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Abstract. We consider hypersurfaces of Riemannian space forms in terms of the type of their Gauss map, spherical Gauss map
or hyperbolic Gauss map. We give a brief summary of results on submanifolds with Lk finite type Gauss map for k > 0. We also
obtain some classification results.

INTRODUCTION

In the middle of 1980’s, B.- Y. Chen started a program to understand the geometry of finite type submanifolds of
Euclidean space by considering the spectral decomposition Laplace operator, [1, 2]. Then, the definition of finite type
mappings is given in [3]. Namely, a mapping φ from a submanifold of En to another Euclidean space is said to be
finite type if it can be expressed as a some of finitely many eigenvectors of Laplace operator.

In particular, the Gauss maps of submanifolds of semi-Euclidean spaces catch interests of a lot of geometers after
B.-Y. Chen and Piccini presented the question ‘To what extent does the type of the Gauss map of a submanifold of ET
determine the submanifold?’ in [4]. They made a general study on compact submanifolds of Euclidean spaces with
finite type Gauss map, and for hypersurfaces they proved that a compact hypersurface M of En+1 has 1-type Gauss
map if and only if M is a hypersphere in En+1. Also many geometers studied submanifolds with finite type Gauss map
([5, 6, 7, 4, 8] etc.).

In 2006, Alias and Gürbüz consider similar notion by replacing the Laplace operator by a sequence of operators
L0, L1, . . . , Ln−1 with L0 = ∆. We note that L1, . . . , Ln−1 operators are a natural generalization of the Laplace operator
because they extend some classical results corresponding to ∆ (See below). Then some

In this paper, we consider hypersurfaces of Riemannian space forms with negative constant curvature in terms
of the type of their (hyperbolic) Gauss map. The organization of this paper is as follows. First, we describe our basic
notation before we summarize some of the basic facts on hypersurfaces of Riemannian space forms and finite type
mappings. Then, we give a brief summary of recent results on Lk finite type maps obtain our classification results.
Finally, we obtain some results on hypersurfaces in Hn.

PRELIMINARIES

Let Rn+1(c) denote the n + 1-dimensional Riemannian space form with the curvature c ∈ {−1, 0, 1} and M an hyper-
surface of Rn+1(c) with the unit normal vector field N, where we put

Rm(c) =


Sm if c = 1,
Em if c = 0,
Hm if c = −1

are called m-sphere, Euclidean m-space and hyperbolic m-space, respectively and Lm+1 is the Lorentzian space of
dimension m + 1.
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Then, the Gauss and Weingarten formulas given by

∇̃XY = ∇XY + h(X,Y),
∇̃XN = −S (X),

define the second fundamental form h and shape operator S of M, where ∇̃ and ∇ are Levi-Civita connections of
Rn+1(c) and M, respectively.

The Gauss and Codazzi equations are given, respectively, by

R(X,Y)Z = c(X ∧ Y)Z + Ah(Y,Z)X − Ah(X,Z)Y, (1)
(∇̄Xh)(Y,Z) = (∇̄Yh)(X,Z), (2)

where R is the curvature tensor associated with connection ∇ and ∇̄h is the covariant derivative of h.
On the other hand, since the shape operator S is a self-adjoint operator, there exists an orthonormal frame field

{e1, e2, . . . , en} of the tangent bundle of M such that S ei = λiei for some smooth functions λi called principle curvatures
of M corresponding to the principle direction ei. From the Codazzi equation (1) we have

ei(λ j) = ωi j(e j)(λi − λ j), (3)
ωi j(el)(λi − λ j) = ωil(e j)(λi − λl) (4)

for distinct i, j, l = 1, 2, . . . , n, where ωi j are the connection forms of M.

Lk Operators
Let M be a hypersurface of Rn+1(c) with principle curvatures λ1, λ2, . . . , λn. Then, the algebraic invariants s1, s2, . . . , sn
of shape operator S of M take the form

sk = σn
k(λ1, λ2, . . . , λn), 0 ≤ k ≤ n,

where σn
k : Rn → R is the k-th symmetric function in Rn given by

σn
k(t1, t2, . . . , tn) =

∑
1≤i1<i2<...<ik≤n

ti1 ti2 . . . tik .

By the definition, we put s0 = 1 and sl = 1 if l > n. Note that, H = s1
n is called the (first) mean curvature of M while

we are going to call sk as k-th mean curvature of M if k > 1 by an abuse of terminology.
On the other hand, one can define k-th Newton transformation Pk : Γ(M) → Γ(M) by Pk = skP0 − S ◦ Pk−1

and P0 = I, where Γ(M,T N) denote all N-vector fields defined on M and Γ(M) = Γ(M,T M). Note that because
of Cayley-Hamilton theorem, we have Pn = 0. Then, by using these transformations, one can define the operator
Lk : C∞(M)→ C∞(M) by

Lk( f ) = tr(Pk ◦ ∇
2 f )

for k = 0, 1, 2, . . . , n − 1, where ∇2 f is the Hessian of f ([9]). Then, L0, L1, . . . , Ln−1 become a sequence of second
order differential operators with L0 = ∆ is the usual Laplace operator ∆ of M with respect to the induced metric from
Rn+1(c)and L1 = � is called the Cheng-Yau operator, [10]. When c = 0, the operators L1, L2, . . . , Ln−1 satisfy the
following properties which can be seen naturally to generalize some of fundamental results about L0 = ∆(See Sect.
b)).

The operator Lk can be naturally extend to C∞(M,EN
s ) as following:

L̂k : C∞(M,EN
s ) −→ C∞(M,EN

s )
X 7−→ L̂k(X) : 〈Lk(X),C〉 = Lk (〈X,C〉) whenever C ∈ RN ,

(5)

where EN
s denotes the semi-Euclidean N space with index s that is RN equipped with the standard non-degenerated

inner product of index s. By abusing the notation, we will put Lk = L̂k (See, for example, [9, 11] for the same usage).
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Lk Finite Type Mappings
First let us recall the definition of Lk k-type mappings

Definition 1. [11] Let φ : M → EN be a smooth map from a submanifold M of a Euclidean space. Then, is said to be
of Lk k-type if it can be expressed as

φ = φ0 + φ1 + · · · + φk

for a constant map x0 and non-constant smooth maps x1, . . . , xk such that Lk xi = λixi for some distinct eigenvaules
λ1, λ2, . . . , λk of Lk.

Further, we have

Definition 2. [11] Let φ : M → EN be a smooth map from a submanifold M of a Euclidean space. If φ is k- type for
a k ∈ N, then it is also said to be Lk finite type.

From Definition 1 one can observe that a smooth map φ : M → EN is Lk 1-type if and only if the equation

LkG = λ(G + C) (6)

for a constant λ ∈ R and a constant vector C, where M is a submanifold of a Euclidean space. When the codimension
of M is 1, by replacing the condition of satisfying (6) with a weaker one, one can define pointwise 1-type Gauss map
(See, for example [12, 13, 14]).

Definition 3. Let φ : M → Rn+1(c) be a map from a hypersurface M of Euclidean space Rn+1(c). φ is said to be Lk
pointwise 1-type if it satisfies

LkG = f (G + C) (7)

for a smooth function f ∈ C∞(M) and a constant vector C ∈ E(n + 1, c). We also have the following definitions for the
particular cases:

• An Lk pointwise 1-type map is said to be of the first kind if (7) is satisfied for C = 0; otherwise, it is said to be
of the second kind.

• If (7) is satisfied for f = 0, then φ is called Lk harmonic
• An Lk pointwise 1-type map is said to be proper if (7) is satisfied for a non-constant function f .

RECENT RESULTS ON Lk OPERATORS

In this section, we would like to give a brief summary of the results on Lk finite type maps which have recently
appeared. First we want to present some of results that shows why L1, L2, . . . , Ln−1 operators can be seen as a natural
generalization of L0 = ∆:

• The well-known that Laplace-Beltrami formula ∆x = nHN = s1N is generalized in [9], where Alias and Gürbüz
proved

Lk x = sk+1N,

where x : M ↪→ En+1 = Rn+1(0) is an isometric immersion.
• In [15] and [16], a generalization of classical Takahashi Theorem ([17]) had been obtained by considering

isometric immersions of codimension 1 into En+1 satisfying ∆x = Ax + B for some matrices A ∈ R(n+1)×(n+1) and
B ∈ R(n+1)×1 (See citeDillenetal1990 for the case n = 2). In [9], it is proved that an extension of this result holds
if the operator L0 = ∆ is replaced by Lk.

• The Gauss map G of a hypersurface M of En+1 satisfies

∆G = ∇s1 + (s2
1 − 2s2)G.

In [13, 14], it is proved that L1G also satisfies a similar formula.
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Hypersurfaces with Lk Finite Type Gauss Map
• In [18], Dursun studied hypersurfaces in Minkowski space En+1

1 of arbitrary dimension and obtained the follow-
ing results.

Theorem 4. [18] If an oriented hypersurface M in the Minkowski space En+1 has proper pointwise 1-type
Gauss map of the second kind, then the mean curvature α of M is non-constant.

Theorem 5. [18] Let M be an oriented hypersurface in the Minkowski space En+1. Then M has proper pointwise
1-type Gauss map of the first kind if and only if M has constant mean curvature and ‖S ‖2 is non-constant.

• In [13], Kim and Turgay presented the definition of Lk pointwise 1-type Gauss map for the case k = 1 and n = 2
In the same paper, authors state
Open Problem. Classify surfaces in E3 with �-1-type Gauss map.
In particular they derive the formula for the Gauss map of a surface of E3

�G = −∇K − 2HKG, (8)

where K and H are Gaussian and mean curvature of M. In [13], the following theorems obtained.

Theorem 6. [13] An oriented surface M in E3 has �-harmonic Gauss map if and only if it is flat, i.e, its
Gaussian curvature vanishes identically.

Theorem 7. [13] An oriented surface M in E3 has �-pointwise 1-type Gauss map of the first kind if and only if
it has constant Gaussian curvature.

Theorem 8. [13] An oriented minimal surface M in E3 has �-pointwise 1-type Gauss map if and only if it is
an open part of a plane.

Theorem 9. [13] Let M be a surface in E3 with a constant principal curvature. Then, M has �-pointwise 1-type
Gauss map of the first kind if and only if it is either a flat surface or an open part of a sphere.

• In [13] the following classification result obtained for surfaces with Lk finite type Gauss map

Theorem 10. [13] Let M be a surface with constant mean curvature in E3. Then M has �-1 type Gauss map if
and only if it is an open part of a sphere, a right circular cylinder or a plane.

• In [14], helicoidal surfaces of E3 is studied in terms of having �-pointwise 1-type Gauss map. It is proved that
a helicoidal surface with �-pointwise 1-type Gauss map of the second must necessarily be a rotational surface
with a specifically chosen profile curve. Further, in [19] this study was moved into pseudo-Galilean space G3

1.
• On the other hand, if the ambient space is Minkowskian, then the similar results have been very recently obtained

by Kim and Turgay when the shape operator of the surface is diagonalizable. On the other hand, if the shape
operator is non-diagonalizable then the following results obtained.

Theorem 11. [20] Let M be a surface in E3
1 with non-diagonalizable shape operator whose characteristic

polynomial is of the form of Q(λ) = (λ − k)2 for a function k. Then, the followings are equivalent:
(i) M has �-pointwise 1-type Gauss map,

(ii) M has constant Gaussian curvature, i.e., k is constant.
(iii) M is a B-scroll.

Theorem 12. [20] Let M be a surface in E3
1 with constant mean curvature and non-diagonalizable shape

operator whose characteristic polynomial has complex roots. Then, M has �-pointwise 1-type Gauss map if
and only if it has proper �-pointwise 1-type Gauss map of the second kind.

• in [21], Qian and Kim study canal surfaces in E3 given by

x(s, θ) = c(s) + r(s)
(
sinψ(s) cos θN + sinψ(s) sin θB + cosψ(s)T

)
, (9)

for an arc-length parametrized curve α(s) in E3 with the Frenet frame {T, S , B} and a smooth function r such
that −r′(s) = cosψ(s). They obtain the complete classification of such surfaces with L1-pointwise 1-type Gauss
map.
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• Recently, some classification and characterization theorems for hypersurfaces of Euclidean spaces with Lk
pointwise 1-type Gauss map has been obtained, [22]. In particular Theorem 10 were generalized for hyper-
surfaces of arbitrary dimensional Euclidean spaces under the restriction of having at most two distinct principle
curvatures.

• Recently, in [23], the first named author obtained a classification of hypersurfaces given by

x(s, t, u) =

(
aA(s)2

s
+ as

(
t2 + u2

)
+

s
4a

+
a
s
, st, su, A(s),

aA(s)2

s
+ as

(
t2 + u2

)
−

s
4a

+
a
s

)
. (10)

with (∆) pointwise 1-type Gauss map.

HYPERSURFACES IN SPACE FORMS

In this section, we first consider hypersurfaces of the Riemannian space form Rn+1(ε) for ε = ±1. Let En+2
ε denote the

semi-Riemannian manifold (Rn+2, gε = 〈·, ·〉), where

gε = εdx2
1 + dx2

2 + dx+
3 · · · + dx2

n+2

for a Cartesian coordinate system (x1, x2, . . . , xn+2). Note that En+2
ε is either a Euclidean space or a Minkowski space

subject to ε = 1 or ε = −1. Let ∇̂ denote the Levi-Civita connection of En+2
ε .

Let M be a hypersurface of Rn+1(ε), x : M ↪→ Rn+1(ε) an isometric immersion and i : Rn+1(ε) ⊂ En+2
ε the

canonical inclusion and x̂ = i ◦ x. h and ĥ will stand for the second fundamental forms of x and x̂, respectively. Then,
we have

ĥ(X,Y) = i∗ (h(X,Y)) − ε〈X,Y〉x̂,

whenever X,Y tangent to M. Consequently, we have

∇̂ei e j = ∇ei e j + δi j (λiN − εx̂) , (11)

∇̂ei i∗N = −λiei, (12)

where N is the unit normal vector field of x, λ1, λ2, . . . λn are principle curvatures of M with the corresponding principle
directions e1, e2, . . . , en.

The (spherical or hyperbolic) Gauss map of M is defined by

G : M −→ En+2
ε

p 7−→ N(p), (13)

or, equivalently, G = i∗N.

Lemma 13. The Gauss map G of a hypersurface M of the Riemannian space form Rn+1(ε) satisfies

LkG = ∇sk+1 + (s1sk+1 − (k + 2)sk+2)G − ε(k + 1)sk+1 x̂. (14)

Proof. We are going to use the notation

µk,i = σn−1(λ1, λ2, . . . , λi−1, λi+1, . . . , λn).

Then, we have

∇sk+1 =

n∑
i=1

µk,i∇λi (15)

and

Lk =

n∑
i=1

µk,i

(
∇̂∇ei ei − ∇̂ei ∇̂ei

)
.
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By a direct computation using (13), (11) and (12), we obtain

LkG =

n∑
i=1

µk,i

(
∇̂∇ei ei i∗N − ∇̂ei ∇̂ei i∗N

)
=

n∑
i=1

µk,i

−∑
j,i

λ jωi j(ei)e j + ∇̂ei (λiei)


=

n∑
i=1

µk,i

∑
j,i

(
λi − λ j

)
ωi j(ei)e j + ei(λi)ei + λ2

i G − ελi x̂


=

n∑
i=1

µk,i∇λi +

 n∑
i=1

µk,iλ
2
i

G −

 n∑
i=1

µk,iλi

 x̂,

where the last equality follows from the Codazzi equation (3). By combining this equation with
n∑

i=1
µk,iλ

2
i = s1sk+1 −

(k + 2)sk+2 and
n∑

i=1
µk,iλi = (k + 1)sk+1, we get (14).

Next we obtain the following classification of hypersurfaces of Rn+1(ε) with 1-type Gauss map.

Theorem 14. Let M be a hypersurface of the Riemannian space form Rn+1(ε) and g the induced metric of M from
Rn+1(ε). Then, M has Lk 1-type Gauss map if and only if it belongs to one of the following classes of hypersurfaces.

(i) A totally geodesic hypersurface of Rn+1(ε).
(ii) Hypersurfaces with constant k + 2th mean curvature and zero k + 1th mean curvature;

(iii) Totally umblical hypersurface of Rn+1(ε) with principle curvatures r , 0, i.e., h(X,Y) = rg(X,Y)N;

Proof. In order to prove the necessary condition, assume that M has Lk 1-type Gauss map. Then, the equation

LkG = λG + C

is satisfied for a constant vector C ∈ En+2
ε and constant λ. From the above equation and (13), we obtain

λG + C = ∇sk+1 + (s1sk+1 − (k + 2)sk+2)G − ε(k + 1)sk+1 x̂. (16)

If C = 0, then we have case (ii) of the theorem.
Assume that (16) is satisfied for C , 0. Then, (16) gives

〈C, ei〉 = 〈∇sk+1, ei〉 = ei (sk+1) , (17)
〈C, x̂〉 = −(k + 1)sk+1. (18)

By differentiating (18) along ei and taking into account ∇̂ei x̂ = ei, we obtain

〈C, ei〉 = −(k + 1)ei (sk+1) .

By combining the above equation with (17), we get ei (sk+1) = 0 which yields sk+1 = c0 for a constant c0 ∈ R.
Therefore, (16) becomes

C = (s1c0 − (k + 2)sk+2 − λ)G − ε(k + 1)c0 x̂. (19)

By differentiating (19) along ei, we obtain

0 =

(
c0ei (s1) − (k + 2)ei (sk+2)

)
G −

(
(s1c0 − (k + 2)sk+2 − λ) ki − ε(k + 1)c0

)
ei. (20)

From (20), we obtain

ki =
ε(k + 1)c0

s1c0 − (k + 2)sk+2 − λ
for all i

which yields that M is totally umbilical. Hence, we have the case (i) or the case (iii) of the theorem subject to r = 0 or
r , 0. Hence the proof of necessary condition is completed.

Proof of the sufficient condition follows from a direct computation.
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Hypersurfaces in H4

In order to present an explicit example of hypersurfaces in H4 with L1 1-type hyperbolic Gauss map, we would like to
consider the hypersurface M given by (10) for a constant a , 0 and smooth, non-constant function A. This family of
hypersurfaces is obtained in [24].

Note that the principle curvatures of M are

k1 =
A(3s2A′2+1)−3sA2A′−s(sA′′2A′3+A′)+A3

((A−sA′)2+1)3/2 ,

k2 = k3 = A−sA′√
(A−sA′)2+1

(21)

with corresponding principle directions e1, e2, e3, proportional to ∂s, ∂t, ∂u, respectively. Moreover, the Levi-Civita
connection of M

∇e1 ei = ∇e2 e3 = ∇e3 e2 = 0, i = 1, 2, 3,
∇eαe1 = ωeα, α = 2, 3, ω(s) = 1√

(A(s)−sA′(s))2+1
. (22)

We have the following classification theorem.

Theorem 15. Let M be the hypersurface given by (10) for a constant a , 0 and smooth, non-constant function A.
Then, we have the followings.

(i) M has L1-pointwise 1-type Gauss map of the first kind if and only if it is 2-minimal.
(ii) M has L1-pointwise 1-type Gauss map of the second kind if and only if the equation

2s2 (k1ωe1(s2) + k2e1e1(s2)) + 4(k1 − k2)s2
2 − 3k2e1(s2)2 = 0 (23)

Proof. The proof of (i) is a direct consequent of Lemma 13. We will prove (ii). Assume that M has L1 pointwise
1-type Gauss map of the second kind. Then from Lemma 13 we have

e1(s2)e1 + (s1s2 − 3s3)G + 2s2 x̂ = f (G + C) (24)

for a non-zero function f and non-zero constant vector C because of (21). Therefore, we have

C = C1e1 + C2G + C3 x̂

for some smooth functions C1,C2,C3. By taking into account that C is a constant vector and considering (21), (22),
we see that C1,C2,C3 satisfy

C1ω −C2k2 + C3 = 0, (25)
e1(C1) = C2k2 −C3 (26)
e1(C3) = −C1 (27)

On the other hand, (24) gives
fC1 = e1(s2), fC3 = −2s2. (28)

By combining (27) with (28), we obtain f = c1s3/2
2 for a non-zero constant c1. Therefore, (28) implies

C1 =
e1(s2)

c1s3/2
2

, C3 = −2
s2

c1s3/2
2

. (29)

By a direct computation using (25), (26) and (29) we obtain (23). The converse follows from a direct computation.
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020026-7



REFERENCES

[1] B.-Y. Chen, Total Mean Curvature and Submanifold of Finite Type (World Scientific, Hackensack, NJ, 1984).
[2] B. Y. Chen, Tamkang J. Math. 114, 137–151 (1986).
[3] B.-Y. Chen, J. M. Morvan, and T. Nore, Kodai Math. J. 9, 406–418 (1986).
[4] B.-Y. Chen and P. Piccinni, Bull. Austral. Math. Soc. 35, 161–186 (1987).
[5] C. Baikoussis and D. E. Blair, Glasgow Math. J. 34, 355–359 (1992).
[6] C. Baikoussis, B.-Y. Chen, and L. Verstraelen, Tokyo J. Math. 16, 341–348 (1993).
[7] C. Baikoussis, B.-Y. Chen, and L. Verstraelen, Results in Math. 28, 214–223 (1995).
[8] D. W. Yoon, Indian J. Pure. Appl. Math. 34, 907–915 (2003).
[9] L. J. Alias and N. Gurbuz, Geom. Dedicata 121, 113–127 (2006).

[10] S. Y. Cheng and S. T. Yau, Math. Ann. 225, 195–204 (1977).
[11] P. Lucas and H. F. R. Ospina, Bull. Korean Math. Soc. 53, 885–902 (2016).
[12] Y. H. Kim, “Submanifolds related to gauss map and some differential operators,” in Recent Advances in the

Geometry of Submanifolds: Dedicated to the Memory of Franki Dillen (19632013), Contemp. Math. 674,
edited by B. D. S. a, A. Carriazo, Y. Oh, and J. V. der Veken (Amer. Math. Soc., Providence, RI,, 2016), pp.
89–97.

[13] Y. H. Kim and N. C. Turgay, Bull. Korean Math. Soc. 50, 935–949 (2013).
[14] Y. H. Kim and N. C. Turgay, Bull. Korean Math. Soc. 50, 1345–1356 (2013).
[15] T. Hasanis and T. Vlachos, J. Austral. Math. Soc. Ser. A 53, 377–384 (1992).
[16] B.-Y. Chen and M. Petrovic, Bull. Austral. Math. Soc. 44, 117–129 (1991).
[17] T. Takahashi, J. Math. Soc. Japan 18, 380–385 (1966).
[18] U. Dursun, Proc. Est. Acad. Sci. 58, 146–161 (2009).
[19] D. W. Yoon, Y. H. Kim, and J. S. Jung, Ann. Pol. Math. 113, 255–267 (2015).
[20] Y. H. Kim and N. C. Turgay, J. Korean Math. Soc. 54, 381–397 (2017).
[21] J. Kian and Y. H. Kim, Milan J. Math. 83, 145–155 (2015).
[22] A. Mohammadpouri, Zh. Mat. Fiz. Anal. Geom. 14, 67–77 (2018).
[23] N. C. Turgay, Publ. I Math-Beograd 103 (117), 223–236 (2018).
[24] N. C. Turgay and A. Upadhyay, On biconservative hypersurfaces in 4-dimensional riemannian space forms,

(submitted) see arXiv:1702.05469.
[25] F. Dillen, J. Pas, and L. Verstraelen, Kodai Math. J. 13, 10–21 (1990).

020026-8

https://doi.org/10.2996/kmj/1138037268
https://doi.org/10.1017/S0004972700013162
https://doi.org/10.1017/S0017089500008946
https://doi.org/10.3836/tjm/1270128488
https://doi.org/10.1007/BF03322254
https://doi.org/10.1007/s10711-006-9093-9
https://doi.org/10.1007/BF01425237
https://doi.org/10.4134/BKMS.b150401
https://doi.org/10.4134/BKMS.2013.50.3.935
https://doi.org/10.4134/BKMS.2013.50.4.1345
https://doi.org/10.1017/S1446788700036545
https://doi.org/10.1017/S0004972700029518
https://doi.org/10.2969/jmsj/01840380
https://doi.org/10.3176/proc.2009.3.02
https://doi.org/10.4064/ap113-3-3
https://doi.org/10.4134/JKMS.j150757
https://doi.org/10.1007/s00032-015-0233-2
https://doi.org/10.15407/mag14.01.067
https://doi.org/10.2298/PIM1817223T
http://arxiv.org/abs/arXiv:1702.05469
https://doi.org/10.2996/kmj/1138039155

