlotkiewicz [1], Silverman [10], Silverman and Silvia [11], Jahangiri [7] studied the harmonic univalent
functions.
The differential operator Dn

α,µ(λ ,w) (n ∈ N0) was introduced by Bucur et al. [2]. For f = h+g given by (1.1),
we define the following differential operator:

Dn
α,µ(λ ,w) f (z) = Dn

α,µ(λ ,w)h(z)+(−1)nDn
α,µ(λ ,w)g(z),

*Presented by Sibel YALÇIN TOKGÖZ, syalcin@uludag.edu.tr
†sahsene@uludag.edu.tr
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where

Dn
α,µ(λ ,w)h(z) = z+

∞

∑
k=2

[
(k−1)(µwλ −α)+ k

]n
akzk

and

Dn
α,µ(λ ,w)g(z) =

∞

∑
k=1

[
(k+1)(µwλ −α)+ k

]n
bkzk,

where µ,λ ,w≥ 0, 0≤ α ≤ µwλ , with Dn
α,µ(λ ,w) f (0) = 0.

Motivated by the differential operator Dn
α,µ(λ ,w), we define generalization of the differential operator for a

function f = h+g given by (1.1).

D0
α,µ(λ ,w) f (z) = D0 f (z) = h(z)+g(z),

D1
α,µ(λ ,w) f (z) = (α−µwλ )(h(z)+g(z))+(µwλ −α +1)(zh′(z)− zg′(z),

...

Dn
α,µ(λ ,w) f (z) = D

(
Dn−1

α,µ (λ ,w) f (z)
)
. (1.2)

If f is given by (1.1), then from (1.2), we see that

Dn
α,µ(λ ,w) f (z) = z+

∞

∑
k=2

[
(k−1)(µwλ −α)+ k

]n
akzk +(−1)n

∞

∑
k=1

[
(k+1)(µwλ −α)+ k

]n
bkzk. (1.3)

When w = α = 0, we get modified Salagean differential operator [9].
Denote by SH(λ ,w,n,α,β ) the subclass of SH consisting of functions f of the form (1.1) that satisfy the
condition

ℜ

(
Dn+1

α,µ (λ ,w) f (z)
Dn

α,µ(λ ,w) f (z)

)
≥ β (0≤ β < 1), (1.4)

where Dn
α,µ(λ ,w) f (z) is defined by (1.3).

We let the subclass SH(λ ,w,n,α,β ) consisting of harmonic functions fn = h+gn in SH so that h and gn are of
the form

h(z) = z−
∞

∑
k=2

akzk, gn(z) = (−1)n
∞

∑
k=1

bkzk,ak, bk ≥ 0. (1.5)

By suitably specializing the parameters, the classes SH(λ ,w,n,α,β ) reduces to the various subclasses of
harmonic univalent functions. Such as,
(i) SH(0,0,0,0,0) = SH∗(0) (Avcı [1], Silverman [10], Silverman and Silvia [11]),
(ii) SH(0,0,0,0,β ) = SH∗(β ) (Jahangiri [7]),

SH(0,0,0,0,β ) = SH(1,0,β ) (Yalçın [12]),
(iii) SH(0,0,1,0,0) = KH(0) (Avcı [1], Silverman [10], Silverman and Silvia [11]),
(iv) SH(0,0,1,0,β ) = KH(β ) (Jahangiri [7]),

SH(0,0,1,0,β ) = SH(2,1,β ) (Yalçın [12]),
(v) SH(0,0,n,0,β ) = H(n,β ) (Jahangiri et al. [8]),

SH(0,0,n,0,β ) = SH(n+1,n,β ) (Yalçın [12]),
The object of the present paper is to give sufficient condition for functions f = h+g where h and g are given
by (1.1) to be in the class SH(λ ,w,n,α,β ); and it is shown that this coefficient condition is also necessary for
functions belonging to the subclass SH(λ ,w,n,α,β ). Also, we obtain coefficient bounds, distortion inequalities,
extreme points and inclusion results for this class.

2. Coefficient Bounds

Theorem 2.1 Let f = h+g be so that h and g are given by (1.1). Furthermore, let

∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n
|ak|+

∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n
|bk| ≤ 1−β , (2.1)

where µ,λ ,w≥ 0, 0≤ α ≤ µwλ , n ∈N0, 0≤ β < 1. Then f is sense-preserving, harmonic univalent in U and
f ∈ SH(λ ,w,n,α,β ).
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Proof. If z1 6= z2,

∣∣∣∣
f (z1)− f (z2)

h(z1)−h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣

g(z1)−g(z2)

h(z1)−h(z2)

∣∣∣∣= 1−

∣∣∣∣∣∣∣∣

∞
∑

k=1
bk
(
zk

1− zk
2
)

(z1− z2)+
∞
∑

k=2
ak
(
zk

1− zk
2

)

∣∣∣∣∣∣∣∣

> 1−

∞
∑

k=1
k |bk|

1−
∞
∑

k=2
k |ak|

≥ 1−

∞
∑

k=1

(k+β )[(k+1)(µwλ−α)+k]
n

1−β |bk|

1−
∞
∑

k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β
|ak|

≥ 0,

which proves univalence. Note that f is sense preserving in U . This is because

∣∣h′(z)
∣∣ ≥ 1−

∞

∑
k=2

k |ak| |z|k−1 > 1−
∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β
|ak|

≥
∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n

1−β
|bk|>

∞

∑
k=1

k |bk| |z|k−1

≥
∣∣g′(z)

∣∣ .

Using the fact that ℜ(w)≥ β if and only if |1−β +w| ≥ |1+β −w|, it suffices to show that
∣∣(1−β )Dn

α,µ(λ ,w)+Dn+1
α,µ (λ ,w) f (z)

∣∣−
∣∣(1+β )Dn

α,µ(λ ,w)−Dn+1
α,µ (λ ,w)

∣∣≥ 0. (2.2)

Substituting for Dn+1
α,µ (λ ,w) f (z) and Dn

α,µ(λ ,w) f (z) in (2.2), we obtain
∣∣(1−β )Dn

α,µ(λ ,w)+Dn+1
α,µ (λ ,w) f (z)

∣∣−
∣∣(1+β )Dn

α,µ(λ ,w) f (z)−Dn+1
α,µ (λ ,w) f (z)

∣∣

≥ 2(1−β ) |z|−
∞

∑
k=2

[
(k+1−β )+(k−1)(µwλ −α)

][
(k−1)(µwλ −α)+ k

]n
|ak| |z|k

−
∞

∑
k=1

[
(k−1+β )+(k−1)(µwλ −α)

][
(k+1)(µwλ −α)+ k

]n
|bk| |z|k

−
∞

∑
k=2

[
(k−1−β )+(k−1)(µwλ −α)

][
(k−1)(µwλ −α)+ k

]n
|ak| |z|k

−
∞

∑
k=1

[
(k+1+β )+(k−1)(µwλ −α)

][
(k+1)(µwλ −α)+ k

]n
|bk| |z|k

≥ 2(1−β ) |z|
(

1−
∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β
|ak|

−
∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n

1−β
|bk|
)
.

This last expression is non-negative by (2.1), and so the proof is completed.

Theorem 2.2 Let fn = h+gn be given by (1.5). Then fn ∈ SH(λ ,w,n,α,β ) if and only if

∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n
ak +

∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n
bk ≤ 1−β , (2.3)

where µ,λ ,w≥ 0, 0≤ α ≤ µwλ , n ∈ N0, 0≤ β < 1.
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Proof. The "if" part follows from Theorem 2.1 upon noting that SH(λ ,w,n,α,β )⊂ SH(λ ,w,n,α,β ). For the
"only if" part, we show that f /∈ SH(λ ,w,n,α,β ) if the condition (2.3) does not hold. Note that a necessary
and sufficient condition for fn = h+gn given by (1.5), to be in SH(λ ,w,n,α,β ) is that the condition (1.4) to
be satisfied. This is equivalent to

ℜ





(1−β )z−
∞
∑

k=2
(k−β )

[
(k−1)(µwλ −α)+ k

]n
akzk

z−
∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n akzk +
∞
∑

k=1

[
(k+1)(µwλ −α)+ k

]n bkzk

−
∞
∑

k=1
(k+β )

[
(k+1)(µwλ −α)+ k

]n
bkzk

z−
∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n akzk +
∞
∑

k=1
(k+1)

[
(k+1)(µwλ −α)+ k

]n bkzk




≥ 0. (2.4)

The above condition must hold for all values of z, |z|= r < 1. Upon choosing the values of z on the positive
real axis where 0≤ z = r < 1 we must have

(1−β )−
∞
∑

k=2
(k−β )

[
(k−1)(µwλ −α)+ k

]n
akrk−1

1−
∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n akrk−1 +
∞
∑

k=1

[
(k+1)(µwλ −α)+ k

]n bkrk−1

−
∞
∑

k=1
(k+β )

[
(k+1)(µwλ −α)+ k

]n
bkrk−1

1−
∞
∑

k=2

[
(k−1)(µwλ −α)+ k

]n akrk−1 +
∞
∑

k=1

[
(k+1)(µwλ −α)+ k

]n bkrk−1
≥ 0. (2.5)

If the condition (2.3) does not hold, then the numerator in (2.5) is negative for r sufficiently close to 1. Hence
there exist z0 = r0 in (0,1) for which the quotient in (2.5) is negative. This contradicts the required condition
for fn ∈ SH(λ ,w,n,α,β ) and so the proof is complete.

3. Distortion Inequalities and Extreme Points

Theorem 3.1 Let fn ∈ SH(λ ,w,n,α,β ). Then for |z|= r < 1 we have

| fn(z)| ≤ (1+b1)r+
(

(1−β )
(2−β )[µwλ−α+2]

n − (1+β )[2(µwλ−α)+1]
n

(2−β )[µwλ−α+2]
n b1

)
r2

and

| fn(z)| ≥ (1−b1)r−
(

(1−β )
(2−β )[µwλ−α+2]

n − (1+β )[2(µwλ−α)+1]
n

(2−β )[µwλ−α+2]
n b1

)
r2.

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be

163



omitted. Let fn ∈ SH(λ ,w,n,α,β ). Taking the absolute value of fn we have

| fn(z)| ≤ (1+b1)r+
∞

∑
k=2

(ak +bk)rk

≤ (1+b1)r+
∞

∑
k=2

(ak +bk)r2

= (1+b1)r+
(1−β )r2

(2−β )
[
µwλ −α +2

]n
∞

∑
k=2

(2−β )
[
µwλ −α +2

]n

(1−β )
[ak +bk]

≤ (1+b1)r+
(1−β )r2

(2−β )
[
µwλ −α +2

]n

×
∞

∑
k=2

(
(k−β )

[
(k−1)(µwλ −α)+ k

]n

1−β
ak

+
(k+β )

[
(k+1)(µwλ −α)+ k

]n

1−β
bk

)

≤ (1+b1)r+
(1−β )

(2−β )
[
µwλ −α +2

]n
(

1− (1+β )
[
2
(
µwλ −α

)
+1
]n

1−β
b1

)
r2

≤ (1+b1)r+

(
(1−β )

(2−β )
[
µwλ −α +2

]n −
(1+β )

[
2
(
µwλ −α

)
+1
]n

(2−β )
[
µwλ −α +2

]n b1

)
r2.

The following covering result follows from the left hand inequality in Theorem 3.1.

Corollary 3.2 Let fn of the form (1.5) be so that fn ∈ SH(λ ,w,n,α,β ). Then
{

w : |w|< (2−β )[µwλ−α+2]
n−1+β

(2−β )[µwλ−α+2]
n

− (2−β )[µwλ−α+2]
n−(1+β )[2(µwλ−α)+1]

n

(2−β )[µwλ−α+2]
n b1

}
⊂ fn(U).

Theorem 3.3 Let fn be given by (1.5). Then fn ∈ SH(λ ,w,n,α,β ) if and only if

fn(z) =
∞

∑
k=1

(
Xkhk(z)+Ykgnk(z)

)
,

where
h1(z) = z, hk(z) = z− 1−β

(k−β )[(k−1)(µwλ−α)+k]
n zk; (k ≥ 2),

gnk(z) = z+(−1)n 1−β
(k+β )[(k+1)(µwλ−α)+k]

n zk; (k ≥ 1),

∞
∑

k=1
(Xk +Yk) = 1,Xk ≥ 0,Yk ≥ 0.

In particular, the extreme points of SH(λ ,w,n,α,β ) are {hk} and
{

gnk

}
.

Proof. For functions fn of the form (1.5) we may write

fn(z) =
∞

∑
k=1

(
Xkhk(z)+Ykgnk(z)

)

=
∞

∑
k=1

(Xk +Yk)z−
∞

∑
k=2

1−β
(k−β )

[
(k−1)(µwλ −α)+ k

]n Xkzk

+(−1)n
∞

∑
k=1

1−β
(k+β )

[
(k+1)(µwλ −α)+ k

]n Ykzk.
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Then

∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β

(
1−β

(k−β )
[
(k−1)(µwλ −α)+ k

]n Xk

)

+
∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n

1−β

(
1−β

(k+β )
[
(k+1)(µwλ −α)+ k

]n Yk

)

=
∞

∑
k=2

Xk +
∞

∑
k=1

Yk = 1−X1 ≤ 1, and so fn ∈ SH(λ ,w,n,α,β ).

Conversely, if fn ∈ SH(λ ,w,n,α,β ), then

ak ≤
1−β

(k−β )
[
(k−1)(µwλ −α)+ k

]n

and

bk ≤
1−β

(k+β )
[
(k+1)(µwλ −α)+ k

]n .

Setting

Xk =
(k−β )

[
(k−1)(µwλ −α)+ k

]n

1−β
ak; (k ≥ 2),

Yk =
(k+β )

[
(k+1)(µwλ −α)+ k

]n

1−β
bk; (k ≥ 1)

and

X1 = 1−
(

∞

∑
k=2

Xk +
∞

∑
k=1

Yk

)
,

where X1 ≥ 0. Then

fn(z) = X1z+
∞

∑
k=2

Xkhk(z)+
∞

∑
k=1

Ykgnk(z)

as required.

4. Inclusion Results

Theorem 4.1 The class SH(λ ,w,n,α,β ) is closed under convex combinations.

Proof. Let fni ∈ SH(λ ,w,n,α,β ) for i = 1,2, ..., where fni is given by

fni(z) = z−
∞

∑
k=2

akiz
k +(−1)n

∞

∑
k=1

bkiz
k.

Then by (2.3),

∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β
aki +

∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n

1−β
bki ≤ 1. (4.1)

For
∞
∑

i=1
ti = 1, 0≤ ti ≤ 1, the convex combination of fni may be written as

∞

∑
i=1

ti fni(z) = z−
∞

∑
k=2

(
∞

∑
i=1

tiaki

)
zk +(−1)n

∞

∑
k=1

(
∞

∑
i=1

tibki

)
zk.
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Then by (4.1),

∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β

(
∞

∑
i=1

tiaki

)

+
∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n

1−β

(
∞

∑
i=1

tibki

)

=
∞

∑
i=1

ti

(
∞

∑
k=2

(k−β )
[
(k−1)(µwλ −α)+ k

]n

1−β
aki

+
∞

∑
k=1

(k+β )
[
(k+1)(µwλ −α)+ k

]n

1−β
bki

)

≤
∞

∑
i=1

ti = 1.

This is the condition required by (2.3) and so
∞
∑

i=1
ti fni(z) ∈ SH(λ ,w,n,α,β ).
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Abstract: In this paper, we show that, under some statistical level boundedness
assumptions, statistical epi-convergence of a sequence (fn) to a function f implies
the statistical convergence of the minimum values of (fn) to the minimum value
of f. Furthermore, in case (fn) and f have a unique minimum point, we shall prove
that the sequence of the minimizers of (fn) statistically converges to the minimizer
of f.

1. Introduction

In the late of 1960’s, epi-convergence is first studied by Wijsman [15, 16] where it is called infimal convergence.
After Wijsman’s initial contributions, it is studied by Mosco [10] on variational inequalities, by Joly [6] on
topological structures compatible with epi-convergence, by Salinetti and Wets [12] on equisemicontinuous
families of convex functions, by Attouch [2] on the relationship between the epi-convergence of convex
functions and the graphical convergence of their subgradient mappings, and by McLinden and Bergstrom [9] on
the preservation of epi-convergence under various operations performed on convex functions. Furthermore, Dal
Maso [8] called it Γ-convergence. The term epi-convergence is used by Wets [14] in 1980 for the first time.
Epi-convergence is needed to solve some mathematical problems including stochastic optimization, variational
problems and partial differential equations.
In this part fundamental definitions and theorems will be given. First of all, let (X ,d) be a metric space and f ,
( fn) are functions defined on X with n ∈ N. If it is not mentioned explicitly the symbol d stands for the metric
on X .
Let K ⊆ N and if the limit δ (K) = limn→∞

1
n |{k ≤ n : k ∈ K}| exists then it is called asymptotic density of K

where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding n (see [1, 11]).
If δ (K1) = δ (K2) = 1, then δ (K1∩K2) = δ (K1∪K2) = 1.
If δ (K1) = δ (K2) = 0, then δ (K1∩K2) = δ (K1∪K2) = 0.
Statistical convergence of a sequence of scalars was introduced by Fast [3]. Let x = (xk) be a sequence of real
or complex numbers. If for all ε > 0, there exists L such that,

lim
n→∞

1
n
|{k ≤ n : |xn−L| ≥ ε}|= 0,

then the sequence (xk) is statistically convergent to L.
The concepts of statistical limit superior and statistical limit inferior were introduced by Fridy and Orhan [4].
Let k be a positive integer and x be a real number sequence. Define the sets Bx and Ax as

Bx := {b ∈ R : δ ({n : xn > b}) 6= 0}, Ax := {a ∈ R : δ ({n : xn < a}) 6= 0}.

Then statistical limit superior and statistical limit inferior of x is given by

*stortop@aku.edu.tr
†ysever@aku.edu.tr
‡ozertalo@hotmail.com
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st- limsupx :=
{

supBx i f Bx 6= /0,
−∞ i f Bx = /0.

st- liminfx :=
{

infAx i f Ax 6= /0,
+∞ i f Ax = /0.

Lemma 1.1 [4] If β = st- limsupx is finite, then for every ε > 0,

δ ({k ∈ N : xk > β − ε}) 6= 0 and δ ({k ∈ N : xk > β + ε}) = 0 (1.1)

Conversely, if (1.1) holds for every ε > 0 then β = st- limsupx.
The dual statement for st- liminfx is as follows:
Lemma 1.2 [4] If α = st- liminfx is finite, then for every ε > 0,

δ ({k ∈ N : xk < α + ε}) 6= 0 and δ ({k ∈ N : xk < α− ε}) = 0 (1.2)

Conversely, if (1.2) holds for every ε > 0 then α = st- liminfx.
A point ξ ∈ X is called a statistical limit point of a sequence x = (xk) if there is a set K = k1 < k2 < k3 < ...
with δ (K) 6= 0 such that xkn → ξ as n→ ∞. The set of all statistical limit points of a sequence x will be denoted
by Λx.
A point ξ ∈ X is called a statistical cluster point of x = (xk) if for any ε > 0,

δ ({k ∈ N : d(xk,ξ )< ε}) 6= 0.

The set of all statistical cluster points of x will be denoted by Γx.
Let Lx denote the set of all limit points ξ (accumulation points) of the sequence x; i.e. ξ ∈ Lx if there exists an
infinite set K = k1 < k2 < k3 < ... such that xkn → ξ as n→ ∞.
Obviously we have Λx ⊆ Γx ⊆ Lx.
In our study we will be interested much more on sequence of functions. Statistical convergence on sequence of
functions is defined by Gökhan and Güngör [5].
Following definitions are statistical inner and outer limits on the concept of set convergence which is fundamental
to define statistical epi-limit using sets. In this paper, we deal with Painlevé-Kuratowski [7] convergence and
actually its statistical version will be studied here which is defined by Sever and Talo [13]. In set convergence,
following collections of subsets of N play an important role for defining statistical inner and outer limits on
sequence of sets.

S := {N ⊂ N : δ (N) = 1},
S # := {N ⊂ N : δ (N) 6= 0}.

Definition 1.3 [13] Let (X ,d) be a metric space. The statistical inner limit and statistical outer limit of a
sequence (An) of closed subsets of X are defined as follows:

st- liminf
n

An : = {x | ∀V ∈N (x),∃N ∈S ,∀n ∈ N : An∩V 6= /0},

st- limsup
n

An : = {x | ∀V ∈N (x),∃N ∈S #,∀n ∈ N : An∩V 6= /0}.

Proposition 1.4 [13] Let (X ,d) be a metric space and (An) be a sequence of closed subsets of X. Then

st- liminf
n

An = {x | ∃N ∈S ,∀n ∈ N,∃yn ∈ An : lim
n

yn = x}.

Proposition 1.5 [13] Let (X ,d) be a metric space and (An) be a sequence of closed subsets of X. Then

st- limsup
n

An = {x | ∃N ∈S #,∀n ∈ N,∃yn ∈ An : x ∈ Γy}.

Let f be a function defined on X , the epigraph of f is the set epi f := {(x,α) ∈ X×R | α ≥ f (x)} and its level
set is defined by lev≤α f := {x ∈ X | f (x)≤ α}.
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Definition 1.6 Let (X ,d) be a metric space and ( fn) a sequence of lower semicontinuous functions defined
from X to R. The lower statistical epi-limit, est - liminfn fn is defined by the help of the sequence of sets:

epi(est - liminf
n

fn) := st- limsup
n

(epi fn). (1.3)

Similarly, the upper statistical epi-limit est - limsupn fn is defined:

epi(est - limsup
n

fn) := st- liminf
n

(epi fn). (1.4)

When these two functions are equal, we get statistical epi-limit function:

f = st- lim
n

fn := est - limsup
n

fn = est - liminf
n

fn.

Definition 1.7 Let (X ,d) be a metric space and ( fn) a sequence of lower semicontinuous functions from X into
R, for every x ∈ X , lower and upper statistical epi-limit functions are defined by

(
est - liminf

n
fn

)
(x) := sup

V∈N (x)
st- liminf

n
inf
y∈V

fn(y)

(
est - limsup

n
fn

)
(x) := sup

V∈N (x)
st- limsup

n
inf
y∈V

fn(y)

If there exists a function f : X→R such that est - liminfn fn = est - limsupn fn = f , then we write f = est - limn fn
and we say that ( fn) is est -convergent to f on X .

Definition 1.8 [8] For every function f : X → R the lower semicontinuous envelope sc− f of f is defined for
every x ∈ X by

(sc− f )(x) = sup
g∈G ( f )

g(x),

where G ( f ) is the set of all lower semicontinuous functions g on X such that g(y)≤ f (y) for every y ∈ X .

Proposition 1.9 [8] Let f : X → R be a function. Then

(sc− f )(x) = sup
V∈N (x)

inf
y∈V

f (y)

for every x ∈ X where N (x) is the neighbourhood of x.

2. Main Result

In this part, we deal with infimum values of statistical lower and upper epi-limits in open and compact sets. We
also define statistical equi-coerciveness which is a necessary condition for statistical convergence of infimum
value of ( fn) to infimum value of f .
Definition 2.1 Let X be a metric space and ( fn) be a sequence of functions defined on X → R. The functions
F l and Fu are defined as

F l = est - liminf
n

fn, Fu = est - limsup
n

fn.

Theorem 2.2 Let (X ,d) be a metric space and ( fn) a sequence of lower semicontinuous functions defined from
X to R. For any open subset U of X, the following inequalities are valid.

inf
x∈U

F l(x)≥ st- liminf
n

inf
x∈U

fn(x)

inf
x∈U

Fu(x)≥ st- limsup
n

inf
x∈U

fn(x).

Proof. We shall prove the first one, the other one being analogous. For every x ∈U we have U ∈ N(x) and

F l(x) = sup
U∈N(x)

st- liminf
n

inf
y∈U

fn(y)≥ st- liminf
n

inf
y∈U

fn(y)

by definition of statistical lower epi-limit. The inequality is valid for every x ∈U , hence

inf
x∈U

F l(x)≥ st- liminf
n

inf
y∈U

fn(y).
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Theorem 2.3 Let (X ,d) be a metric space and ( fn) a sequence of lower semicontinuous functions defined from
X to R and let K be a compact subset of X. Then the following inequality is valid.

min
x∈K

F l(x)≤ st- liminf
n

inf
x∈K

fn(x).

Proof. We know that the function F l is lower semicontinuous on X and it has a minimum in a compact set.
Assume that

st- liminf
n

inf
x∈K

fn(x)≤ α

for an arbitrary α ∈ R. Hence for all ε > 0,

δ ({n ∈ N : inf
x∈K

fn(x)< α + ε}) 6= 0.

It means that there exists M ∈S # such that for all m ∈M

inf
x∈K

fm(x)< α + ε

Now we match every infx∈K fm(x) with sc− fm(xm) points and it can be written as

sc− fm(xm)< α + ε

for all m ∈ M. Since K is a compact set and xm ∈ K, there exists cluster points of (xm)m∈M in K. For any
y∈ Γ(xm) and for all U ∈N(y) we have δ ({m∈M : xm ∈U}) 6= 0. Let us call this set as M′ = {m∈M : xm ∈U}.
For all m ∈M′

inf
x∈U

fm(x)≤ sc− fm(xm) = inf
x∈K

fm(x)< α + ε.

Then, for all ε > 0 we have
st- liminf

n
inf
x∈U

fn(x)≤ α.

By taking supremum over all U ∈ N(y) we obtain

F l(y) = est - liminf
n

fn(y)≤ α.

Since y ∈ K, we have also minx∈K F l(x)≤ F l(y)≤ α. Finally, we obtain

min
x∈K

F l(x)≤ α

which gives minx∈K F l(x)≤ st- liminfn infx∈K fn(x) and we are done.

Theorem 2.4 Suppose that there exists a countably compact subset K of X such that infx∈X fn(x) = infx∈K fn(x)
for every n ∈ N with N ∈S #, then est - liminfn fn attains its minimum on X and

min
x∈X

F l(x) = st- liminf
n

inf
x∈X

fn(x).

Proof. First of all, by our choice of index set, we have

st- liminf
m

inf
x∈X

fm(x) = st- liminf
m

inf
x∈K

fm(x). (2.1)

By Theorem (2.2), if we replace U with X , we get

inf
x∈X

F l(x)≥ st- liminf
n

inf
x∈X

fn(x)

By Theorem (2.3) and equality (2.1) we obtain

inf
x∈X

F l(x)≤min
x∈K

F l(x)≤ st- liminf
n

inf
x∈X

fn(x)≤ st- liminf
m

inf
x∈X

fm(x) = st- liminf
m

inf
x∈K

fm(x).

Hence,
min
x∈X

F l(x) = st- liminf
n

inf
x∈X

fn(x).
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Definition 2.5 The sequence ( fn) is statistically equi-coercive on X , if for every t ∈ R there exists a closed
compact subset Kt of X and N ∈S such that { fn ≤ t} ⊆ Kt for every n ∈ N.

Theorem 2.6 Suppose that ( fn) is statistically equi-coercive in X. Then F l and Fu are coercive and

min
x∈X

F l(x) = st- liminf
n

inf
x∈X

fn(x).

Proof. It is clear that F l and Fu are corecive and lower semicontinuous and hence they attain their minimum
on X . If we apply U = X , by Theorem 2.2 we get the inequality

min
x∈X

F l(x)≥ st- liminf
n

inf
x∈X

fn(x).

Hence, it is enough to show
min
x∈X

F l(x)≤ st- liminf
n

inf
x∈X

fn(x).

Assume that the right hand side of the inequality is less that +∞ and st- liminfn infx∈X fn(x) = α . It means

δ ({n ∈ N : α− ε < inf
x∈X

fn(x)< α + ε}) 6= 0

for all ε > 0. Let us call this set as M = {n ∈ N : α− ε < infx∈X fn(x) < α + ε}. Since the sequence ( fn) is
statistically equi-coercive, for every t ∈ R there exists a compact subset K of X such that { fm ≤ t} ⊆ K for all
m ∈M. Moreover, for all m ∈M we have

inf
x∈X

fm(x) = inf
x∈K

fm(x).

Let us define Gl = est - liminfm fm and apply Theorem 2.4 we obtain

min
x∈X

Gl(x) = st- lim
m

inf
x∈X

fm(x) = st- liminf
n

inf
x∈X

fn(x).

It is obvious that F l ≤ Gl . Hence we have minx∈X F l(x)≤ st- liminfn infx∈X fn(x) and we are done.
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Abstract: Given a positive number σ , the set of all complex numbers with real
parts less than−σ , is called σ -shifted Hurwitz stability region. For a linear system
if all roots of the characteristic polynomial belong to a shifted region, the system
is said to be σ -stable. This property is very important in the investigation of
performance and stability problems. In this report we consider σ -stability problem
for uncertain linear systems. For an interval family, we find the largest value of
σ for which the interval family is stable. We establish sufficient conditions for
segment stability which is important for the application of the Edge theorem.

1. Introduction

Consider nth order polynomial

a(s) = a1 +a2s+ · · ·+ansn−1 +an+1sn (1.1)

with an+1 6= 0. If all roots of (1.1) satisfy the condition Re(s)<−σ , then a(s) is called σ -stable, where σ > 0.
The case σ = 0 is known as Hurwitz stability. A necessary condition for Hurwitz stability of (1.1) is the
positivity or negativity of all coefficients a1,a2, . . . ,an+1. Therefore, without loss of generality we will assume
that ai > 0, i = 1,2, . . . ,n+1.

Define the following subset from Rn+1
+ :

Dσ =
{

a = (a1,a2, . . . ,an+1)
T ∈ Rn+1

+ : The polynomial a(s) is σ -stable
}
.

Here Rn+1
+ stands for the set

{(x1,x2, . . . ,xn+1)
T ∈ Rn+1 : xi > 0, i = 1,2, . . . ,n+1}.

By the continuity property of roots of (1.1) (see [3]) the set Dσ is open.
In control theory, the performance of a linear time invariant system is dependent on the location of the

closed loop roots. The decay rate is determined by the roots that are closest to the imaginary axis. In [1],
σ -stability problem for a polynomial polytope is considered, a necessary and sufficient condition for robust
σ -stability is obtained in terms of the Hurwitz matrices. In [2], σ -stabilization problem of an unstable plant
by PID controller is considered. Here a constructive determination of the set of stabilizing controllers in the
parameter space is given.

2. σ -Stability Test

Introduce the new variable t = s+σ . Then s = t−σ ,

Re(s) = Re(t)−σ ,
Re(s)<−σ ⇔ Re(t)< 0.

*Presented by Taner BÜYÜKKÖROĞLU, tbuyukkoroglu@anadolu.edu.tr
†oavul@anadolu.edu.tr
‡vcaferov.edu.tr
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Define a new polynomial p(t) in the variable t:

p(t) = an+1(t−σ)n +an(t−σ)n−1 + · · ·+a2(t−σ)+a1.

Then
a(s) is σ -stable ⇔ p(t) is Hurwitz stable.

Simple calculation gives the following.

p(t) = b1 +b2t + · · ·+bntn−1 +bn+1tn, (2.1)

where b = Ma and

b =




b1
b2
...

bn+1


 , a =




a1
a2
...

an+1


 ,

M =




1 −σ σ2 −σ3 · · · · (−1)nσn

0 1 −C1
2σ C2

3σ2 · · · · (−1)n−1Cn−1
n σn−1

...
...

...
...

. . .
...

...
0 0 0 0 · · · 1 −C1

nσ
0 0 0 0 · · · 0 1



.

The matrix M is (n+1)× (n+1) dimensional and upper triangular.

For example, if n = 3 then

M =




1 −σ σ2 −σ3

0 1 −2σ 3σ2

0 0 1 −3σ
0 0 0 1


 .

Proposition 2.1 The polynomial a(s) is σ -stable if and only if the polynomial p(t) (2.1) is Hurwitz stable.
Given Hurwitz stable vector b ∈ Rn+1, the σ -stable vector a ∈ Rn+1 can be calculated as a = M−1b. From the
construction it follows that the inverse matrix M−1 can be obtained from M after replacing σ by −σ .
For example, if n = 3 then

M−1 =




1 σ σ2 σ3

0 1 2σ 3σ2

0 0 1 3σ
0 0 0 1


 .

3. Maximal Stability Boundary for Interval Polynomial Family

Assume that the coefficients of the polynomial (1.1) vary in some intervals, that is assume that

ai ∈ [a−i ,a
+
i ] (i = 1,2, . . . ,n+1).

The obtained family P is called an interval family and is denoted by

P =
n

∑
i=0

[a−i+1,a
+
i+1]s

i

= [a−1 ,a
+
1 ]+ [a−2 ,a

+
2 ]s+ · · ·+[a−n+1,a

+
n+1]s

n.

(3.1)

By the well-known Kharitonov theorem [3], robust Hurwitz stability of (3.1) is equivalent to the stability of the
four Kharitonov polynomials.

The following example shows that in the σ -stable case stability of the four Kharitonov polynomials is not
sufficient for robust stability of the interval family (3.1).
Example 3.1 Consider the interval polynomial family with σ = 0.25

P = [0.3,0.5]+ [1.5,1.8]s+[2.1,2.5]s2 +[0.2,0.3]s3.
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The corresponding four Kharitonov polynomials and its roots are

roots:
K1(s) = 0.3+1.5s+2.5s2 +0.3s3, −7.7, −0.316±0.172 i
K2(s) = 0.5+1.8s+2.1s2 +0.2s3, −9.588, −0.455±0.23 i
K3(s) = 0.5+1.5s+2.1s2 +0.3s3, −6.241, −0.379±0.351 i
K4(s) = 0.3+1.8s+2.5s2 +0.2s3 −0.255, −0.5, −11.744.

The polynomial p(s) = 0.3+1.8s+2.1s2 +0.3s3 is a member of the interval family and its roots are−0.22267,
−0.74439 and −0.603293 which is not σ -stable.

Theorem 3.2 Given interval family (3.1), let a1(s),a2(s), . . . ,am(s) be extreme polynomials. Let α be a real
number defined as

α = max
{

Re(s) : s is a root of one of the polynomials ai(s)
(i = 1,2, . . . ,m)} .

Then α is the σ -stability boundary of the interval family (3.1). That is, P is robust σ -stable for all σ <−α
and P is not robust σ -stable for σ =−α .

Proof. By the known result, the interval family (3.1) is robust σ -stable if and only if all extreme polynomials
are σ -stable [4].
If σ < −α , then any root of any polynomial ai(s) satisfies the condition Re(s) ≤ α < −σ . Therefore all
extreme polynomials are stable and consequently P is robust stable.
If σ = −α , then the family P has a member a(s) with the root s satisfying the condition Re(s) = α = −σ
which implies that a(s) is not σ -stable.

Example 3.3 Consider the interval polynomial family described by

P = [0.2,0.6]+ [2.1,2.2]s+[8,8.1]s2 +[2.1,2.5]s3 +[2.9,3.1]s4 +0.2s5.

The family has 32 extreme polynomials:

a1(s) = 0.2+2.1s+8s2 +2.1s3 +2.9s4 +0.2s5,
...

a32(s) = 0.6+2.2s+8.1s2 +2.5s3 +3.1s4 +0.2s5.

Calculations give α =−0.119849 and the family is robust σ -stable for σ < 0.119849.

4. Convex Combinations

In this section, we consider σ -stability of a polynomial segment with stable end points. Stability problem
of a given segment is important due to Edge theorem [5], which states that a polynomial polytope with σ -stable
edges is robust σ -stable.

The following example shows that stability of the end points does not imply the stability of the whole
segment.
Example 4.1 Let σ = 1. Consider the polynomial segment joining the two σ -stable polynomials

a(s) = 17.57+38s+31s2 +10s3 and c(s) = 21.57+42s+32s2 +10s3.

Roots of a(s) : −1.095, −1.002±0.774 i,
roots of c(s) : −1.196, −1.001±0.894 i.

For λ = 0.5, the polynomial
1
2

a(s)+
1
2

c(s)

has roots: −1.152, −0.998±0.836 i and is not σ -stable.
Let

a(s) = a1 +a2s+ · · ·+an+1sn, c(s) = c1 + c2s+ · · ·+ cn+1sn

be two σ -stable polynomials, a = (a1,a2, . . . ,an+1)
T , c = (c1,c2, . . . ,cn+1)

T .
In the below, we give sufficient conditions for segment stability.
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Theorem 4.2 Let m1,m2, . . . ,mn+1 be (n+1)-dimensional row vectors of the matrix M. Assume that

〈m1,a− c〉= 〈m3,a− c〉= · · ·= 〈mn+1,a− c〉= 0 (if n is even),
〈m1,a− c〉= 〈m3,a− c〉= · · ·= 〈mn,a− c〉= 0 (if n is odd).

Then the segment [a(s),c(s)] = {(1−λ )a(s)+λc(s) : λ ∈ [0,1]} is σ -stable.

Proof. We set b = Ma, d = Mc. Then b(s) and d(s) are Hurwitz stable. Given any λ ∈ (0,1),

(1−λ )a+λc = (1−λ )M−1b+λM−1d
= M−1 [(1−λ )b+λd] .

By conditions of the Theorem 2,

〈m1,a〉= 〈m1,c〉, 〈m3,a〉= 〈m3,c〉, . . .

which imply that even parts of b(s) and d(s) are the same.
Therefore by the known theorem (1− λ )b(s) + λd(s) is Hurwitz stable [6]. By the above construction
(1−λ )a(s)+λc(s) is σ -stable.

Similarly, from the analogous result for odd parts follows
Theorem 4.3 Assume that

〈m2,a− c〉= 〈m4,a− c〉= · · ·= 〈mn,a− c〉= 0 (if n is even),
〈m2,a− c〉= 〈m4,a− c〉= · · ·= 〈mn+1,a− c〉= 0 (if n is odd).

Then the segment [a(s),c(s)] = {(1−λ )a(s)+λc(s) : λ ∈ [0,1]} is σ -stable.
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Abstract: In this study, we give definitions of asymptotically lacunary invariant
equivalence, strongly asymptotically lacunary invariant equivalence and asymp-
totically lacunary ideal invariant equivalence for double sequences. We also
examine the existence of some relations among these new equivalence definitions.

1. Introduction and Background

Throughout the paper N denotes the set of natural numbers.
Many authors have studied on the concepts of invariant mean and invariant convergence (see, [10, 11, 13, 14,
19, 20, 25]).
Let σ be a mapping of the positive integers into themselves. A continuous linear functional φ on `∞, the space
of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1, ...) and

3. φ(xσ(n)) = φ(xn) for all x ∈ `∞.

The mappings σ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m, where
σm(n) denotes the m th iterate of the mapping σ at n. Thus, φ extends the limit functional on c, the space of
convergent sequences, in the sense that φ(x) = limx for all x ∈ c.
In the case σ is translation mappings σ(n) = n+1, the σ -mean is often called a Banach limit.
The concept of lacunary strong σ -convergence was introduced by Savaş [21] and then Pancaroǧlu and Nuray
[15] defined the concept of lacunary invariant summability.
The idea of I -convergence was introduced by Kostyrko et al. [6] which is based on the structure of the ideal
I of subset of the set N. For more detail, see [7].
A family of sets I ⊆ 2N is called an ideal if and only if (i) /0 ∈I , (ii) For each A,B ∈I we have A∪B ∈I ,
(iii) For each A ∈I and each B⊆ A we have B ∈I .
An ideal is called non-trivial if N /∈I and non-trivial ideal is called admissible if {n} ∈I for each n ∈ N.
Recently, the concept of σθ -uniform density of any subset A of the set N and corresponding the concept of
Iσθ -convergence for real sequences were introduced by Ulusu and Nuray [28].
Several convergence concepts for double sequences and some properties of these concepts which are noted
following can be seen in [1, 2, 8, 12, 16, 18, 23].
A double sequence x = (xk j) is said to be bounded if there exists an M > 0 such that |xk j|< M for all k and j,
i.e., if supk, j |xk j|< ∞.
The set of all bounded double sequences will be denoted by `2

∞.
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A non-trivial ideal I2 of N×N is called strongly admissible ideal if {i}×N and N×{i} belong to I2 for each
i ∈ N.
It is evident that a strongly admissible ideal is admissible also.
Let (X ,ρ) be a metric space and I2 be a strongly admissible ideal in N×N. A double sequence x = (xmn) in X
is said to be I2-convergent to L ∈ X if for every ε > 0,

A(ε) =
{
(m,n) ∈ N×N : ρ(xmn,L)≥ ε

}
∈I2.

It is denoted by I2− lim
m,n→∞

xmn = L.

The double sequence θ2 = {(kr, ju)} is called double lacunary sequence if there exist two increasing sequence
of integers such that

k0 = 0, hr = kr− kr−1→ ∞ and j0 = 0, h̄u = ju− ju−1→ ∞ as r,u→ ∞.

We use the following notations in the sequel:

kru = kr ju, hru = hrh̄u, Iru =
{
(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju

}
.

Recently, the definitions of some invariant convergence for double sequences were presented in a study by
Ulusu et al. [27] as below:
Let θ2 = {(kr, ju)} be a double lacunary sequence. A double sequence x = (xk j) is said to be lacunary invariant
convergent to L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

xσ k(m),σ j(n) = L,

uniformly in m,n = 1,2, ... and it is denoted by xk j→ L
(
V σθ

2

)
.

A double sequence x = (xk j) is said to be strongly lacunary invariant convergent to L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

|xσ k(m),σ j(n)−L|= 0,

uniformly in m,n and it is denoted by xk j→ L
(
[V σθ

2 ]
)
.

Let θ2 = {(kr, ju)} be a double lacunary sequence, A⊆ N×N and

sru = min
m,n

∣∣∣A∩
{(

σ k(m),σ j(n)
)

: (k, j) ∈ Iru
}∣∣∣,

Sru = max
m,n

∣∣∣A∩
{(

σ k(m),σ j(n)
)

: (k, j) ∈ Iru
}∣∣∣.

If the following limits exist

V θ
2 (A) = lim

r,u→∞

sru

hru
and V θ

2 (A) = lim
r,u→∞

Sru

hru
,

then they are called a lower lacunary σ -uniform density and an upper lacunary σ -uniform density of the set A,
respectively. If V θ

2 (A) =V θ
2 (A), then V θ

2 (A) =V θ
2 (A) =V θ

2 (A) is called the lacunary σ -uniform density of A.
Denoted by I σθ

2 the class of all A⊆ N×N with V θ
2 (A) = 0.

A double sequence x = (xk j) is said to be lacunary I2-invariant convergent or I σθ
2 -convergent to L if for every

ε > 0
Aε =

{
(k, j) ∈ Iru : |xk j−L| ≥ ε

}
∈I σθ

2 ,

i.e., V θ
2 (Aε) = 0. It is denoted by I σθ

2 − limxk j = L or xk j→ L
(
I σθ

2

)
.

Marouf [9] presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. Then,
the concept of asymptotically equivalence has been developed by many researchers (see, [3, 5, 17, 22, 24]).
Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically equivalent if

lim
k

xk

yk
= 1.

It is denoted by x∼ y.
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Hazarika and Kumar [4] presented some asymptotically equivalence definitions for double sequences as follows:
Two nonnegative double sequences x = (xkl) and x = (ykl) are said to be P-asymptotically equivalent if

P− lim
k,l

xkl

ykl
= 1,

denoted by x∼P y.
Two nonnegative double sequences x = (xkl) and x = (ykl) are said to be asymptotically I2-equivalent of
multiple L if for every ε > 0 {

(k, l) ∈ N×N :
∣∣∣∣

xkl

ykl
−L
∣∣∣∣≥ ε

}
∈I2,

denoted by x∼I L
y and simply asymptotically I2-equivalent if L = 1.

Recently, Ulusu [26] by defining the concept of lacunary Iσ -asymptotically equivalence and the concepts of
lacunary σ -asymptotically equivalence for real sequences, studied some relationships among these concepts.

2. Main Results

In this study, we give definitions of asymptotically lacunary invariant equivalence, strongly asymptotically
lacunary invariant equivalence and asymptotically lacunary ideal invariant equivalence for double sequences.
We also examine the existence of some relations among these new equivalence definitions.
Definition 2.1 Two nonnegative double sequence x = (xk j) and y = (yk j) are said to be asymptotically lacunary
σ2-equivalent of multiple L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

xσ k(m),σ j(n)

yσ k(m),σ j(n)
= L,

uniformly in m and n. In this case, we write x
Nσθ

2(L)∼ y and simply asymptotically lacunary σ2-equivalent if L = 1.

Definition 2.2 Two nonnegative double sequences x= (xk j) and y= (yk j) are said to be asymptotically lacunary
I2-invariant equivalent of multiple L if for every ε > 0

A∼ε :=
{
(k, j) ∈ Iru :

∣∣∣∣
xk j

yk j
−L
∣∣∣∣≥ ε

}
∈I σθ

2 ,

i.e., V θ
2 (A∼ε ) = 0. In this case, we write x

I σθ
2(L)∼ y and simply asymptotically lacunary I2-invariant equivalent if

L = 1.
The set of all asymptotically lacunary I2-invariant equivalent of multiple L sequences will be denoted by Iσθ

2(L).

Theorem 2.3 Suppose that x = (xk j),y = (yk j) ∈ `2
∞. If x and y are asymptotically lacunary I2-invariant

equivalent of multiple L, then these sequences are asymptotically lacunary σ2-equivalent of multiple L.

Proof. Let m,n ∈ N be arbitrary and ε > 0. Now, we calculate

t(θ2,m,n) :=

∣∣∣∣∣
1

hru
∑

k, j∈Iru

xσ k(m),σ j(n)

yσ k(m),σ j(n)
−L

∣∣∣∣∣ .

We have
t(θ2,m,n)≤ t1(θ2,m,n)+ t2(θ2,m,n),

where

t1(θ2,m,n) :=
1

hru
∑

k, j∈Iru∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ε

∣∣∣∣∣
xσk(m),σ j(n)

yσk(m),σ j(n)
−L

∣∣∣∣∣

and

t2(θ2,m,n) :=
1

hru
∑

k, j∈Iru∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣<ε

∣∣∣∣∣
xσ k(m),σ j(n)

yσ k(m),σ j(n)
−L

∣∣∣∣∣.
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We get t2(θ2,m,n)< ε , for every m,n = 1,2, ... . The boundedness of x and y implies that there exists a M > 0
such that ∣∣∣∣∣

xσ k(m),σ j(n)

yσ k(m),σ j(n)
−L

∣∣∣∣∣≤M,

for all k, j ∈ Iru and for every m,n. Then, this implies that

t1(θ2,m,n) ≤ M
hru

∣∣∣∣
{
(k, j) ∈ Iru :

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ ε

}∣∣∣∣

≤ M
max
m,n

∣∣∣∣
{
(k, j) ∈ Iru :

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ ε

}∣∣∣∣
hru

= M
Sru

hru
,

hence x
Nσθ

2(L)∼ y.

The converse of Theorem 2.3 does not hold. For example, x = (xk j) and y = (yk j) are the sequences defined by
following;

xk j :=





2 , if
kr−1 < k < kr−1 +[

√
hr],

jr−1 < j < jr−1 +[
√

h̄u],
and k+ j is an even integer.

0 , if
kr−1 < k < kr−1 +[

√
hr],

jr−1 < j < jr−1 +[
√

h̄u],
and k+ j is an odd integer.

yk j := 1.

When σ(m) = m+1 and σ(n) = n+1, this sequences are asymptotically lacunary σ2-equivalent but they are
not asymptotically lacunary I2-invariant equivalent.
Definition 2.4 Two nonnegative double sequence x = (xk j) and y = (yk j) are said to be strongly asymptotically
lacunary σ2-equivalent of multiple L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

∣∣∣∣∣
xσ k(m),σ j(n)

yσ k(m),σ j(n)
−L

∣∣∣∣∣= 0,

uniformly in m and n. In this case, we write x
[Nσθ

2(L)]∼ y and simply strongly asymptotically lacunary σ2-equivalent
if L = 1.
The set of all strongly asymptotically lacunary invariant equivalent of multiple L sequences will be denoted by
[Nσθ

2(L)].

Theorem 2.5 If double sequences x = (xk j) and y = (yk j) are strongly asymptotically lacunary σ2-equivalent
of multiple L, then these sequences are asymptotically lacunary I2-invariant equivalent of multiple L.

Proof. Let x
[Nσθ

2(L)]∼ y and given ε > 0. Then, for every m,n ∈ N we have

∑
k, j∈Iru

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣ ≥ ∑

k, j∈Iru∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ε

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣

≥ ε ·
∣∣∣∣
{
(k, j) ∈ Iru :

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ ε

}∣∣∣∣

≥ ε ·max
m,n

∣∣∣∣
{
(k, j) ∈ Iru :

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ ε

}∣∣∣∣

and so

1
hru

∑
k, j∈Iru

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣ ≥ ε ·

max
m,n

∣∣∣∣
{
(k, j) ∈ Iru :

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ ε

}∣∣∣∣
hru

= ε · Sru

hru
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This implies that lim
r,u→∞

Sru

hru
= 0 and so x

I σθ
2(L)∼ y.

Theorem 2.6 Suppose that x = (xk j),y = (yk j) ∈ `2
∞. If double sequences x and y are asymptotically lacunary

I2-invariant equivalent of multiple L, then these sequences strongly asymptotically lacunary σ2-equivalent of
multiple L.

Proof. Suppose that x,y ∈ `2
∞ and x

I σθ
2(L)∼ y. Let ε > 0. By assumption, we have V θ

2 (A∼ε ) = 0. The boundedness
of x and y implies that there exists an M > 0 such that

∣∣∣∣∣
xσ k(m),σ j(n)

yσ k(m),σ j(n)
−L

∣∣∣∣∣≤M

for all k, j ∈ Iru and for every m,n. Observe that, for every m,n ∈ N we have

1
hru

∑
k, j∈Iru

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣ =

1
hru

∑
k, j∈Iru∣∣∣∣

xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ε

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣

+
1

hru
∑

k, j∈Iru∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣<ε

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣

≤ M
max
m,n

∣∣∣∣
{
(k, j) ∈ Iru :

∣∣∣∣
xσk(m),σ j(n)
yσk(m),σ j(n)

−L
∣∣∣∣≥ ε

}∣∣∣∣
hru

+ ε

≤ M
Sru

hru
+ ε.

Hence, we obtain

lim
r,u→∞

1
hru

∑
k, j∈Iru

∣∣∣∣∣
xσ k(m),σ j(n)

yσ k(m),σ j(n)
−L

∣∣∣∣∣= 0,

uniformly in m and n.

Theorem 2.7
Iσθ

2(L)∩ `2
∞ = [Nσθ

2(L)]∩ `2
∞.

Proof. This is an immediate consequence of Theorem 2.5 and Theorem 2.6.
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[24] Savaş, E. On I -asymptotically lacunary statistical equivalent sequences. Adv. Difference Equ. 2013:111,
(2013), 7 pages. doi:10.1186/1687-1847-2013-111.

[25] Schaefer, P. Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36(1), (1972), 104-110.

[26] Ulusu, U. Lacunary Iσ -asimptotic equivalence, AKU J. Sci. Eng. 17, (2017), 899-905. DOI:
10.5578/fmbd.66209

[27] Ulusu, U., Dündar, E., Nuray, F. Lacunary I2-invariant convergence and some properties. International
Journal of Analysis and Applications, 16(3), (2018), 317-327.

[28] Ulusu, U., Nuray, F. Lacunary Iσ -convergence, (under review).

182



Statistical Lacunary Invariant Summability of Double
Sequences
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Abstract: In this study, we give definitions of lacunary σ -summability, strongly
p-lacunary σ -summability and statistical lacunary σ -convergence for double
sequences. We also examine the existence of some relations among the definitions
of statistical lacunary σ -convergence, lacunary invariant statistical convergence
and strongly p-lacunary σ -summability.

1. Introduction and Background

The concept of statistical convergence was first introduced by Fast [2] and since then it has been studied by
Šalát [15], Fridy [3] and many others, too.
A sequence x = (xk) is said to be statistically convergent to L if for every ε > 0

lim
n→∞

1
n

∣∣∣
{

k ≤ n : |xk−L| ≥ ε
}∣∣∣= 0,

where the vertical bars indicate the number of elements in the enclosed set.
Let σ be a mapping of the positive integers into themselves. A continuous linear functional φ on `∞, the space
of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1, ...) and

3. φ(xσ(n)) = φ(xn) for all x ∈ `∞.

The mappings σ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m, where
σm(n) denotes the m th iterate of the mapping σ at n. Thus, φ extends the limit functional on c, the space of
convergent sequences, in the sense that φ(x) = limx for all x ∈ c.
In the case σ is translation mappings σ(n) = n+1, the σ -mean is often called a Banach limit.
Many authors have studied on the concepts of invariant mean and invariant convergence (see, [5, 6, 8, 10, 14,
16, 20]).
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and
hr = kr− kr−1→ ∞ as r→ ∞. The intervals determined by θ is denoted by Ir = (kr−1,kr] (see, [9]).
The space of lacunary strong σ -convergent sequences Lθ was defined by Savaş [17] as below:

Lθ =

{
x = (xk) : lim

r→∞

1
hr

∑
k∈Ir

|xσ k(m)−L|= 0, uniformly in m

}
.

*ulusu@aku.edu.tr
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Savaş and Nuray [18] introduced the concept of lacunary σ -statistically convergent sequence as follows:

Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is said to be Sσθ -convergent to L if for every ε > 0

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |xσ k(m)−L| ≥ ε
}∣∣∣= 0,

uniformly in m. It is denoted by xk→ L(Sσθ ).
The concept of lacunary invariant summability and the space [Vθσ ]q were defined by Pancaroǧlu and Nuray
[11] as below:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is said to be lacunary invariant summable to L if

lim
r→∞

1
hr

∑
k∈Ir

xσ k(m) = L,

uniformly in m.
Let 0 < q < ∞. A sequence x = (xk) is said to be strongly lacunary q-invariant convergent to L if

lim
r→∞

1
hr

∑
k∈Ir

|xσ k(m)−L|q = 0,

uniformly in m. It is denoted by xk→ L
(
[Vθσ ]q

)

The concepts of convergence for double sequences have been studied by many authors (see, [1, 4, 12, 13, 21]).

A double sequence x = (xk j) is said to be convergent to L in Pringsheim’s sense if for every ε > 0, there exists
Nε ∈ N such that |xk j−L|< ε, whenever k, j ≥ Nε .
A double sequence x = (xk j) is said to be bounded if there exists an M > 0 such that |xk j|< M for all k and j,
i.e., if supk, j |xk j|< ∞.
The set of all bounded double sequences will be denoted by `2

∞.
Mursaleen and Edely [7] introduced the concept of statistically convergence for double sequences as follows:
A double sequence x = (xk j) is said to be statistically convergent to L if for every ε > 0

lim
m,n→∞

1
mn

∣∣∣
{
(k, j), k ≤ m and j ≤ n : |xk j−L| ≥ ε

}∣∣∣= 0.

The double sequence θ2 = {kr, ju} is called double lacunary sequence if there exist two increasing sequence of
integers such that

k0 = 0, hr = kr− kr−1→ ∞ and j0 = 0, h̄u = ju− ju−1→ ∞ as r,u→ ∞.

We use the following notations in the sequel:

kru = kr ju, hru = hrh̄u, Iru =
{
(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju

}
.

Using the double lacunary sequence concept, the concept of lacunary σ -statistically convergence for double
sequences and similar concepts were defined by Savaş and Patterson [19] as below:
Let θ2 = {kr, ju} be a double lacunary sequence. A double sequence x = (xk j) is said to be lacunary invariant
statistically convergent to L if for every ε > 0

lim
r,u→∞

1
hru

∣∣∣
{
(k, j) ∈ Iru : |xσk(m),σ j(n)−L| ≥ ε

}∣∣∣= 0,

uniformly in m and n. It is denoted by xk j→ L
(
Sσθ

2

)
.

A double sequence x = (xk j) is said to be strongly lacunary invariant convergent to L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

|xσ k(m),σ j(n)−L|= 0,

uniformly in m and n. It is denoted by xk j→ L
(
[V σθ

2 ]
)
.
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2. Statistical Lacunary Invariant Summability of Double Sequences

In this study, we give definitions of lacunary σ -summability, strongly p-lacunary σ -summability and statistical
lacunary σ -convergence for double sequences. We also examine the existence of some relations among
the definitions of statistical lacunary σ -convergence, lacunary invariant statistical convergence and strongly
p-lacunary σ -summability.
Definition 2.1 Let θ2 = {kr, ju} be a double lacunary sequence. A double sequence x = (xk j) is said to be
statistical lacunary σ -convergent to L if for every ε > 0

lim
v,w→∞

1
vw

∣∣∣∣∣

{
(k, j), k ≤ v and j ≤ w :

∣∣∣∣∣
1

hru
∑

k, j∈Iru

xσ k(m),σ j(n)−L

∣∣∣∣∣≥ ε

}∣∣∣∣∣= 0,

uniformly in m and n . In this case, we write xk j→ L
(
Sθσ

2

)
.

In other words, a double sequence x = (xk j) is statistical lacunary σ -convergent to L if and only if the sequence
(

1
hru

∑
k, j∈Iru

xσ k(m),σ j(n)

)

is statistical convergent to L.
Theorem 2.2 Assume that x = (xk j) ∈ `2

∞. If x is lacunary invariant statistical convergent to L, then this
sequence is statistical lacunary σ -convergent to L.

Proof. Let x = (xk j) be a bounded double sequence and lacunary invariant statistical convergent to L. Let take
a set A(ε) as follows:

A(ε) =
{

kr−1 ≤ k ≤ kr, ju−1 ≤ j ≤ ju : |xσ k(m),σ j(n)−L| ≥ ε
}
,

for each m≥ 1 and n≥ 1. Then we have
∣∣∣∣∣

1
hru

∑
(k, j)∈Iru

xσk(m),σ j(n)−L

∣∣∣∣∣=
∣∣∣∣∣

1
hru

∑
(k, j)∈Iru

(
xσ k(m),σ j(n)−L

)
∣∣∣∣∣

≤
∣∣∣∣∣

1
hru

∑
(k, j)∈A(ε)

(
xσk(m),σ j(n)−L

)
∣∣∣∣∣

≤
(

sup
k, j
|xσ k(m),σ j(n)−L|

)
1

hru

∣∣A(ε)
∣∣→ 0

as r,u→ ∞, which implies ∣∣∣∣∣
1

hru
∑

(k, j)∈Iru

xσ k(m),σ j(n)−L

∣∣∣∣∣→ 0,

for all m and n. That is, x = (xk j) is statistical lacunary σ -convergent to L.

Definition 2.3 Let θ2 = {kr, ju} be a double lacunary sequence. A double sequence x = (xk j) is said to be
lacunary σ -summable to L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

xσ k(m),σ j(n) = L,

uniformly in m and n. In this case, we write xk j→ L
(
V σθ

2

)
.

Definition 2.4 Let θ2 = {kr, ju} be a double lacunary sequence and 0 < p < ∞. A double sequence x = (xk j)
is said to be strongly p-lacunary σ -summable to L if

lim
r,u→∞

1
hru

∑
k, j∈Iru

|xσk(m),σ j(n)−L|p = 0,

uniformly in m and n. In this case, we write xk j→ L
(
[V σθ

2 ]p
)
.

Theorem 2.5 If a double sequence x = (xk j) is strongly p-lacunary σ -summable to L, then this sequence is
lacunary invariant statistical convergent to L.
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Proof. Let x = (xk j) is strongly p-lacunary σ -summable to L. Then, for each m≥ 1 and n≥ 1

1
hru

∑
(k, j)∈Iru

|xσk(m),σ j(n)−L|p = 1
hru

∑
(k, j)∈Iru

|xσk(m),σ j(n)−L|≥ε

|xσk(m),σ j(n)−L|p

+
1

hru
∑

(k, j)∈Iru
|xσk(m),σ j(n)−L|<ε

|xσk(m),σ j(n)−L|p,

therefore we have
1

hru
∑

(k, j)∈Iru

|xσk(m),σ j(n)−L|p ≥ 1
hru

∑
(k, j)∈Iru

|xσk(m),σ j(n)−L|≥ε

|xσk(m),σ j(n)−L|p

≥ 1
hru

ε p · |A(ε)|.

So if limit is taken as r,u→ ∞, we have

ε p · lim
r,u→∞

1
hru

∣∣∣
{
(k, j) ∈ Iru : |xσk(m),σ j(n)−L| ≥ ε

}∣∣∣≤ lim
r,u→∞

1
hru

∑
(k, j)∈Iru

|xσ k(m),σ j(n)−L|p→ 0.

That is, x = (xk j) is lacunary invariant statistical convergent to L.

Theorem 2.6 Assume that x = (xk j) ∈ `2
∞. If x is lacunary invariant statistical convergent to L, then this

sequence is strongly p-lacunary σ -summable to L.

Proof. Suppose that x = (xk j) is a bounded double sequence and lacunary invariant statistical convergent to L.
Since x is bounded, there exists M > 0 such that

|xσ k(m),σ j(n)−L| ≤M

uniformly in m and n. Now that x = (xk j) is lacunary invariant statistical convergent to L, for every ε > 0 we
have

lim
r,u→∞

1
hru

∣∣∣
{
(k, j) ∈ Iru : |xσk(m),σ j(n)−L| ≥ ε

}∣∣∣= 0

uniformly in m and n. Also, we can write

1
hru

∑
(k, j)∈Iru

|xσ k(m),σ j(n)−L|p = 1
hru

∑
(k, j)∈Iru

(k, j)∈A(ε)

|xσk(m),σ j(n)−L|p

+
1

hru
∑

(k, j)∈Iru

(k, j)6∈A(ε)

|xσk(m),σ j(n)−L|p

= t(1)(r,u)+ t(2)(r,u)

where
t(1)(r,u) =

1
hru

∑
(k, j)∈Iru

(k, j)∈A(ε)

|xσ k(m),σ j(n)−L|p

and
t(2)(r,u) =

1
hru

∑
(k, j)∈Iru

(k, j)6∈A(ε)

|xσ k(m),σ j(n)−L|p.

Now if (k, j) 6∈ A(ε), then t(2)(r,u)< ε p. If (k, j) ∈ A(ε), then

t(1)(r,u)≤
(

sup
k, j
|xσk(m),σ j(n)−L|

)∣∣A(ε)
∣∣

hru
≤M

∣∣A(ε)
∣∣

hru
→ 0.

Thus
1

hru
∑

(k, j)∈Iru

|xσ k(m),σ j(n)−L|p→ 0,

uniformly in m and n.
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Abstract: We will investigate on existence and uniquiness of some class non-
linear eigenvalue problem

1. Introduction

In this paper, we derive a new boundedness and compactness result for the Hardy operator in variable expo-
nent Lebesgue spaces (VELS) Lp(.)(0, l). A maximally weak condition is assumed on the exponent function.
The last time, such a study was carry out in [1,2,3,4,5,6,7,8,9]. For a study the Dirichlet problem of some
class nonlinear eigenvalue problem with nonstandard growth condition the obtained results is applied. Such
equations arise in the studies of the so called Winslow effect physical phenomena [11] in the smart materials.
In this connection, we mention recent studies for the multidimensional cases with application of Ambrosetti-
Rabinoviches Mountain pass theorem approaches (see, e.g. in [1,10, 12]).
Theorem 1.1 Let q, p(0, l) −→ (1,∞) be measurable functions with q(x) ≥ p(x) on (0, l) . Assume p be

monotony increasing and the function x−1/(p
′
(x))+δ is almost decreasing on (0, l). Then operator H boundedly

acts the space Lp(0, l) into Lq(.),−1/p
′−1/q(.)(0, l). Moreover, the norm of mapping depends on p−, p+,δ ,β .

Theorem 1.2 Let q, p(0, l) −→ (1,∞) be measurable functions such that ∞ > q+ ≥ q(x) ≥ p(x) ≥ p− > 1

for all x ∈ (0, l). Assume that p be monotony increasing and x−1/p
′
+ε is almost decreasing. Then the identity

operator maps boundedly the space W 1
p(.)(0, l) into Lq(.),−1/p

′−1/q(.)(0, l). Moreover, the norm of mapping is
estimated by a constant depending on p−, p+,q,ε,β .
Notice, Theorem 1.2 states the inequality

∥yx−1/p
′−1/q(.)∥Lq(.)(0,l) ≤ ∥y

′∥Lp(.)(0,l) (1.1)

for any absolutely continues function y : (0, l)−→ R with y(0) = 0.
In the given assertions, Lp,α(0, l) denotes the space of measurable functions with finite norm ∥yxα∥Lp(.)(0,l),

while W 1
p(.),α(0, l) stands the space of absolutely continuous functions y with y(0) = 0 and finite norm

∥y∥W 1
p(.)

= ∥y
′∥Lp(.) .

We say, the function α : (0, l)−→ (0,∞) is almost increasing (decreasing) if there exists a constant C>0 such
that for any 0 < t1 < t2 < l it holds α(t1)≤Cα(t2) ( α(t1)≥Cα(t2) ) We need the following assertion

*yzeren@yildiz.edu.tr
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Lemma 1.3 Let p(x) be increasing for x ∈ (0, l). Let t ∈ An(x) = (2−n−1x,2−nx]. Then it holds

t−1/(p
′
(t)) ≤Ct−1/(p−x,n)

′
(1.2)

where px,n = in ft∈An(x)p(t)

Proof. Let y ∈ An(x) be a point with t−1/(p
′
(y)) ≤ 2t−1/(p−x,n)

′
. Let y < t and both lie in An(x). Then using almost

decreasing of x−1/p
′
+ε it follows that

t−1/(p
′
(t))+ε ≤ cy−1/(p

′
(y))+ε

Using t,y ∈ An(x),(p−x,n)
′
> 1 it follows

t−1/(p
′
(t)) ≤ 2εCy−1/(p

′
(y)) ≤ 22+εCt−1/(p−x,n)

′

Now let y > t, then using increasing of p,1/p
′

also will be increasing. Since 1/(p
′
(t))< 1/(p

′
(y)), it follows

that

(1/t)1/(p
′
(t)) ≤C(1/t)1/(p

′
(y)) ≤ 2Ct−1/(p−x,n)

′
,

where C = l1/(p−)
′
+ l1/(p+)

′

The Lemma 1.3 has been proved.

Proof of Theorem 1.1. Let f : (0, l)−→ (0,∞) be a positive measurable function. It holds the identity

H f (x) =
∞

∑
n=1

∫ 2−nx

2−n−1x
f (t)dt (1.3)

Assume ∥ f∥p = 1. Using the triangle property of p(.)- norms

∥xα H f∥q(.) ≤
∞

∑
n=1

∥xα
∫

An(x)
f (t)dt∥q(.), (1.4)

with α(x) =−1/p
′
(x)−1/q(x) ( recall An(x) = (2−n−1x,2−nx] ) Derive estimation for every summand in (4).

In this purpose get estimation for the proper modular

Iq(.)(x
α(.)

∫

An(x)
f (t)dt) =

∫ l

0
(xα(.)

∫

An(x)
f (t)dt)q(x)dx

Applying the assumption on p ( decreasing of x−1/p
′
+ε and using the expression for q(x)= 1/(−α−1/(p

′
(x)))

we have

Iq(x−1/p
′−1/q

∫

An(x)
f (t)dt) =

∫ l

0
(x−1/p

′
+ε

∫

An(x)
f (t)dt)q(x)dx\ x1+εq(x)

≤Cq+2−nεq
′ ∫ l

0
dx\ x(

∫

An(x)
f (t)t−1/(p

′
(t))dt)q(x) (1.5)

Notice, we have used that x−1/p
′
(x)+ε ≤ Ct−1/p

′
(t)+ε for any 0 < x < l and that 2−n−1x < t ≤ 2−nx by using

the almost decreasing of x−1/p
′
(x)+ε .

Therefore, from (4) using Holders inequality, it follows

Iq(xα(.)
∫

An(x)
f (t)dt)

≤Cq+2−nεq−
∫ l

0
dx/x(

∫

An(x)
( f (t))p−x,ndt)q(x)/(p−x,n)(

∫

An(x)
t−(p−x,n)

′
/(p

′
(t))dt)q(x)/(p−x,n) (1.6)
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Applying this Lemma 1.3 and estimate (2) it follows from (6) that

Iq(xα(.)
∫

An(x)
f (t)dt)≤

∫ l

0
dx/x(

∫

An(x)
( f (t))p−x,ndt)q(x)/(p−x,n)(Cln2)q+\p−2−nεq−Cq+

Since
∫

An(x)
( f (t))p−x,ndt ≤

∫

An(x)
( f (t))p(t)dt +

∫

An(x)
dt ≤ 1+2−nx ≤ 1+2−nl ≤ l +1.

it follows

Iq(xα
∫

An(x)
f (t)dt)

≤ (Cln2)q+2−nεq−
∫ l

0
dx/x(1/(l +1)

∫

An(x)
( f (t))p−x,ndt)(q(x))/(p−x,n)(l +1)q+

≤ (Cln2(l +1))q+
∫ l

0
(1/(l +1)

∫

An(x)
[( f (t)p(t)+1)]dt)(p(x))/(p−x,n)dx/x

≤ 2−nεq−Cq+(Cln2)q+(l +1)q+−1
∫ l

0
dx/x(

∫

An(x)
[ f (t)p(t)+1)]dt).

Hence,

Iq(xα(.)
∫

An(x)

(t)dt)≤C32−nεq−Cq+
∫ l

0
(
∫

An(x)
[( f (t))p(t)+1)]dt)dx/x

≤C3

∫ 2−nl

0
[( f (t))p(t)+1)]

∫ 2n+1t

2nt
dx/x =Cq+C32−nεq− ln2

∫ 2−nl

0
[( f (t)p(t)+1)]dt

≤Cq+C32−nεq− ln2(1+2−l)C42−nεq−

Therefore, it has been proved that

Iq(x−1/p
′−1/q

∫

An(x)
f (t)dt)≤C42−nεq−

which implies

∥x−1/p
′−1/q

∫

An(x)
f (t)dt∥(q(.);(0,l)) ≤C1/q+

4 2−nεq−/q+ (1.7)

Inserting (7) in (4), we get

∥x−1/p
′−1/qH f∥(q(.);(0,l)) ≤C1/q+

4

∞

∑
n=1

2−nεq−/q+ =C5

The Theorem 1.1 has been proved.
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Abstract: In this study, we use finite element method to obtain the numerical
solution of the plane deformation problem for multilayered materials. The math-
ematical model of the problem is expressed by the system of Lame equations.
Some differences of the mechanical properties of the materials composed the
layers make it impossible to solve such problems with classical finite difference
methods. In this work, to ensure continuity at the common boundary between
the layers, we obtain the numerical expressions of the transmission conditions by
using the finite element method. The relation between the numerical expressions
obtained by using finite element method and finite differences method is shown.

1. Introduction

The contact problem related to the deformation of a rigid punch was considered by many authors [1]-[3].
The paper [1] is devoted to the analysis of the infinitesimal deformations of a linear elastic anisotropic layer by
using Stroh formalism method. The work [4] deals with the contact problem of a stiff spherical indenter with
a composite plate by dint of the commercial software and the problem are simulated by a 2-D axisymmetric
model. The results numerically obtained in [5] show independence of the indentation response of an orthotropic
laminate from the material, the author demonstrate dependence of the thickness of the multilayered material. In
the paper [6] plane and axisymmetric contact problems for a three-layered elastic half-space are considered.
In the present paper, we give an analysis and numerical solution of the boundary value problem for the Lame
system, modeling the contact problem for a multilayered material. By using the biquadratic basic functions,
the transmission conditions are obtained on the boundaries of interlayer by the Finite Element Method and the
interlayer stresses are analyzed.

2. Problem Formulation

The mathematical model of the contact problem related to the deformation of a rigid punch with a frictional
pressure of a finite dimensional elastic material is expressed by the boundary value problem for the Lame
equation as follow [7]:

(λ +µ)grad(divu(x))+µ∇2u(x) = F(x), x ∈Ω (1)

*Presented by Zahir MURADOGLU, zahir@kocael.edu.tr
†maths.vildan@gmail.com
‡urbanovichtm@gmail.com
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u2(x1,0)≤−α +ϕ(x1), σ22(u(x1,x2))≤ 0,
σ22(u(x1,x2)) [u2(x1,0)+α−ϕ(x1)] = 0, (x1,x2) ∈ Γ0;
σ11(u(x1,x2)) = 0, (x1,x2) ∈ Γσ ;
u1(x1,x2) = 0, u2(x1,x2) = 0, (x1,x2) ∈ Γu;
u1(0,x2) = 0, (0,x2) ∈ Γ1;
σ12(u(x1,x2)) = 0, (x1,x2) ∈ ∂Ω.

(2)

Here Ω := {(x1,x2) ∈ R2 : 0 < x1 < lx1 ,−lx2 < x2 < 0, lx1 > 0, lx2 > 0} is the region occupied by the cross-
section of the material under the influence of the punch and Γ0,Γσ ,Γu,Γ1 ⊂ ∂Ω are the relevant parts of the
boundary of the region Ω (Fig. 1). Namely, Γσ = {(lx1 ,x2) :−lx2 < x2 < 0}, Γu = {(x1,−lx2) : 0 < x1 < lx1},
Γ0 = {(x1,0) : 0 < x1 < lx1}, Γ1 = (0,x2) :−lx2 < x2 < 0}. Since the condition on the upper boundary Γ0 is
given by inequality, the contact region of the punch Γc = {(x1,x2) ∈ Γ0 : u2 =−α +ϕ(x1)} is not certain and
the problem is nonlinear.
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- l x 2

Fig. 1. Geometry of the spherical indentation

The solution of the problem (1)-(2) minimizes by the following functional

J(u) = (Au,u)−0.5b(v), u ∈V,

on the set
V = {u ∈ H1(Ω) : u1(0,x2) = 0, (0,x2) ∈ Γ1; u1(x1,−lx2) = u2(x1,−lx2) = 0,

(x1,−lx2) ∈ Γu; u2(x1,0)≤−α +ϕ(x1), (x1,0) ∈ Γ0}
in the Sobolov space H1(Ω) :=W 1

2 (Ω)×W 1
2 (Ω).

Here the bilinear and the linear parts of above functional have the following form

(Au,v) = ∑
k

∫ ∫

Ωk

{[
(λk +2µk)

∂u1

∂x1
+λk

∂u2

∂x2

]
∂v1

∂x1
+

µk

(
∂u1

∂x2
+

∂u2

∂x1

)(
∂v1

∂x2
+

∂v2

∂x1

)
+

[
λk

∂u1

∂x1
+(λk +2µk)

∂u2

∂x2

]
∂v2

∂x2

}
dx1dx2, (3)

b(v) = ∑
k

∫ ∫

Ωk

[F1v1 +F2v2]dx1dx2, (4)

respectively.

3. Finite-Element Formulation

Let us use here the biquadratic basic functions ξi j(x1,x2) to analyze the problem (1)-(2). Here ξi j(x1,pq,x2,pq) ={
1 (i, j) = (p,q),
0 (i, j) 6= (p,q) and the compact support of the basic function is Ωi j = ei−1 j−1∪ ei−1 j ∪ ei j−1∪ ei j. A

numerical solution (uh,vh) has the following form:

uh(x1,x2) = ∑
(i j)

ui jξi j(x1,x2), vh(x1,x2) = ∑
(i j)

vi jξi j(x1,x2).
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The local stiffness matrix (LSM) of the finite element ei j is constructed as follows

Lij =

[
L

(i j)
11 L

(i j)
12

L
(i j)

21 L
(i j)

22

]
.

Elements of the LSM are calculated by the formulas

[
L

(i j)
11

]
=

[∫∫

ei j

{
(λ +2µ)

∂ξi j

∂x1

∂ξkl

∂x1
+µ

∂ξi j

∂x2

∂ξkl

∂x2

}
dx1dx2

]
,

[
L

(i j)
12

]
=

[∫∫

ei j

{
λ

∂ξi j

∂x2

∂ξkl

∂x1
+µ

∂ξi j

∂x1

∂ξkl

∂x2

}
dx1dx2

]
,

[
L

(i j)
21

]
=

[∫∫

ei j

{
λ

∂ξi j

∂x1

∂ξkl

∂x2
+µ

∂ξi j

∂x2

∂ξkl

∂x1

}
dx1dx2

]
,

[
L

(i j)
22

]
=

[∫∫

ei j

{
(λ +2µ)

∂ξi j

∂x2

∂ξkl

∂x2
+µ

∂ξi j

∂x1

∂ξkl

∂x1

}
dx1dx2

]
, k, l = 1,9.

So, using well-known finite-element technology we calculate the LSM Li j = {(lpq)}, p,q = 1,18 for the
elements ei j. We can define unknown vectors corresponding to ei−1 j−1,ei−1 j,ei j−1,ei j neighboring with point
(i, j) (Figure 2) as follows:

ωi−1 j−1 = (ui−1 j−1,ui−1 j− 1
2
,ui−1 j,ui− 1

2 j−1,ui− 1
2 j− 1

2
,ui− 1

2 j,ui j−1,ui j− 1
2
,ui j,

vi−1 j−1,vi−1 j− 1
2
,vi−1 j,vi− 1

2 j−1,vi− 1
2 j− 1

2
,vi− 1

2 j,vi j−1,vi j− 1
2
,vi j),

ωi−1 j = (ui−1 j,ui−1 j+ 1
2
,ui−1 j+1,ui− 1

2 j,ui− 1
2 j+ 1

2
,ui− 1

2 j+1,ui j,ui j+ 1
2
,ui j+1,

vi−1 j,vi−1 j+ 1
2
,vi−1 j+1,vi− 1

2 j,vi− 1
2 j+ 1

2
,vi− 1

2 j+1,vi j,vi j+ 1
2
,vi j+1),

ωi j−1 = (ui j−1,ui j− 1
2
,ui j,ui+ 1

2 j−1,ui+ 1
2 j− 1

2
,ui+ 1

2 j,ui+1 j−1,ui+1 j− 1
2
,ui+1 j,

vi j−1,vi j− 1
2
,vi j,vi+ 1

2 j−1,vi+ 1
2 j− 1

2
,vi+ 1

2 j,vi+1 j−1,vi+1 j− 1
2
,vi+1 j),

ωi j = (ui j,ui j+ 1
2
,ui j+1,ui+ 1

2 j,ui+ 1
2 j+ 1

2
,ui+ 1

2 j+1,ui+1 j,ui+1 j+ 1
2
,ui+1 j+1,

vi j,vi j+ 1
2
,vi j+1,vi+ 1

2 j,vi+ 1
2 j+ 1

2
,vi+ 1

2 j+1,vi+1 j,vi+1 j+ 1
2
,vi+1 j+1).

The nodal points of all finite elements are numerated from down to up and from left to right. The finite-element
ei j has its index (i j) corresponding to the lower-left vertice.
In this context, to derive the discrete analogue of equilibrium equation, as well as contact and interlaminar
stresses, the following technique is suggested.
In order to obtain the equation for the central point of the finite element we have to multiply the displacement
vector corresponding to this finite element with ninth (tenth) line of the LSM.
In order to obtain the discrete form for the Lame system (1) on the nodal points of mesh (x1,i j,x2,i j) ∈Ωk we
use four finite elements neighbouring with this point (Figure 2). So, using the components of the local stiffness
matrix and above four vectors we can write their contribution to the discrete form of first (second) equilibrium
equation in the form

( seventeenth (eighteenth) line of Li−1 j−1)×ωT
i−1 j−1 +

( thirteenth ( f ourteenth) line of Li−1 j)×ωT
i−1 j +

( fifth (sixth) line of Li j−1)×ωT
i j−1 +

( first (second) line of Li j)×ωT
i j . (5)

After non difficult transformations, we can write the discrete form for the system (1) on k-th layer Ωk by using
finite differences notations:

{
−hiτ j[(λk +2µk)ux1x1 +µkux2x2 +

λk+µk
2 (vx1x2 + vx1 x2)] = Fh

1,i j,

−hiτ j[µkvx1x1 +(λk +2µk)vx2x2 +
λk+µk

2 (ux1x2 +ux1 x2)] = Fh
2,i j,

(6)

where Fh
1,i j and Fh

2,i j are values of components of internal forces F on the nodal point (x1,i j,x2,i j). by using the
notations of finite differences
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Let us denote interlayer stress on the common border by σ k
N,i j (σ k

T,i j), σ k+1
N,i j (σ k+1

T,i j ). In order to obtain the
approximating expression of σ k

N,i j (σ k
T,i j) we have to multiply Li−1 j by ωi−1 j and Li j by ωi j, respectively.

Then we have to sum up the results of that multiplying. Now let us approximate σ k+1
N,i j (σ k+1

T,i j ) on the upper
boundary of lower layer. In order to do that we have to multiply line eighteenth (seventeenth) of Li−1 j−1
by ωi−1 j−1 and line sixth (fifth) of Li j−1 by ωi j−1, respectively. Then we have to sum up the results of that
multiplying.

( i,j) ( i+1/2,j) ( i+1,j)( i-1/2,j)( i-1,j)

( i,j )+1/2
( i+1/2,j )+1/2

( i+1,j )+1/2
( i-1/2,j )+1/2

( i-1,j+1/2)

( i,j )+1 ( i+1/2,j )+1
( i+1,j )+1

( i-1/2,j )+1( i-1,j+1)

* *

( i,j- )1/2
( i+1/2,j- )1/2

( i+1,j- )1/2
( i-1/2,j- )1/2

( i-1,j-1/2)
* *

( i,j- )1 ( i+1/2,j- )1

( i+1,j- )1

( i-1/2,j- )1
( i-1,j-1)

( i,j) ( i+1/2,j) ( i+1,j)( i-1/2,j)( i-1,j)

e ( i,j-1)

e ( i,j)

e ( i-1,j-1)

e ( i-1,j)

L
K

s
N

k

s
N

k+1

s
T

k

s
T

k+1

Fig. 2. The interlayer finite elements

The discrete analogues of normal (σh,(k)
N ) and tangential (σh,(k)

T ) components of stresses on k-th layer Ωk have
the following form:

σh,(k)
N =−λk

ux1 + ǔx1

2
− (λk +2µk)vx2 −

τ
2

µk[ux1x2 + vx1x1 ], (7)

σh,(k)
T =−µk(ux2 +

vx1 + v̂x1

2
)− τ

2
[(λk +2µk)ux1x1 +λkvx1x2 ]. (8)

Analogously, we can obtain σh,(k+1)
N and σh,(k+1)

T as follows

σh,(k+1)
N = λk+1

ux1 + ǔx1

2
+(λk+1 +2µk+1)vx2 −

τ
2

µk+1(ux1 x2 + vx1x1), (9)

σh,(k+1)
T = µk+1(ux2 +

vx1 + v̌x1

2
)− τ

2
[(λk+1 +2µk+1)ux1x1 +λk+1vx1 x2 ]. (10)

Using (7)-(10), it is not difficult to show that the following transmission conditions

σh,(k)
T −σh,(k+1)

T = 0, σh,(k)
N −σh,(k+1)

N = 0 (11)

are satisfied. In order to determinate contact domain ac we have to calculate σN on the upper side of the body.
We calculate this value the same way as for the upper boundary of lower layer.
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