Torus Type Helicoidal Hypersurface in 4-Space

Erhan GÜLER*
Bartın University,
Department of Mathematics,
74100, Bartın, TURKEY

Ömer KİŞİ BartınUniversity, Department of Mathematics, 74100, Bartın, TURKEY

Abstract

We study torus-type helicoidal hypersurface in the four dimensional Euclidean space \mathbb{E}^4 . We define torus-type helicoidal hypersurface. Then, we calculate its curvatures with some results.

Keywords: 4-space, torus-type helicoidal hypersurface, curvatures.

1 Introduction

Focusing on the rotational characters in the literature, we meet [1-6, 8-18, 20, 21, 24-26, 28, 31, 32, 34, 35], and many others.

About helicoidal surfaces in Euclidean 3-space, Do Carmo and Dajczer [14] proved that there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface using a result of Bour [7].

Magid, Scharlach and Vrancken [28] introduced the affine umbilical surfaces in 4-space. Vlachos [35] considered hypersurfaces in \mathbb{E}^4 with harmonic mean curvature vector field. Scharlach [32] studied on affine geometry of surfaces and hypersurfaces in \mathbb{E}^4 . Cheng and Wan [11] considered complete hypersurfaces of \mathbb{E}^4 with constant mean curvature. Arvanitoyeorgos, Kaimakamais and Magid [6] showed that if the mean curvature vector field of M_1^3 satisfies the equation $\Delta H = \alpha H$ (α a constant), then M_1^3 has constant mean curvature in Minkowski 4-space \mathbb{E}^4_1 .

General rotational surfaces in \mathbb{E}^4 were introduced by Moore [29, 30]. Ganchev and Milousheva [17] considered the analogue of these surfaces in the Minkowski 4-space. Moruz and Munteanu [31] considered hypersurfaces in \mathbb{E}^4 defined as the sum of a curve and a surface whose mean curvature vanishes. Verstraelen, Walrave and Yaprak [34] studied on the minimal translation surfaces in \mathbb{E}^n for arbitrary dimension n. Kim and Turgay [26] studied surfaces with L_1 -pointwise 1-type Gauss map in the 4-dimensional Euclidean space \mathbb{E}^4 .

Güler, Magid and Yaylı [21] studied Laplace Beltrami operator of a helicoidal hypersurface in \mathbb{E}^4 . Güler, Hacisalihoglu and Kim [18] worked on the Gauss map and the third Laplace-Beltrami operator of rotational hypersurface in \mathbb{E}^4 . Güler, Kaimakamis and Magid [19] introduced the helicoidal hypersurfaces in Minkowski 4-space \mathbb{E}^4_1 . Güler and Turgay [22] studied Cheng-Yau operator and Gauss map of rotational hypersurfaces in \mathbb{E}^4 . Moreover; Güler, Turgay and Kim [23] considered L_2 operator and Gauss map of rotational hypersurfaces in \mathbb{E}^5 . Some relations among the Laplace-Beltrami operator and curvatures of the helicoidal surfaces were shown by Güler, Yaylı and Hacısalihoğlu [24]. Güler and Kişi [20] defined torus type rotational hypersurface in 4-space.

We study the torus-type helicoidal hypersurface in Euclidean 4-space \mathbb{E}^4 . We give some basic notions of four dimensional Euclidean geometry in section 2. In section 3, we define

^{*}Corresponding author. E-mail address: eguler@bartin.edu.tr

helicoidal hypersurface of four-space. Moreover, we obtain torus-type helicoidal hypersurface, and calculate its curvatures in the last section.

2 Preliminaries

We shall identify a vector (a,b,c,d) with its transpose $(a,b,c,d)^t$ in the rest of this paper. Next, we introduce the first and second fundamental forms, matrix of the shape operator **S**, Gaussian curvature K, and the mean curvature H of hypersurface $\mathbf{M} = \mathbf{M}(u,v,w)$ in Euclidean 4-space \mathbb{E}^4 .

Let **M** be an isometric immersion of a hypersurface M^3 in \mathbb{E}^4 . The triple vector product $\overrightarrow{x} \times \overrightarrow{y} \times \overrightarrow{z}$ of $\overrightarrow{x} = (x_1, x_2, x_3, x_4)$, $\overrightarrow{y} = (y_1, y_2, y_3, y_4)$, $\overrightarrow{z} = (z_1, z_2, z_3, z_4)$ on \mathbb{E}^4 is defined as follows

$$\begin{pmatrix} x_2y_3z_4 - x_2y_4z_3 - x_3y_2z_4 + x_3y_4z_2 + x_4y_2z_3 - x_4y_3z_2 \\ -x_1y_3z_4 + x_1y_4z_3 + x_3y_1z_4 - x_3z_1y_4 - y_1x_4z_3 + x_4y_3z_1 \\ x_1y_2z_4 - x_1y_4z_2 - x_2y_1z_4 + x_2z_1y_4 + y_1x_4z_2 - x_4y_2z_1 \\ -x_1y_2z_3 + x_1y_3z_2 + x_2y_1z_3 - x_2y_3z_1 - x_3y_1z_2 + x_3y_2z_1 \end{pmatrix}.$$

For a hypersurface \mathbf{M} in \mathbb{E}^4 we have

$$\det I = \det \begin{pmatrix} E & F & A \\ F & G & B \\ A & B & C \end{pmatrix} = (EG - F^2)C - A^2G + 2ABF - B^2E,$$

and

$$\det II = \det \begin{pmatrix} L & M & P \\ M & N & T \\ P & T & V \end{pmatrix} = (LN - M^2) V - P^2 N + 2PTM - T^2 L,$$

where

$$A = \mathbf{M}_u \cdot \mathbf{M}_w, \ B = \mathbf{M}_v \cdot \mathbf{M}_w, \ C = \mathbf{M}_w \cdot \mathbf{M}_w,$$

$$P = \mathbf{M}_{uw} \cdot e, \quad T = \mathbf{M}_{vw} \cdot e, \quad V = \mathbf{M}_{ww} \cdot e,$$

e is the Gauss map (i.e., the unit normal vector field). We compute the matrix of the shape operator S, as follows

$$\mathbf{S} = \frac{1}{\det I} \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix},\tag{1}$$

where

$$\begin{split} s_{11} &= ABM - CFM - AGP + BFP + CGL - B^2L, \\ s_{12} &= ABN - CFN - AGT + BFT + CGM - B^2M, \\ s_{13} &= ABT - CFT - AGV + BFV + CGP - B^2P, \\ s_{21} &= ABL - CFL + AFP - BPE + CME - A^2M, \\ s_{22} &= ABM - CFM + AFT - BTE + CNE - A^2N, \\ s_{23} &= ABP - CFP + AFV - BVE + CTE - A^2T, \\ s_{31} &= -AGL + BFL + AFM - BME + GPE - F^2P, \\ s_{32} &= -AGM + BFM + AFN - BNE + GTE - F^2T, \\ s_{33} &= -AGP + BFP + AFT - BTE + GVE - F^2V. \end{split}$$

So, we get the following formulas of the Gaussian and the mean curvatures

$$\begin{split} K &= \det(\mathbf{S}) = \frac{\det II}{\det I} \\ &= \frac{\left(LN - M^2\right)V + 2MPT - P^2N - T^2L}{(EG - F^2)C + 2ABF - A^2G - B^2E}, \end{split}$$

and

$$\begin{split} H &= \frac{1}{3} tr\left(\mathbf{S}\right) \\ &= \frac{1}{3 \det I} [(EN + GL - 2FM)C + (EG - F^2)V \\ &- A^2N - B^2L - 2(APG + BTE - ABM - ATF - BPF)]. \end{split}$$

A hypersurface \mathbf{M} is minimal, if H = 0 identically on \mathbf{M} .

3 Helicoidal Hypersurface

Next, we define the rotational hypersurface in \mathbb{E}^4 . For an open interval $I \subset \mathbb{R}$, let $\gamma : I \longrightarrow \Pi$ be a curve in a plane Π in \mathbb{E}^4 , and let ℓ be a straight line in Π .

A rotational hypersurface in \mathbb{E}^4 is defined as a hypersurface rotating a curve γ around a line ℓ (these are called the *profile curve* and the *axis*, respectively). Suppose that when a profile curve γ rotates around the axis ℓ , it simultaneously displaces parallel lines orthogonal to the axis ℓ , so that the speed of displacement is proportional to the speed of rotation. Then the resulting hypersurface is called the *helicoidal hypersurface* with axis ℓ and pitchs $b, d \in \mathbb{R} \setminus \{0\}$.

We may suppose that ℓ is the line spanned by the vector $(0,0,0,1)^t$. The orthogonal matrix which fixes the above vector is

$$Z(v,w) = \begin{pmatrix} \cos v \cos w & -\sin v & -\cos v \sin w & 0\\ \sin v \cos w & \cos v & -\sin v \sin w & 0\\ \sin w & 0 & \cos w & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$
 (2)

where $v, w \in \mathbb{R}$. The matrix Z can be found by solving the following equations simultaneously;

$$Z\ell = \ell$$
, $Z^t Z = Z Z^t = I_4$, det $Z = 1$.

When the axis of rotation is ℓ , there is an Euclidean transformation by which the axis is ℓ transformed to the x_4 -axis of \mathbb{E}^4 . Parametrization of the profile curve is given by

$$\gamma(u) = (f(u), 0, 0, \varphi(u)),$$

where $f(u), \varphi(u): I \subset \mathbb{R} \longrightarrow \mathbb{R}$ are differentiable functions for all $u \in I$. So, the helicoidal hypersurface which is spanned by the vector (0,0,0,1) is as follows

$$\mathbf{H}(u, v, w) = Z(v, w)\gamma(u)^{t} + (bv + dw) \ell^{t},$$

where $u \in I$, $v, w \in [0, 2\pi]$. Clearly, we write helicoidal hypersurface as follows

$$\mathbf{H}(u, v, w) = \begin{pmatrix} f(u)\cos v \cos w \\ f(u)\sin v \cos w \\ f(u)\sin w \\ \varphi(u) + bv + dw \end{pmatrix}.$$
(3)

4 Torus-Type Helicoidal Hypersurface

Taking profile curve as

$$\gamma(u) = (a + c\cos u, 0, 0, c\sin u),$$

with the orthogonal matrix Z, then we get torus-type helicoidal hypersurface in \mathbb{E}^4 as follows

$$\mathfrak{T}(u,v,w) = \begin{pmatrix} (c+a\cos u)\cos v\cos w\\ (c+a\cos u)\sin v\cos w\\ (c+a\cos u)\sin w\\ a\sin u + bv + dw \end{pmatrix},\tag{4}$$

where $a, b, c, d \in \mathbb{R} \setminus \{0\}$ and $0 \le u, v, w \le 2\pi$.

Using the first differentials of (4) with respect to u, v, w, we get the first quantities as follows

$$I = \begin{pmatrix} a^2 & ab\cos u & ad\cos u \\ ab\cos u & \beta_1 & bd \\ ad\cos u & bd & \beta_2 \end{pmatrix},$$

where

$$\beta_1 = a(2c + a\cos u)\cos u\cos^2 w + b^2,$$

 $\beta_2 = a(2c + a\cos u)\cos u + c^2 + d^2,$

and have

$$\det I = a^2 \left(\left(2b^2 d^2 - b^2 \beta_2 - d^2 \beta_1 \right) \cos^2 u + \left(\beta_1 \beta_2 - b^2 d^2 \right) \right).$$

Using the second differentials with respect to u, v, w, we have the second quantities as follows

$$II = \frac{1}{W} \begin{pmatrix} -a\phi & ab\sin^2 u & ad\sin^2 u \\ ab\sin^2 u & -\phi^2\cos u - d\phi\sin u & b\phi\sin u \\ ad\sin^2 u & b\phi\sin u & -\phi^2\cos u \end{pmatrix},$$

where $W = \sqrt{(a^2 - 2b^2 - d^2)\cos^2 u + 2ac\cos u + a^2 + 2b^2 + d^2}$, $\phi = c + a\cos u$, and get

$$\det II = \frac{a\phi}{W^{3/2}} \begin{pmatrix} -\left(a\cos^2 u + c\cos u + d\sin u\right)\phi^3\cos u \\ +b^2\phi^2\sin^2 u + a\phi\left(b^2 + d^2\right)\sin^4 u\cos u \\ +ad\left(2b^2 + d^2\right)\sin^5 u \end{pmatrix}.$$

The Gauss map of the helicoidal hypersurface with spacelike axis is

$$e_{\mathfrak{T}} = \frac{1}{D} \begin{pmatrix} (\phi \cos u + d \sin u \sin w) \cos v \cos w + b \sin u \sin v \\ (\phi \cos u \cos w + d \sin u \sin w) \sin v \cos w - b \sin u \cos v \\ (\phi \cos u \sin w - d \sin u \cos w) \cos w \\ \phi \sin u \cos w \end{pmatrix}, \tag{5}$$

where $D = \sqrt{((a^2 - d^2)\cos^2 u + 2ac\cos u)\cos^2 w + b^2\sin^2 u}$.

Finally, the Gaussian curvature of the torus-type helicoidal hypersurface is as follows

$$K = \frac{a\phi\Psi(u)}{W^{3/2}\det I},$$

where

$$\Psi = -(a\cos^2 u + c\cos u + d\sin u)\phi^3\cos u + b^2\phi^2\sin^2 u + a(b^2 + d^2)\phi\sin^4 u\cos u + ad(2b^2 + d^2)\sin^5 u.$$

and the mean curvature is as follows

$$H = -\frac{a\Omega(u, w)}{3W \det I},$$

where

$$\Omega = a\phi^{2} (b^{2} \sin^{2} u + a (2c + a \cos u) \cos u \cos^{2} w) \cos u
+ [b^{2}c^{2} + a^{2} (a^{2} - d^{2}) \cos^{4} u - acd^{2} \cos^{3} u + a^{2} (b^{2} + 3c^{2} + d^{2}) \cos^{2} u
+ ac (2b^{2} + c^{2} + d^{2}) \cos u + a^{4} \cos^{4} u \cos^{2} w - ad (2b^{2} + d^{2}) \sin u \cos^{2} u
+ a^{3}c (4 \cos^{2} w + 3) \cos^{3} u + ad (2b^{2} + c^{2} + d^{2}) \sin u
+ ad (2c + a \cos u) (d \cos^{2} w + a \sin u) \cos u]\phi
+ 2a (b^{2}c^{2} + a (b^{2} + d^{2} \cos^{2} w) (2c + a \cos u) \cos u) \cos u \sin^{2} u.$$

Corollary 1. Let $\mathfrak{T}:M^3\longrightarrow \mathbb{E}^4$ be an immersion given by (4). Then M^3 has following Weingarten relation

$$3\phi\Psi H + W^{1/2}\Omega K = 0.$$

References

- [1] Aksoyak F., Yaylı Y. Boost invariant surfaces with pointwise 1-type Gauss map in Minkowski 4-Space \mathbb{E}^4_1 . Bull. Korean Math. Soc. 51 (2014) 1863–1874.
- [2] Aksoyak F., Yaylı Y. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space \mathbb{E}_2^4 . Indian J. Pure Appl. Math. 46 (2015) 107–118.
- [3] Arslan K., Bulca B., Milousheva V. Meridian surfaces in \mathbb{E}^4 with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 51-3 (2014) 911–922.
- [4] Arslan K., Deszcz R., Yaprak Ş. On Weyl pseudosymmetric hypersurfaces. Colloq. Math. 72 (1997) 353–361.
- [5] Arslan K., Kılıç Bayram B., Bulca B., Öztürk G. Generalized Rotation Surfaces in \mathbb{E}^4 . Results Math. 2012, 61, 315–327. Korean Math. Soc. 51 (2014) 911–922.
- [6] Arvanitoyeorgos A., Kaimakamis G., Magid M. Lorentz hypersurfaces in \mathbb{E}_1^4 satisfying $\Delta H = \alpha H$. Illinois J. Math. 53-2 (2009), 581-590.
- [7] Bour E. Théorie de la déformation des surfaces. J. de l. École Imperiale Polytechnique 22-39 (1862) 1-148.
- [8] Chen B.Y. Geometry of Submanifolds. Pure and Applied Mathematics, no. 22. Marcel Dekker, Inc., New York, 1973.
- [9] Chen B.Y. Total Mean Curvature and Submanifolds of Finite Type. 2nd Ed., World Scientific, Hackensack 2014.
- [10] Chen B.Y., Choi, M., Kim, Y.H. Surfaces of revolution with pointwise 1-type Gauss map. Korean Math. Soc. 42 (2005) 447–455.
- [11] Cheng Q.M., Wan Q.R. Complete hypersurfaces of \mathbb{R}^4 with constant mean curvature. Monatsh. Math. 118 (1994) 3-4, 171-204.
- [12] Choi M., Kim Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38 (2001) 753-761.

- [13] Dillen F., Pas J., Verstraelen L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13 (1990) 10-21.
- [14] Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34 (1982) 351-367.
- [15] Dursun U., Turgay N.C. Minimal and pseudo-umbilical rotational surfaces in Euclidean space E⁴. Mediterr. J. Math. 2013, 10, 497–506.
- [16] Ferrandez A., Garay O.J., Lucas P. On a Certain Class of Conformally at Euclidean Hypersurfaces. In Global Analysis and Global Differential Geometry; Springer: Berlin, Germany, 1990; 48–54.
- [17] Ganchev G., Milousheva V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 (2014) 883-895.
- [18] Güler E., Hacısalihoğlu H.H., Kim Y.H. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10(9) 398 (2018) 1-11.
- [19] Güler E., Kaimakamis G., Magid M. Helicoidal hypersurfaces in Minkowski 4-space \mathbb{E}_1^4 (submitted).
- [20] Güler E., Kişi Ö. Turus hypersurface in 4-space. Presented in ICAA-2018, Int. Conf. Analysis Applications, Kırşehir Turkey.
- [21] Güler E., Magid M., Yaylı Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom. Sym. Phys. 41, (2016) 77-95.
- [22] Güler E., Turgay N.C. Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space (submitted).
- [23] Güler E., Turgay N.C., Kim Y.H. L_2 operator and Gauss map of rotational hypersurfaces in 5-space (submitted).
- [24] Güler E., Yaylı Y., Hacısalihoğlu H.H. Bour's theorem on the Gauss map in 3-Euclidean space. Hacettepe J. Math. 39 (2010) 515-525.
- [25] Hieu, D.T.; Thang, N.N. Bour's theorem in 4-dimensional Euclidean space. Bull. Korean Math. Soc. 2017, 54, 2081–2089.
- [26] Kim Y.H., Turgay N.C. Surfaces in \mathbb{E}^4 with L_1 -pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50(3) (2013) 935-949.
- [27] Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.: Wilmington, Delaware, 1980.
- [28] Magid M., Scharlach C., Vrancken L. Affine umbilical surfaces in \mathbb{R}^4 . Manuscripta Math. 88 (1995) 275-289.
- [29] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919) 81-93.
- [30] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920) 454-460.
- [31] Moruz M., Munteanu M.I. Minimal translation hypersurfaces in \mathbb{E}^4 . J. Math. Anal. Appl. 439 (2016) 798-812.

- [32] Scharlach, C. Affine Geometry of Surfaces and Hypersurfaces in R4. In Symposium on the Differential Geometry of Submanifolds; Dillen, F., Simon, U., Vrancken, L., Eds.; Un. Valenciennes: Valenciennes, France, 2007; Vol. 124, 251–256.
- [33] Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18 (1966) 380-385.
- [34] Verstraelen L., Walrave J., Yaprak S. The minimal translation surfaces in Euclidean space. Soochow J. Math. 20-1 (1994) 77–82.
- [35] Vlachos Th. Hypersurfaces in \mathbb{E}^4 with harmonic mean curvature vector field. Math. Nachr. 172 (1995) 145-169.